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Abstract 

For over sixty years, the artificial intelligence and cognitive systems communities have represented 

problems to be solved as a combination of an initial state and a goal state along with some 

background domain knowledge. In this paper, I challenge this representation because it does not 

adequately capture the nature of a problem. Instead, a problem is a state of the world that limits 

choice in terms of potential goals or available actions. To begin to capture this view of a problem, a 

representation should include a characterization of the context that exists when a problem arises and 

an explanation that causally links the part of the context that contributes to the problem with a goal 

whose achievement constitutes a solution. The challenge to the research community is not only to 

represent such features but to design and implement agents that can infer them autonomously. 

1.  Introduction 

The task of problem-solving was a central cognitive process examined during the genesis of the 

field of artificial intelligence (AI). Like humans, a machine should be capable of solving difficult 

problems if it were to be considered intelligent. To illustrate such behavior, programs such as the 

General Problem Solver (GPS) were given some initial starting state and a goal state, and then they 

would output a sequence of steps that would achieve the goal if executed (Newell & Simon, 1963). 

This sequence of steps was considered a solution to the problem. Problem-solving itself was cast 

as a heuristic search through the state-space implicit in a given body of knowledge (in the case of 

GPS, inherent in its difference table) to find a combination of steps that meet the goal criteria 

(Amarel, 1968; McCarthy & Hayes, 1969).1 

 Over the years, many types of problems have been studied. Initially, scientists developed 

algorithms for various puzzles and games such as the Towers of Hanoi2 (e.g., Ernst, 1969; 

Knoblock, 1990), chess (e.g., Bilalić, McLeod, & Gobet, 2008; Chase & Simon, 1973; Hsu, 2002), 

and the 8-puzzle and its derivations (e.g., Ratner, & Warmuth, 1986; Russell, & Norvig, 2003). As 

research matured, attention turned toward complex design and planning tasks. For design problems, 

solutions are design configurations for an artifact that meet specific functional requirements and 

structural constraints (Chandrasekaran, 1990; Dinar, et al. 2016; Goel, 1997; Maher, Balachandran, 

 
1 The Logic Theorist (Newell & Simon, 1956) proved theorems, where the given axioms formed an initial state, and the 

proposition to be proved represented the goal. The logical deductions from the initial state to the goal became the 

solution. However, the representations used in GPS are more appropriate for this paper. 
2 At least 340 articles were published on the game in the 100 years from its invention in 1883-1983 (Stockmeyer 2013), 

and apparently even ants can learn to solve an isomorphic version of the problem (Reid, Sumpter, & Beekman, 2010). 
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& Zhang, 1995; Vattam, Helms & Goel, 2010). For automated planning, solutions are sequences 

of actions (i.e., steps) that achieve a goal (Ghallab, Nau, & Traverso, 2004). This paper will focus 

on planning problems to illustrate our arguments in some depth.  

 Further, we will distinguish puzzles from problems. Puzzles do not contain a threat, entail risk, 

or in any significant way limit the choices available to an agent as do problems. We claim that the 

defining attribute of a problem is the restriction of an agent’s choice. The contributions of this paper 

are to question the commonly accepted assumptions of the classical problem representation and to 

offer a formal alternative along with a computational implementation serving as an example. 

 This paper follows with three major sections. The first outlines the classical representation of a 

problem and enumerates some problems with this construction. The second proposes an alternative 

problem representation and then challenges our community to take serious the three computational 

tasks of recognizing a problem, explaining what causes it, and generating a goal to remove the 

cause and thereafter solve the problem. The third section illustrates how such concepts can be 

implemented. Related research follows, and I briefly reiterate our challenge in a closing section. 

2.  The Classical Problem Definition 

What is a problem? An initial state, the goal state, and the means to get from one to the other. 

2.1  Classical Problem Representation 

Over time, the representation of a problem has been formalized with a standard notation. Here we 

adapt the particular notation used by the automated planning community (e.g., Bonet & Geffner, 

2001; Ghallab, Nau, & Traverso, 2004), but variations across AI also are similar to the following. 

 Formal Problem Definition: A problem, 𝒫, is a triple consisting of an initial state, 𝑠0, a goal 

expression, 𝑔, and a transition model for the domain. 

 𝒫 =  (Σ, 𝑠0, 𝑔) where 𝑠0 ∈ 𝑆, 𝑔 ∈ 𝐺 ⊂ 𝑆 (1) 

 State Transition System: This model is represented as a triple composed of a set of possible 

states, 𝑆, a set of available actions, 𝐴, and a successor function, 𝛾: 𝑆 ⨯ 𝐴 → 𝑆, that returns the next 

state, 𝑠𝑖+1, given a current state, 𝑠𝑖, and an action, 𝛼 ∈ 𝐴. 

 Σ = (𝑆, 𝐴, 𝛾) (2) 

 Problem Solution: The solution to a problem is an ordered sequence of 𝑛 actions, 𝜋 (i.e., a plan). 

In this paper, 𝜋[𝑖] denotes the i-th action, 𝛼𝑖, in the sequence, and 𝜋[𝑖. . 𝑗] is the subplan starting 

with action 𝜋𝑖 and ending at 𝜋𝑗.  

 𝜋: 2𝐴 = 𝛼1 | 𝜋[2 … 𝑛] = ⟨𝛼1, 𝛼2 … 𝛼𝑛⟩ (3) 

 Plan Execution: Starting from the initial state, 𝑠0, recursive action executions result in the goal 

state, 𝑠𝑔 that entails the goal expression, 𝑔. 

 𝛾(𝑠0, 𝜋) = 𝛾(𝛾(𝑠0, 𝛼1), 𝜋[2 … 𝑛]) → 𝑠𝑔⊨ 𝑔 (4) 
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2.2  Problems with the Classical Representation 

Significant issues exist with the classical representation of a problem, however. Representations of 

the form shown in equation (1) amount to arbitrary states to achieve and hence constitute a class of 

puzzles rather than problems. The problematic characteristics for the agent posed by the initial state 

and the relative attractiveness of the goal state is lacking in the representation. At best, we might 

say that 𝑠0 may be of lower utility than 𝑠𝑔. But, this choice of representation leaves the problem 

implicit and opaque rather than declarative and open to inspection by the cognitive system. Instead, 

the causal justification for classifying 𝒫 as a problem remains in the head of the researcher; the 

machine has no access to it and thus must blindly follow its set of problem-solving procedures. 

Reasoning about problems that arise in dynamic environments, formulating new goals as a result, 

and changing them as necessary are essentially outside of the scope of the agent and remain the 

responsibility of a human. 

 Summarizing these arguments, the classical problem representation tends to possess three 

significant limitations.  

1. What is wrong with the initial state is left implicit; 

2. The need for the goal or why its achievement is a solution to a problem is opaque and 

cannot be explained; 

3. Problems must be provided by humans rather than inferred by a cognitive system or agent. 

 Indeed, the representation for problems is often overly simplified in the literature. Consider the 

blocksworld planning domain (Gupta & Nau, 1992; Winograd, 1972). Initial states in this domain 

are random configurations of blocks, and so too are the goals. For example, in the first panel of 

Figure 1, the initial state is the arrangement of three blocks on the table, and the goal state is to 

have block A on top of block B. The planner executes a plan to pick up A and stack it on B, but the 

planner has no reason why this goal state is valued. If the world changes dramatically, the agent 

simply adapts the plan to maintain the intended state without a causal justification for the adaptation 

other than the goal was given to it by a human. It does not have the basis to reason about the nature 

of the problem or its solution except for minimizing the solution’s cost perhaps. 

 

 

Figure 1. Blocksworld state sequences that distinguish a justified problem in the lower panel from an 

arbitrary problem in the upper panel (adapted from Cox, 2013). 
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 In the second panel, we assume a larger context such as the construction of buildings and towers. 

In this context, the planner wishes to have the triangle D on the block A to keep water out when it 

rains. Here the pyramid D represents the roof of the house composed of A, B, and C. Water being 

able to get into a person’s living space is a problem; stacking random blocks is not. 

3.  An Alternative Problem Definition  

What is a problem? A situation that limits choice in terms of potential goals or available actions. 

Problems are not simply puzzles or arbitrary states to achieve. A problem is a situation relative to 

an agent (or agents) with some existing history of intent, actions and decisions. Furthermore, 

problems arise even as one is working on other, independent problems. We claim that a situation 

is a problem for an agent whenever a significant risk exists (either immediately or eventually) of a 

loss in ability to achieve its current or future goals or to select and execute particular actions.

 Potential goals are those that might be possible to formulate in the future; kinetic goals are those 

currently in an agent’s agenda. Risks to either can pose a particular class of problems. For example, 

the loss of home value due to negative neighborhood trends (e.g., uncut lawns and abandoned 

vehicles) is a problem for a house’s owner. It limits the potential goal of having the house sold, 

even if the owner does not currently have the desire to do so. 

 Alternatively, a problem can stem from a restricted action set, 𝐴. If an agent lacks the required 

action models (i.e., planning operators) to achieve its goals, then a limitation of choice also exists. 

Such a situation can occur for example when new technology is introduced into the workplace and 

older workers lack the necessary skills to perform a manufacturing job. In a sense, environmental 

change can cause similar outdating for an agent if new actions are not learned or old actions 

adapted. 

 Formal Problem Definition: As opposed to 𝒫 in equation (1), the current problem, 𝒫𝑐, is a tuple 

consisting of the currently observed and expected states, 𝑠𝑐 and 𝑠𝑒, the background knowledge, 𝐵𝑘, 

an episodic problem-solving history, 𝐻𝑐, a causal explanation of the problem, 𝜒, and a new goal, 

𝑔′, whose achievement solves it. We examine each of these in turn over the next three subsections. 

In particular, 𝐻𝑐 (defined by equation 15) includes components described in sections 3.1 and 3.2 . 

 𝒫𝑐 = (𝑠𝑐 ,  𝑠𝑒 ,  𝐵𝑘, 𝐻𝑐 ,  𝜒, 𝑔′) where 𝑠𝑐 , 𝑠𝑒 ∈ 𝑆 (5) 

3.1  Representing the Intent Context 

The key to understanding problems is to recognize the importance of goals or the intended future 

directions of an agent. A new area of research called goal reasoning has attempted to develop 

cognitive systems with a capability to reason about their own goals, to change them when 

warranted, and to formulate new goals when confronted with new problems (Aha 2018;3 Cox 2007; 

2013; Hawes 2011; Klenk, Molineaux & Aha, 2013; Munoz-Avila 2018; Vattam, Klenk, 

Molineaux & Aha, 2013). To do so, problems must include a representation of the dynamic context 

of the agent with respect to its intent. This includes the agent’s background knowledge, 𝐵𝑘; an 

 
3 This work is based on the Robert S. Engelmore Memorial Lecture given by David Aha at the Twenty-Ninth Conference 

on Innovative Applications of Artificial Intelligence in San Francisco. 
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interpretation function, 𝛽, that can change or formulate goals; the changing trajectory, �⃑�, of the 

current goal; the system’s current goal agenda, 𝐺𝑐; and the agenda’s history of change, 𝐺ℎ. 

 Background Knowledge: The system’s background knowledge, 𝐵𝑘, consists of the state 

transition system (see section 2.1 equation 2) along with a set of goal operations, ∆ = { | ∶
𝐺→ 𝐺}, an interpretation function, 𝛽, and a planning function, 𝜑 (section 3.2 expression 12).  

 𝐵𝑘 = (Σ, ∆, 𝛽, 𝜑)  (6) 

 Here, the action models within Σ enable an agent to predict subsequent states, 𝑠𝑒, and to use these 

expectations in comparison with observed states, 𝑠𝑐, to suspect the presence of problems. See 

Dannenhauer & Munoz-Avila (2015; Dannenhauer, Munoz-Avila & Cox, 2020) for detail. 

 Interpretation Function: Given a state and a (possibly empty) goal, the interpretation function, 

𝛽, performs goal operations from ∆ outputting a desired goal expression (Cox, 2017; Cox, 

Dannenhauer, & Kondrakunta, 2017). This cognitive process is the dual to the planning function, 

𝜑, defined in the next section. 

 𝛽: 𝑆 × 𝐺 → 𝐺 (7) 

 A specific operation from 𝛥 is represented as the 4-tuple  = (ℎ𝑒𝑎𝑑(), 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(), 𝑝𝑟𝑒(),
𝑟𝑒𝑠()) where 𝑝𝑟𝑒() and 𝑟𝑒𝑠() are its preconditions and result. The transformation’s identifier 

is ℎ𝑒𝑎𝑑(), and its input goal argument is 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(). There are two essential goal operations. 

Goal formulation (𝛽(𝑠, ∅) → 𝑔) infers a new goal given some state (Cox, 2007; 2013; Paisner, 

Cox, Maynord & Perlis, 2014); whereas, goal change (𝛽(𝑠, 𝑔) → 𝑔′) transforms an existing goal 

into another (Choi, 2011; Cox & Veloso, 1998; Cox & Dannenhauer, 2016).4 

 Goal Trajectory: The trajectory represents the original goal, 𝑔1, and its evolution into the 

agent’s current goal, 𝑔𝑐. It consists of an ordered sequence of state-goal pairs. 

 �⃑� = ⟨(𝑠0,  𝑔1), (𝑠𝑖 , 𝛽(𝑠𝑖 , 𝑔1)), … (𝑠𝑗 , 𝑔𝑐)⟩ (8) 

 Goals do not always remain as given or first formulated. They are malleable objects that change 

over time as agents change their intent. Goals go through arcs or trajectories in a goal hyperspace 

over time (see Bengfort & Cox, 2015; Eyorokon, 2018; Eyorokon, Panjala, & Cox, 2017; 

Eyorokon, Yalamanchili, & Cox, 2018). 

 Current Goal Agenda: This set includes all goals the agent intends to achieve. The current goal 

being solved, 𝑔𝑐, may be one, some or all the goals in the agenda. 

 �̂�𝑐 = {𝑔1, 𝑔2, … 𝑔𝑛} (9) 

 Agenda History: This knowledge structure records the evolution of the goal agenda up to and 

including its current instance, 𝐺𝑐. It is a simple sequence of the variations the agenda has undergone. 

 �̂�ℎ = ⟨�̂�1, �̂�2, … �̂�𝑐⟩ (10) 

3.2  Representing the Problem-Solving Context 

Finally, the problem representation requires a formalism for the problem-solving process and its 

unfolding and possibly changing solution to a goal. The reason for this requirement is that new 

 
4 Goal formulation is implemented as the insertion transformation ∗(∅) → 𝑔; a trivial example of goal change would 

be the identity transformation 𝐼(𝑔𝑖) → 𝑔𝑖 for all 𝑔𝑖 ∈ 𝐺 i.e., the tuple (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦, 𝑔, {𝑡𝑟𝑢𝑒}, 𝑔). See Cox (2017) for 

further detail and Cox & Dannenhauer (2017) for a more expressive goal representation. 
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problems can arise during the act of solving a previous problem or during plan execution. To 

capture the problem-solving process so that a system can reason about potential limitations 

restraining it, this section describes the plan, 𝜋, the planning function, 𝜑, the planning trajectory, 

�⃑⃑�, and the current execution episode, 𝜀𝑐. These formalisms complete the constituents of the 

episodic, problem-solving history, 𝐻𝑐, first mentioned at the beginning of section 3. 

 Plan: The dynamically executing plan consists of the previously executed steps (including 

current step, α𝒄) concatenated with all remaining steps (𝒓) of the plan. 

 𝜋: 2𝐴 =  ⟨⍺𝟏, ⍺𝟐, … ⍺𝒄⟩ ∘  𝒓 = 𝒄 ∘ 𝒓 (11) 

 Planning Function: Given a state, a goal, and a (possibly empty) plan, the planning function, 𝜑, 

performs a (re)planning operation using Σ (Cox 2017). 

 𝜑: 𝑆 × 𝐺 × 2𝐴 → 2𝐴 (12) 

 Traditional plan generation is of the grounded form 1 ← 𝜑(𝑠0, 𝑔1, ∅). If the goal was inferred 
instead of given, then we have 1 ← 𝜑(𝑠0, 𝛽(𝑠0, ∅), ∅). Replanning (see Kunze, Hawes, Duckett, 
Hanheide & Krajník 2018; Langley, Choi, Barley, Meadows & Katz, 2017; Pettersson 2005) is of 
the form 𝑘+1 ← 𝜑(𝑠𝑖 , 𝑔𝑗, 𝜋𝑘). Replanning with goal change would be 𝑘+1 ← 𝜑(𝑠𝑖 , 𝛽(𝑠𝑖 , 𝑔𝑗), 𝜋𝑘) 
 Planning Trajectory: This trajectory is the sequence over time of changing plans paired with 

the goals they purport to solve from the first goal and plan (𝑔1,1) until and including the current 

goal (𝑔𝑐) where the remainder of the plan (𝑟) awaits execution.  

 �⃑⃑� = ⟨(𝑔1, 𝜋1), (𝑔𝑖 , 𝜑(𝑠𝑗 , 𝑔𝑖 , 𝜋1[𝑘 … 𝑛])) , … (𝑔𝑐 , 𝜋𝑟)⟩ (13) 

 Sometimes the plan changes because of exogenous events in the world or because previous 
uncertainty became removed; sometimes it changes because the goal changed. In other 
circumstances, both conditions may precipitate an alteration to the plan. 

 Current Execution Episode: The episode consists of the sequence of all states and executed 

actions that occurred up to but not including the current state, 𝑠𝑐. 

 ԑ𝑐 = ⟨𝑠0, ⍺1, (𝑠0, 𝛼1), ⍺2, … 𝑠𝑐−1, ⍺𝑐⟩ (14) 

 Episodic Problem-Solving History: This final knowledge structure encapsulates the goal, 

agenda, plan, and execution trajectories. It represents the dynamical, problem-solving context 

within which a problem is understood and solved by a given cognitive system.  

 𝐻𝑐 = (�⃑�, �̂�ℎ , ⃑⃑, ԑ𝑐) (15) 

 The new work developed in this paper centers about this representational structure and enables 

cognitive systems to reason about the full scope and content of problems including both the intent 

context (section 3.1) and the overall problem-solving context within which intent is situated.  

3.3  The Cognitive Systems Challenge: Inferring the Problem 

Finally, we have the prerequisites to specify a problem along with the restriction of choice it 

represents for an agent. If, for example, an agent is building a physical structure to contain its 

possessions and to safely house itself, it will have a typical set of goals to achieve and reasons for 

each. The goal to add the roof is causally connected to the need for guarding one’s possessions and 

for personal safety and comfort. However, these ancillary needs are not threatened at construction 

time given that the possessions are safe elsewhere, it is not raining, and the agent does not currently 

live in the house. But, if possessions are moved into the house and a proper roof is not in place, the 
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possessions will lose substantial value when it rains. Lost value signifies reduced benefit and 

therefore less choice. This explanation (or others like it relating the current state to what can occur 

in the future) supports the goal of having a roof placed on the structure. Such relationships become 

institutionalized in best practices (e.g., building codes), but they are crucial in a relatively novel 

situation that poses a new problem for any agent.  
 Problem Explanation: The explanatory graph consists of sets of vertices (𝑉) and edges (𝐸) 
causally linking the current state, 𝑠𝑐, to the limitation of choice. 

 𝜒 = (𝑉, 𝐸) (16) 

 To be fully effective in complex, uncertain and changing environments, an agent should do more 

than just solve problems and achieve the goals given to it. Rather, the intelligent agent should be 

capable of (1) recognizing problems on their own; (2) explaining what caused them; and (3) 

formulating an independent goal to solve the problem or remove the cause (Cox, 2013). Preliminary 

findings show benefit to this approach, although it is quite difficult to cleanly separate out “true” 

problems from minor discrepancies encountered by an agent in such environments (Kondrakunta 

et al., 2019; Gogineni, Kondrakunta, Molineaux, & Cox, 2020; 2018). 

 In my opinion, the combination of these three tasks constitute the next grand challenge for the 

AI community and especially for the cognitive systems community. Cognitive systems or 

intelligent agents, if they are to be genuinely autonomous with a significant measure of 

independence, should themselves infer the explanation, 𝜒, and the new goal, 𝑔′ (placing the latter 

in their agenda, i.e., 𝐺𝑐). They should not simply generate some plan, , and then wait for a human 

to given them further direction.  

 Reduced Problem Definition: In accordance with this challenge, a current problem would be 

represented as the following 4-tuple adapted from equation (5) on page 4. Neither the goal nor the 

explanation would be given a priori. 

 𝒫𝑐 = (𝑠𝑐 , 𝑠𝑒 , 𝐵𝑘, 𝐻𝑐) (17) 

 Therefore, instead of a sole plan, 𝜋, the solution to 𝒫𝑐 would be a 3-tuple of the form (𝜒, 𝑔′,𝑔′) 

where 𝜒 is an explanation that justifies a new goal 𝑔′ and 𝑔′ is a plan to achieve it. If we prevail 

over time in the above tasks, it will enable cognitive systems to manage problems flexibly on their 

own and, if necessary, to explain to others the reasons for their choices (appropriately outputting 𝜒 

when asked about a new goal or 𝑔′ when asked about unexpected actions). Existing systems cannot 

fully make such inferences or completely generate such solutions or explanations. However, the 

following examples demonstrate some basic first steps and show how an implemented system could 

start to use the representations presented in this paper. 

4.  Computational Implementation and Example 

The Metacognitive, Integrated, Dual-Cycle Architecture (MIDCA)5 (Cox, Alavi, Dannenhauer, 

Eyorokon, Munoz-Avila, & Perlis, 2016; Cox, Oates, & Perlis, 2011) is an agent model of an 

intelligent cognitive system. Figure 2 shows details in the cognitive layer of MIDCA as an iterative 

repetition of processes together with an abstract representation for the metacognitive layer. MIDCA 

consists of "action-perception" cycles at both the cognitive and metacognitive layers. The output 

 
5 See http://www.midca-arch.org and, for the code repository, https://github.com/COLAB2/midca. 

http://www.midca-arch.org/
https://github.com/COLAB2/midca
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side of each cycle consists of intention, planning, and action execution, whereas the input side 

consists of perception, interpretation, and goal evaluation. A cycle selects a goal and commits to 

achieving it (the Intend phase). The agent then creates a plan (Plan phase) to achieve the goal and 

subsequently executes a planned action (Act) to move the current state toward the goal state. The 

agent observes changes to the environment (Perceive) resulting from each action, interprets the 

percepts (Interpret) with respect to the plan, and evaluates the interpretation (Evaluate) with respect 

to the goal. 

4.1  The Mine Clearance Domain  

To prepare a harbor for use during maritime operations, it is essential to conduct mine clearance 

activities to ensure that ships can operate safely as they transit between the open sea and the port. 

A network of safe shipping lanes is typically established to reduce the size of the area within the 

harbor. Such a system is known as a Q-route (Li, 2009). For experimentation, we modeled the 

mine clearance domain (Gogineni, Kondrakunta, Molineaux & Cox, 2018; Kondrakunta et al., 

2018) with a fixed Q-route that consists of a single shipping lane and developed several test 

scenarios (see Figure 3). In this simulation, MIDCA controls a Remus autonomous underwater 

vehicle through an interface to the MOOS IvP software (Benjamin, Schmidt, Newman, & Leonard 

Figure 2. A functional decomposition of the major cognitive processes in MIDCA: The Perceive, Interpret, 

Intend, Plan, and Act phases. Although abstracted here, these are duplicated at the meta-level. A similar 

six phase cycle is at the metacognitive layer. Note that Interpret also formulates new goals (𝑔𝑛).  
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2010) and performs both mine detection and clearance. In each scenario, the agent knows of two 

previously identified areas within the Q-route (i.e., green area one, 𝐺𝐴1, and green area two, 𝐺𝐴2) 

where mines are expected. MIDCA is given goals to clear each area, although the location and 

number of mines are not known in advance. An area is clear if the state of all mines within it is 

equal to is-cleared. 

cleared(𝑎𝑟𝑒𝑎) ⇔ ∀𝑚, 𝑙 | location(𝑙) ∧ mine(𝑚) ⋀ within(𝑎𝑟𝑒𝑎, 𝑙) ∧ at-location(𝑚, 𝑙)
→ is-cleared(𝑚) 

 As such, any mines encountered which do not lie within GA1 or GA2 constitute discrepancies. 

However, only mines within the Q-route are classified as problems, because mines outside the Q-

route will not pose a hazard to shipping. It is the role of the agent to determine how to respond to 

all mines in each scenario. 

4.2  Mine Clearance Problems 

At initialization time, each element of the problem-solving history, 𝐻𝑐, from equation (15) is 

initialized to empty sequences such that 𝐻𝑐 = (�⃑� ← 〈 〉, 𝐺ℎ ← 〈 〉, ⃑⃑ ← 〈 〉, ԑ𝑐 ← 〈 〉). MIDCA 

always starts with the Perceive phase to establish the initial state, 𝑠0, and to set the execution 

episode from equation (14) to ԑ𝑐 = 〈𝑠0〉. The Interpret phase detects the initial three goals 𝑔1 =
cleared(𝐺𝐴1); 𝑔2 = cleared(𝐺𝐴2); and 𝑔3 = stored(𝑝) and adds them to the starting goal agenda 

from equation (9), 𝐺𝑐 ← {𝑔1, 𝑔2, 𝑔3}. The Evaluate phase checks to see if the goal state is achieved 

(it is not), and then the Intend phase chooses all three goals by setting the current goal expression, 

𝑔𝑐, as a conjunct of the three. 

𝑔𝑐 ← 𝑔1 ⋀ 𝑔2 ⋀ 𝑔3 

 Subsequently, the Plan phase produces a seven-step plan, 𝜋, to achieve the goals and sets the 
beginning plan trajectory to ⃑⃑ = 〈(𝑔𝑐 , 𝜋)〉. See expression (12). 

Figure 3. Simulation of the mine clearance domain in Moos IvP. The Q-route extends from the left to the 

right side of the map. Shipping (shown in yellow) awaits on the left side of the map, and the Remus 

platform (in red) encounters a mine (𝑚1 in the pentagon) as it transits to the 𝐺𝐴1 location.  

m1

m2

Q-route
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𝜋[1. .7] ← 𝜑(𝑆0, 𝑔𝑐 , ∅) = 〈

deployed(𝑝, 𝑠𝑡𝑎𝑟𝑡), transit(𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝐺𝐴1),

 
do-clear(p,GA1), transit(𝑝, 𝐺𝐴1, 𝐺𝐴2), do-clear(p,GA2), 

transit(𝑝, 𝐺𝐴2, 𝑑𝑒𝑠𝑡), picked-up(𝑝, 𝑑𝑒𝑠𝑡)

〉 

 

 Finally, the Act phase executes the first step, deployed(𝑝, 𝑠𝑡𝑎𝑟𝑡), and sets the execution history 

to ԑ𝑐 ← ε𝑐 ∘ 〈𝛼1〉 = 〈𝑠0, deployed(𝑃, start)〉. These six phases are then repeated in succession. At 

each instance 𝑖 through the MIDCA cycle, Act changes ԑ𝑐 ← ε𝑐 ∘ 〈𝛼𝑖〉. 

4.2.1  First Encountered Problem: Discrepancy, Explanation, and Goal 

MIDCA discovers a surprise after it starts to execute the second action of its plan above. Figure 3 

shows the state of the environment (𝑠2) during the transit from the starting position to 𝐺𝐴1. Here, 

the Remus’ side-scanning sonar sees the mine 𝑚1. Perceive then adds 𝑠2 to the current execution 

episode, 𝜀𝑐, and changes the second action from transit(𝑝, start, GA1) to transit(𝑝, start, loc(𝑚1)).  

𝜀𝑐 = 〈𝑠0,deploy(𝑝, 𝑠𝑡𝑎𝑟𝑡), 𝑠1, transit(𝑝, start, loc(𝑚1)), 𝑠2〉 

MIDCA’s Interpret phase recognizes a discrepancy given it expects the transit area to be clear, 

but it observes a mine in the area. That is, the expectation, 𝑠𝑒, is equivalent to the expression 
∀𝑙 | location(𝑙) ∧ within(clear-area, 𝑙) ∧ ∄𝑚|mine(𝑚) ∧ at-location(𝑚, l); whereas, the 
observed predicate at-location(𝑙, 𝑚) ⊂ 𝑠2 violates it. Hence, the discrepancy. At this point, 
MIDCA has established a new episodic problem-solving history that enables it to reason about 
changes in the future. Now instantiated from equation (17), the current problem is as follows. 

𝒫𝑐 = (𝑠2, ∄𝑚1, (Σ,Δ,β,φ), 𝐻𝑐) where 𝐻𝑐 = (�⃑�, 𝐺ℎ , ⃑⃑, ԑ𝑐) 

 Interpret explains that this might have been placed in the area by an enemy mine-laying vessel 

(see Figure 4) and that because it is outside of the Q-route, it does not represent a problem to 

friendly shipping.6 Instead, it generates a goal to avoid the mine itself, adds the goal to the goal 

agenda, and updates the agenda history to reflect the new status. 

𝑔4 ← 𝛽(𝑠2, 𝑔𝑐) = avoided(𝑚1) 

𝐺𝑐 ← �̂�𝑐  ∪ 𝑔4 

�̂�ℎ ← (𝐺ℎ ∘ 〈𝐺𝑐〉) = 〈{𝑔1 ⋀ 𝑔2 ⋀ 𝑔3}, {𝑔1 ⋀ 𝑔2 ⋀ 𝑔3⋀𝑔4}〉 

The Evaluate phase does nothing since the goal is not yet achieved, but the Intend phase adds 𝑔4 

to the current goal conjunct, i.e., 𝑔𝑐 ← 𝑔𝑐⋀ 𝑔4. Intend then updates the goal trajectory.  

�⃑� =  〈(𝑠0, 𝑔1 ⋀ 𝑔2 ⋀ 𝑔3), (𝑠2, 𝑔1 ⋀ 𝑔2 ⋀ 𝑔3⋀𝑔4)〉 

 

 
6 See past work for further details on explanation patterns, their representation, and how they are retrieved, selected and 

applied (Cox, 2011; Cox & Ram, 1999; Gogineni, et al., 2020; 2018; Kondrakunta, et al., 2019; Ram, 1990; Schank, 

1986). 
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  MIDCA’s Plan phase then modifies the remaining current plan fragment, 𝜋𝑟 = 𝜋[3. .7], to 

achieve the new current goal by adding two steps to the front of the plan. The phase also changes 

the plan trajectory given the expanded current goal and the newly updated plan. 

𝜋′ ← 𝜑(𝑠2, 𝑔𝑐 , 𝜋𝑟) = 〈avoid(𝑝, 𝑚1), transit(𝑝, loc(𝑚1), 𝐺𝐴1) 〉 ∘ 𝜋𝑟 

�⃑⃑� = 〈(𝑔1 ⋀ 𝑔2 ⋀ 𝑔3, 𝜋), (𝑔1 ⋀ 𝑔2 ⋀ 𝑔3⋀𝑔4, 𝜋′)〉 

4.2.2  Second Encountered Problem: Discrepancy, Explanation, and Goal 

After continuing execution from the location of 𝑚1, the Remus platform continues to 𝐺𝐴1 and 

clears all mines in that location. During the transit from 𝐺𝐴1 to 𝐺𝐴2, however, MIDCA encounters 
the mine 𝑚2 (see Figure 5). The presence of this mine also represents a discrepancy because no 
mines were expected in the area between 𝐺𝐴1 and 𝐺𝐴2.  

m1

m2

Q-route

Figure 5. The Remus encounters another surprise in the mine clearance domain. The mine 𝑚2 is within 

the Q-route and hence represents a problem to the shipping as they traverse the channel. 

Figure 4. The abstract Mine-XP (taken from Kondrakunta et al., 2019). Explanation patterns (XPs) (Schank 

1986) map observed Pre-XP nodes to inferred XP-Asserted nodes that cause the Explains node. Bold 

symbols represent variables which are matched against and unified with objects and relations in the state. 
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At this point, the Perceive phase updates the current execution episode. Like the previous 
example from section 4.2.1 it replaces ⍺4 in 𝜀𝑐 with transit(𝑝, 𝐺𝐴1, loc(𝑚2)), and it adds 𝑠6. 

𝜀𝑐 = 〈
𝑠0, deployed(𝑃, start), 𝑠1, transit(𝑝, start, loc(𝑚1)), 𝑠2, avoid(𝑝, 𝑚1), 𝑠3,

transit(𝑝, loc(𝑚1), 𝐺𝐴1), 𝑠4, do-clear(𝑝, 𝐺𝐴1), 𝑠5, transit(𝑝, 𝐺𝐴1, loc(𝑚2)), 𝑠6

〉 

 Here, the Interpret phase recognizes another discrepancy given it expects the transit area between 

the two target areas to be clear but it observes the mine 𝑚2. Once again, the discrepancy is caused 

because it expects no mine (i.e., ∄𝑚2) and it observes one in state 𝑠6. The problem is as follows. 

𝒫𝑐 = (𝑠6, ∄𝑚2, (Σ,Δ,β,φ), 𝐻𝑐) 

Like before, it explains that this might have been placed in the area by an enemy mine-laying 
vessel, but in this case, the mine is inside the Q-route and so does represent a problem to friendly 
shipping. A new goal is added to clear m2, and it is added to the agenda. Subsequently, MIDCA 

updates the agenda history. 

𝑔5 ← 𝛽(𝑠6, 𝑔1 ⋀ 𝑔2 ⋀ 𝑔3 ⋀ 𝑔4) = is-cleared(𝑚2) 

𝐺 ← 𝐺  ∪  𝑔5 

�̂�ℎ  ← 𝐺ℎ ∘ 〈𝐺〉 

As before, the Evaluate phase does nothing, but the Intend phase adds 𝑔5 to the current goal and 
updates the goal trajectory. 

𝑔𝑐 ← 𝑔𝑐 ∧ 𝑔5 = (𝑔1 ⋀ 𝑔2 ⋀ 𝑔3⋀ 𝑔4) ⋀ 𝑔5 

�⃑� ←  �⃑� ∘ 〈(𝑠6, 𝑔𝑐)〉 

In the Plan phase, MIDCA takes the remaining plan, 𝜋𝑟
′ = 𝜋′[5. .7], and generates a new plan. 

As a result, it also adjusts the plan trajectory. This new plan can now be carried out by the Act 
phase with the result that shipping can safely traverse the channel to deliver supplied in the harbor. 

𝜋" ← 𝜑(𝑠6, 𝑔𝑐 , 𝜋𝑟
′ ) = 〈do-clear(𝑝, 𝑚2), transit(𝑝, loc(𝑚2), 𝐺𝐴2) 〉 ∘ 𝜋𝑟

′  

�⃑⃑� = 〈(𝑔1⋀𝑔2⋀𝑔3, 𝜋), (𝑔1⋀𝑔2⋀𝑔3⋀𝑔4, 𝜋′), (𝑔1⋀𝑔2⋀𝑔3⋀𝑔4⋀𝑔5, 𝜋")〉 

Finally, Evaluate checks that the current state entails the goal state and clears the agenda. 

5.  Related Research 

An alternative formal model (Johnson, Roberts, Apker, & Aha, 2016; Roberts et al., 2015; 2014) 
treats goal reasoning as goal refinement. Using an extension of the plan-refinement model of 
planning, Roberts and colleagues model goal reasoning as refinement search over a goal memory 
𝑀, a set of goal transition operators 𝑅, and a transition function delta that restricts the applicable 

operators from 𝑅 to those provided by a fundamental goal lifecycle. Unlike the formalism here that 
represents much of the goal reasoning process with the function , Roberts proposes a detailed 
lifecycle consisting of goal formulation, selection, expansion, commitment, dispatching, 
monitoring, evaluation, repair, and deferment. Thus, many of the differential functionalities in  are 
distinct and explicit in the goal reasoning cycle. However, problems are represented classically.  

Both goal reasoning and explainable AI (Aha, et al., 2017; Cox, 2011, 1994; Gunning, 2016; 

Lane, Core, van Lent, Solomon, & Gomboc, 2005) are research areas that question the status quo 
and push the frontiers of what we think machines should be able to accomplish on their own. These 
lend support to the proposition that both goals and explanations of problem-solving or performance 
are important for representing and understanding problems. The planning community is beginning 



 THE PROBLEM WITH PROBLEMS  

 

to open up to the view that planners are more than generators of action sequences; they must 
consider dynamic and uncertain environments where decisions, action execution, collaboration, 
and replanning all interact (Ghallab, Nau, & Traverso, 2014; 2016). Yet, the representation of a 

problem remains much the same as it has for some sixty years (c.f., Patra, Traverso, Ghallab, & 
Nau, 2018). 

Many researchers in the cognitive systems community have proposed various problem 
representations and specified numerous problem-solving mechanisms. But, most of these assume 
some variation on the basic representation of an initial state and goal state given by a human or 
otherwise input to the system. Although progress has been made, the research focus tends to be 

upon developing methods to produce solutions. Problems are closer to puzzles in many of the cases 
found in the literature. For example, Klenk and Forbus (2009) developed an analogical method that 
solves AP Physics type problems. These problems consist of a set of given facts and a goal query 
that seeks a particular value for some quantity. Langley, Pearce, Bai, Barley, and Worsfold (2016) 
use heuristic search through a space of candidate decompositions of a problem, but problems 
themselves consist of state-goal pairs. Still, many cognitive systems such as PUG (Langley, Choi, 

Barley, Meadows & Katz, 2017) do recognize that goals are not simple predicate states. Instead, 
they differ widely according to utility and other attributes, and problem solutions need to be 
monitored given dynamic environments. 

Finally, the concept of a MacGyver problem (Sarathy & Scheutz, 2018) is quite interesting, 
because it represents a problem that resides partially outside the transitive closure of the existing 
background knowledge of the agent, hence requiring insight for a solution. However, like most 

other representations in the community, it assumes the formalism from equation (1) but with a 
novel twist as shown below in equation (18). 

𝒫𝑀 = (𝕎𝑡 , 𝑠0, 𝑔) where 𝕨𝑡 = (S𝑡 , A𝑡 , γ𝑡) (18) 

Like the state transition system of equation (2), the world 𝕨𝑡 is composed of a set of possible 

states, actions, and a successor function, each specific to agents of type 𝑡. This world contains a 
portion of a larger universe 𝕦 that includes further possible states, actions and transitions not 
initially available to the agent. To solve 𝒫𝑀, an agent must learn or infer missing constituents. 
Although the representation of MacGyver problems suffer from many of the same limitations as 
those enumerated in section 2.2 , Sarathy and Scheutz also represent the evolving context of the 
agent (shown in equation 19). 

ℂ𝑖 = (Σ𝑖
𝑡 , 𝑠𝑖) where Σ𝑖

𝑡 = (𝑆𝑖
𝑡, 𝐴𝑖

𝑡 , 𝛾𝑖
𝑡) (19) 

The context ℂ𝑖 consists of the current state 𝑠𝑖 and the subdomain existing at time step 𝑖. A 
subdomain Σ𝑖

𝑡 represents the perceptions and actions currently available to an agent within its 
world. Therefore, a solution to 𝒫𝑀 is obtained by iteratively extending (or contracting) its domain 

using a set of domain modifications 𝛥 until the goal is reachable from its current state. At this point, 
the solution 𝜋 to the problem can be output. Although these conceptualizations are certainly steps 
in the right direction, such work accepts most of the assumptions underlying the classical 
representation. 

6.  Conclusion 

This paper redefines a problem as a state of the world that limits choice in terms of potential goals 

or available actions and presents a formal notation to support this definition and an implemented 

example to illustrate its application. I argue that, unlike the traditional definition of a problem, this 
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new definition has the benefit of declaratively representing the larger problem-solving context 

within which problems arise and thus allows cognitive systems to reason about the causal factors 

that make the current situation a problem along with the opportunities that exist for solving it, even 

while managing pre-existing goals that may be independent of any new one. Given this position, I 

have challenged the community to consider how computational systems can autonomously 

recognize problems on their own and form their own response. 

 I do not claim to have solved the task of independently recognizing a problem. This paper is not 

about solutions; rather, its focus is about recasting the problem itself we are trying to solve as a 

community. The challenge I pose constitutes a significant research issue that borders on many of 

the scientific questions we already address. So, under any theoretical framework or within any 

implemented cognitive system, the fundamental research question becomes “How can a system 

recognize, represent and then reason about a new problem given the backdrop of a current set of 

physical and cognitive activities?” The vision is to develop an alternative to an over-dependence 

upon human monitoring of the larger situation and subsequent manual intervention. Although this 

paper does not address the equally important issue of properly circumscribing an agent’s capacity 

to act independently, it does look at an old research question in a new light. Most importantly, this 

work re-examines underexplored issues central to fully understanding human cognition and 

problem solving. 
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