
Advances in Cognitive Systems X (20XX) 1-6 Submitted X/20XX; published X/20XX

Policy Regression for Monitoring Execution in Goal Reasoning
Systems

Noah Reifsnyder NDR217@LEHIGH.EDU

Hector Munoz-Avila HEM4@LEHIGH.EDU

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015 USA

Abstract
In this paper we investigate the problem of representing and defining policy regression expectations,
needed for execution monitoring, when the course of action being monitored is represented as a
policy. Until now, the notion of expectation for goal reasoning systems has focused on plans,
defined as sequences of actions. This paper presents a formalization to the notion of expectations
when the agent is executing policies instead of plans. It also relaxes the notion of policy. Policies are
used when acting in probabilistic domains, where executing actions might have multiple outcomes
according to some probability distributions.

1. Introduction

There has been an increasing interest in AI Safety, the creation of reliable AI agents that don’t
step out of their boundaries. Part of the interest on AI Safety is the realization that as systems
increase in sophistication they may behave in ways that are inconsistent towards the agent’s own
specifications as encoded in its plan formulation knowledge. Planning knowledge can be formulated
as a collection of actions,A, indicating how states change when the actions are applied. Actions may
have deterministic outcomes indicating a pre-determined outcome or non-deterministic indicating
multiple possible outcomes; the latter requires planning paradigms that plan ahead for each possible
outcome.

A related theme in AI research are planning paradigms providing provable guarantees that a
generated solution π solves a given problem P . Such guarantees can be seeing as providing a
component of AI’s answer to the problem of AI Safety; namely, as long as the solution π is followed,
and no unaccounted contingency occurs, we guarantee that the problem will be solved as specified
in P .

Another component of the answer from AI to the problem of AI Safety is the monitoring of
π’s execution. There are two problems that must be addressed for this component: Detection:
determining if the agent is deviating from the course of action plotted in π; Correction: taking
corrective action when such a deviation is detected. There are multiple approaches to address the
correction problem including (1) replanning, namely, generating a new solution from the current
state s reached where the failure was detected (Fox et al., 2006; Warfield et al., 2007); (2) goal rea-
soning, where the agent performs a meta-reasoning process and formulates a new goal (Aha, 2018;

c© 20XX Cognitive Systems Foundation. All rights reserved.

N. REIFSNYDER AND H. MUNOZ-AVILA

Cox, Dannenhauer, and Kondrakunta, 2017); (3) or simply the agent stopping its own execution
(e.g., in Gregg-Smith and Mayol-Cuevas (2015) a robotic arm deactivates itself when encountering
a discrepancy).

In this paper we are focusing on the detection problem, when the solution π is a policy. Policies
are generated by underlying assumptions that the agent knows all outcomes and their probabil-
ity distribution (e.g., ND planning) or by learning from interactions with the environment (e.g.,
Reinforcement Learning). These policies fail the moment a situation is encountered that was not
pre-planned for in advance. This has become an issue of increasing concern in reinforcement learn-
ing (and AI in general), as the agent may take too many cycles before adapting with potentially
catastrophic consequences (Mason et al., 2017).

Expectations allows agents to detect such unexpected events occurring in the environment (Cox,
2007; Dannenhauer, 2018) . They allow the agent to know not just what went wrong that caused
the policy to fail, but also allow the agent to ignore unexpected events that don’t actually affect the
achievement of the goals. For example, in the Blocks World, if a new block appears, it would cause
an expectation’s failure. There will be no mappings from a state with an added block to an action.
With expectations, we will be able to determine if this block will hinder the current policy or not
and in the latter case simply continue with the policy’s execution. This allows the agent to ignore
random variations of the state that don’t impact the achievement of the goals.

We re-examine the notion of expectations where solutions achieving the goals are policies,
which are mappings from states to actions, π : Sπ → A. Policies are used in probabilistic do-
mains, where actions may have multiple possible outcomes. A policy accounts for all foreseen
states s ∈ Sπ that the agent might encounter. However, agents might encounter situations it has not
planned for; that is s /∈ Sπ. This can happen in particular when the agent is operating autonomously
for extended periods of time. Reasons for encountering such unforeseen situations include: (1)
exogenous events, that is, conditions in the state that were not planned for and (2) changes in the ac-
tions. An example of the latter is a failure in a mechanical motion device that causes it to operate in
a different way from what is modeled in the action definitions. Cox and Ram (1999) present a taxon-
omy of failure reasons that is attributable to factors such as discrepancies in the state, discrepancies
in the action model, discrepancies in the goals and discrepancies in the environment.

The following are the main contributions of this paper: (1) A procedure for computing goal
regression for policies; (2) A relaxation of the notion of policy, allowing execution even when the
state reached doesn’t match any of the states s ∈ Sπ defined in the policy π; (3) Properties of our
procedure; and (4) An empirical study of policy regression expectations in two variants of domains
from the goal reasoning literature, Arsonist (Paisner et al., 2013) and Marsworld (Molineaux, Kuter,
and Klenk, 2012).

2. The Notion of Expectations and Their Representation

To address the detection problem, agents compute the expectation, X(π,s), as a function of the
planning problem’s solution π and the current state s (Dannenhauer and Munoz-Avila, 2015). The
agent checks if this expectation is met in s; that is, if X(π,s) ⊂ s. Expectations are conditions
that are checked against the observed state s during execution. When the conditions are not met,

2

NON-DETERMINISTIC EXPECTATIONS

a discrepancy occurs that must be addressed (Munoz-Avila, Dannenhauer, and Reifsnyder, 2019).
Expectations are needed, because the environments are dynamic and the conditions under which a
plan was generated may change at execution time (Cox, 2007). A technical challenge we are facing
in our work is that we are considering the case when π are policies, π : S → A. As a result, if
ND(a, s) are the possible states that can be reached after executing a on state s, it is possible that
the observed state s′ /∈ ND(a, s) and hence continuing execution of π is no longer possible.

The problem of computing the agent’s expectations for π is deceivingly simple; at first glance it
would seem sufficient to check that the preconditions of a are satisfied in s (i.e., to define X(π,s)=
"the preconditions of the next action to execute, π(s)") but this would result in a myopic agent that
is not checking the plan trajectory in π; alternatively, we could project s0 based on π to the state s
right when a is to be executed (i.e., to define X(π,s) = s). This is how expectations are frequently
defined in goal reasoning systems (Aha, 2018; Muñoz-Avila et al., 2010; Molineaux, Klenk, and
Aha, 2010). The problem is that any change in the expected state will trigger a correction step even
if the discrepancy is unrelated to π’s trajectory. Researchers have observed that the notion of expec-
tations plays a key role in the resulting performance of goal reasoning agents (e.g., Dannenhauer
and Munoz-Avila (2015)). If the expectations are too narrow, agents might fail to detect discrepan-
cies when they are needed leading an agent to further commit to actions derived from π that will
lead to a failure. If the expectations are too general, the agent will flag a failure which will trigger a
process (e.g., replanning) to address the failure when it is not required to do so.

The questions that we propose to address in this paper are the following:

• When monitoring the execution of a policy π, how to compute the regression expectations,
X(π,s), of the current state s?

• If a discrepancy is detected during monitoring execution, is it possible to continue executing
π?

Figure 1: Two states, A and B, showing
the final action in a Blocks World domain
where the goal is to have 5 blocks stacked
on top of each other.

Computing Regression Expectations for plans (i.e.,
sequences of actions) is well understood (Pollock, 1998);
we give an example in the Blocks World domain. Con-
sider states A and B as shown in Fig. 1, where state
B is the goal state, and A is one action away. The ac-
tion stack(1, 2) places block 1 on block 2, achieving
the goal on(1, 2) while the remaining goals remain in-
tact, on(2, 3), on(3, 4), on(4, 5). The Regression Expec-
tations, X(π,B) = G; since B is a goal state then the
expectations are the goals themselves. To find the Re-
gression Expectations for state A, we start with the Ex-
pectations for state B, subtract out the effects from the
action between them, on(1, 2) and add in the precondi-
tions of the action stack(1, 2) (i.e., Block1 and Block2
have no blocks on top of them). Thus, the Regression Expectations of state A is: X(π,A) =
{on(2, 3), on(3, 4), on(4, 5), clear(1), clear(2)}. Using the Regression Expectations for state A

3

N. REIFSNYDER AND H. MUNOZ-AVILA

as a model, we can understand the importance of having this set of expectations. Regardless of any
other variations in the state, we can see that if these values hold true, then the plan will satisfy the
goal. The preconditions of the final action are met, and once we add the effects of the action to the
rest of the expectation set, the goal is satisfied.

3. A Sample Domain

We illustrate our work with the Arsonist World (Paisner et al., 2013). Similar to blocks world, the
goal is to allocate blocks to form a desired configuration. For instance, the agent might want to
form a single tower of n blocks. Unlike blocks world, there is an arsonist that ignites blocks at
random. There are only two actions in this domain: stack and unstack. unstack(?b1, ?b2) is
a deterministic action that takes a block ?b1 on top of some block ?b2 with no block above it and
places ?b1 on the table (i.e., with the assignment below(?b1)← none); stack(?b1, ?b2) requires that
no blocks are on top of ?b1 and ?b2 and has three probabilistic outcomes; either block ?b1 is placed
on top of block ?b2, block ?b1 falls to the floor (i.e., with the assignment floor(?b1) ← True), or
block ?b2 is knocked off the tower (i.e, both block ?b2 and block ?b1 end up on the table). Stacking
the block correctly occurs 90% of the time, while knocking the block off the tower occurs 8% of
the time and knocking the block on the floor occurs 2% of the time. stack and unstack are shown
in Table 1, which use the state-variable representation (Ghallab, Nau, and Traverso, 2004) (Section
2.5): the variable onfire(?b) returns true iff ?b is on fire. The variable above(?b) returns the block
immediately above ?b and none if no block is above ?b. The variable below(?b) returns the block
immediately below ?b and none if ?b is on the table.

Consider an example, when the initial state starts with 5 blocks (see Table 2): 1, 2, 3, 4, and 5.
We have a goal to create a tower of 5 blocks: 1 on top of 2, 2 on top of 3, 3 on top of 4, and 4 on
top of 5.

Figure 2 shows an example of a policy solving this problem. For every possible state, s0, . . . s4
the agent can find itself in, it indicates the action it should take (in this case stack), and the possible
states it will reach based on the actions’ probabilistic outcomes.

4. Preliminaries

(:operator stack
:parameters ?b1 ?b2
:condition above(?b1)=none, above(?b2)=none,
onfire(?b1)=False
:effect(.9) above(?b2)← ?b1, below(?b1)←?b2
:effect(.08) below(?b2)← none
:effect(.02) floor(?b1)=True

(:operator unstack
:parameters ?b1 ?b2
:condition above(?b2)=?b1, above(?b1)=none
onfire(?b1)=False
:effect above(?b2)← none, below(?b1)← none)

Table 1: stack and unstack operators. Probabilities associate with effects are listed in parenthesis at the
beginning of the effect definition

4

NON-DETERMINISTIC EXPECTATIONS

(:Initial State
{onfire : {1: False, 2: False, 3: False, 4: False, 5: False}}
{floor : {1: False, 2: False, 3: False, 4: False, 5: False}}
{above : {1: none, 2: none, 3: none, 4: none, 5: none}}
{below : {1: none, 2: none, 3: none, 4: none, 5: none}}
:Actions
stack, unstack
:Goals
{above : {2: 1, 3: 2, 4: 3, 5: 4}}

Table 2: Planning problem, where there are 5 blocks enumerated 1 through 5. We use a compact represen-
tation for the state: we write "1:False", "2:False" in a table for onfire, instead of writing onfire(1) = False,
onfire(2) = False, etc.

Figure 2: A policy for given state from Table 2 and operator defi-
nitions in Table 1. s0 is the initial state, and s4 is the terminal state
that achieves the goals. T represents a terminal state at which the
policy fails to achieve the goals. Actions are represented by the
black dots.

This section provides intuition into
the definitions of the basic terminol-
ogy we use. For the formal defini-
tions please refer to Appendix 1. We
represent the states as a collection of
variables V , that each take some con-
stant but mutable value. A state s in-
dicates the binding of the value s(v)
of each variable v ∈ V . For instance,
the variable s0(above(1)) returns the
value None indicating no blocks on
top of block 1 in the initial state.

As exemplified in Table 1, an op-
erator is a 4-tuple o=(name param-
eters precondition effect). The pa-
rameters are a collection of free vari-
ables, which are used to facilitate
writing operators.1 We denote free
variables by using "?". For instance
?b1 denotes the free variable b1 (i.e.,
a block).

The preconditions are a list of variable value pairs that must be true in the state for the operator
to be applicable. For example, the condition above(?b1)=none means there must be no block above
block ?b1. All conditions listed in the operator must be true for the operator to be applicable.

The effects are a list of variable assignments that take place when the operator is applied to a
state. For example, above(?b2) ← ?b1 indicates that ?b1 will be above ?b2 after the operator is
applied (i.e. s(above(?b2)) will return ?b1 after the operator is applied).

1. We call these free variables to distinguish them from the state variables.

5

N. REIFSNYDER AND H. MUNOZ-AVILA

Figure 3: The expanded plan tree Tπ used for calculating policy goal regression expectations. The numbers
next to vertexes are the order that vertex is visited in our search.

The goals are a list of variable value pairs that must be true at the end of execution of solution
π for π to be considered successful.

5. Regression Policy Expectations

Since we are regressing over a policy which is a graph, we need to do some pre-processing mainly
to ensure no infinite loops are encountered during the regression. To define regression on a policy
π, we perform two steps: (1) Compute the plan tree Tπ derived from π; and (2) Compute regression
on Tπ as a proxy for computing regression on π.

Constructing Tπ is done by making the starting state s0 of π the root of Tπ. Then starting with
s0, we recursively add all children to Tπ from π: if the node is a state s in π, it has as a single
child, the action π(s). If the node is an action π(s), then its children are the states in ND(π(s), s).
To handle loops, any time an edge that points back to a node that is an ancestor, that path is not
expanded again during the construction of Tπ in that family (i.e. only from future descendants is
this edge excluded, it could be expanded on a different path). Figure 3 shows the tree Tπ obtained
from the policy π (Figure 2). For details on the construction of Tπ, see Appendix 2.

If a state s occurs more than once in Tπ, then we define the expectations for s to be the expecta-
tions for the first time s is listed in the topological sort of Tπ (Cormen et al., 2001) (Section 22.4).
Informally, it selects the one closest to the initial state, which is the one that includes all possible
paths from the state to a terminal state. For instance, in Figure 3, s0 occurs multiple times and the
one selected is the root, s00 .

5.1 Computing Expectations

Informally, the agent computes the expectations for a state by regressing the goals and necessary
conditions to reach them. This is done by having each node take the expectations of all its children
modified by the probability of reaching each child, then adding in the preconditions of its own
action. The expectations of the leaf nodes are either the goals with 100% probability if they are a

6

NON-DETERMINISTIC EXPECTATIONS

goal state, or ∅ with 100% if it is a non goal terminal state. The ∅ expectation denotes a failed
execution. This means each set of expectations is a list of variable value pairs, with an associated
probability. The probability is thus representative of how important that specific variable value pair
is to the overall success of the agent. For example, in Figure 4 the two children states B and C have
two different variable bindings for v (b and c respectively). When regressed back to the parent state
A, their probabilities are cut in half to represent the probability that specific binding is needed. Then
the preconditions for A’s action are added in, and we are left with the final expectation set for state
A. Appendix 3 provides all the formal details.

5.2 Properties

Figure 4: An Example of Regressing a set of expecta-
tions from 2 children nodes to the parent.

In Appendix 4 we formally state and prove the
following properties: (1) Our procedure will re-
sult in a unique Tπ for any given policy π. (2)
The size of Tπ is polynomial on the size of the
policy (i.e., number of states plus number of
state-action transitions). (3) Tπ subsumes all
other trees T ′ derived from π. A tree T ′ is de-
rived from π by expanding on the states and
actions in the same way as when constructing
Tπ , however depending on the order of nodes
expanded, you can end up with a tree T ′ whose
structure is different. The subsumption prop-
erty states that for every complete path P ′ in

T ′, if we compute the expectation for the first occurrence of any state s in P ′, X(T ′,s), then there is
a complete path P in Tπ such that for the first occurrence of state s in P , the expectations for Tπ,
T ′, and π are the same.

Theorem 1 guarantees that expectations are well defined since they are generated from a unique
plan tree Tπ. Theorem 2 implies that the procedure constructing Tπ runs in polynomial time on the
size of G(π). Theorem 3 implies that goal regression on Tπ accurately calculates goal regression
over π since Tπ subsumes all possible complete paths in π

6. Monitoring Policy Execution

For Policy Regression we need to take into account the probability distribution of the values of a
variable. To do so, we detect discrepancies in an observed state s as follows: Let X(π,s)(v) be a
function that represents the expectations for variable v. By definition, X(π,s)(v) is a probability
distribution for all values that v may take. For example, in Figure 4, X(π,A)(v) = {v = b(0.5), v =
c(0.5)}. We add the probabilities of values that are not equal to value of v in the observed state, s(v):
P = 1− (Σs(v)6=c′,(c′,p)∈X(π,s)(v)(p) + Pr(X(π,s)(∅))). The term Pr(X(π,s)(∅)) is the probability
we will end in a terminal non goal state from the current state s. Thus, P indicates the probability
the agent will still succeed depending on the value of s(v). A domain-specific parameter, δ, is

7

N. REIFSNYDER AND H. MUNOZ-AVILA

needed to trigger a discrepancy. We say that a discrepancy occurs if P < δ. In our experiments, we
set δ = 0.5 as a threshold as it denotes that the execution of the policy is more likely to fail than
succeed.

Since policies choose an action based on the current state the agent is in, we need to relax the
notion of policy by slightly modifying how an agent chooses its actions when executing a policy
π. If we continue to base action decision off of the entire state, we render the expectations moot,
because as soon as any deviation occurs the policy will fail; it will encounter a state s that is not
defined in the policy. There are times that values in the state will change that don’t affect the
progress of the agent: when the expectations are met; since the expectations are a subset of s, it is
possible to visit a state s′ such that: s 6= s′ but the expectations are a subset of s′ and therefore s′

meets the expectations. To handle this, we use the expectation sets themselves to identify the states
and choose actions with the policy.

Since we are computing the necessary conditions for the policy to succeed with a probability P ,
any state matching the expectation set will succeed with a probability P . Since we are weakening
the notion of a state in a policy, namely, requiring only a subset of the state’s atoms to be true, a few
things can happen. It is possible for multiple sets of expectations to hold true at any given point in
execution. We handle this in two steps: (1) Because we know the set of states ND(a, s) the agent
could be in after taking an action a from state s, we narrow our choices to that set. (2) If there is
more than one state s′ ∈ ND(a, s) for which the expectations are satisfied, we choose the state
where the probability P of succeeding is the highest.

When executing a policy π in an state s, the agent executes π(s) and reaches a state s′. It is
possible that this state s′ doesn’t match any of the successor states defined in the policy π (i.e.,
s′ /∈ ND(π(s), s)) . If the expectations Xπ,s′′ for any successor state s′′ ∈ ND(π(s), s) are met,
then π(s′′) can be applied as in (1) and (2) above.

7. Empirical Evaluation

In our experiments, we compared 4 expectation types: Immediate, Informed, policy regression with-
out goals (regressing beginning with an empty set) and regressing when the goals are known (in the
figures we call it G-Regression).2 Immediate and Informed are defined in Dannenhauer, Munoz-
Avila, and Cox (2016); succinctly, Immediate expectations check the preconditions of the next
action a to execute in the current state s and their effects. Because we are dealing with probabilistic
domains, we modified them to check for the resulting state s′, s′ ∈ ND(a, s) holds. Informed
expectations accumulate forward the effects of all actions executed so far. In the case of proba-
bilistic domains, each executed action commits to one of its ND effects. This effect is the one we
accumulate forwards.

For planning, we implemented a probabilistic domain-configurable planner as described in
Kuter and Nau (2005). The policies generated were solutions for the domain with probability ρ.
Aside from the different expectations, the agent was the same: it has a simple module that given a

2. A situation where goals are not known is when HTN planning techniques are used to generate the policies. In HTN
planning tasks not goals are used to specify the problems Erol, Hendler, and Nau (1996). Tasks does not necessarily
map to atoms in the state.

8

NON-DETERMINISTIC EXPECTATIONS

discrepancy, it always generates the goal based on a mapping from discrepancies to goals d → g.
The performance metric is the same as in Dannenhauer, Munoz-Avila, and Cox (2016): the cost of
the executed plan until a terminal state is reached (see below for a description of the cost function).
At that point we check if the goals are satisfied; if they are not the execution is considered a failure.

Figure 5: (a) Accumulated costs - Ar-
sonist Domain; (b) Failure rates - Ar-
sonist Domain

The first domain is a variant of the Arsonist domain (Pais-
ner et al., 2013), which is itself a modified version of Blocks
World. The goal is to make a tower of 10 blocks. There is an
arsonist that is arbitrarily setting blocks on fire (i.e., a block
on fire is an exogenous event). The cost of a problem is the
accumulated number of actions where a block that ends in our
tower is on fire (each block adds 1 point for every action taken
while it’s on fire. The possible actions for the agent in the
Arsonist domain are the usual stack and unstack, both re-
quiring the block not to be on fire. When there is a discrepancy
because a block is on fire, the agent triggers a goal to remove
the fire. Afterwards the agent continues achieving the goal. In
our variant, actions have probabilistic effects: stacking a block
on top of another block has the same probabilistic outcomes
as in Table 1: stacking the block correctly occurs 90% of the
time, while knocking the block off the tower occurs 8% of the
time and knocking the block on the floor occurs 2% of the
time. A failure occurs if any block in the tower is on fire or
if the tower is not 10 blocks tall when the agent finishes ex-
ecuting actions. Our planner created a policy successful with
probability ρ = .83

Figure 5(a) compares accumulated costs between Imme-
diate, Informed, Regression and G-Regression. Informed Ex-
pectations had the highest cost. This is because blocks were allowed to burn until they were taken to
stack onto the tower; the agent using Informed Expectations had no way of knowing which blocks
it would eventually use. Policy Regression and Immediate Expectations performed similarly to one
another. They have lower costs because their expectations have no knowledge of previously stacked
blocks, and thus do not know if the last stack action knocked a block off the tower. Therefore they
both perform the 10 stack actions necessary and then terminate, regardless of if the tower holds 10
blocks or not. Policy Regression and Immediate Expectations had near 100% failure rates (as seen
in Figure 5(b)), due to the same lack of knowledge in the expectations. (i.e., at some point a block
is knocked off and was never re-stacked, or a final block was on fire). G-Regression had a cost well
below informed Expectations, and a failure rate of 17%. This is because it infers the knowledge
of which blocks it would eventually use in the tower (i.e., by knowing which blocks would be in
the final tower from the goals) and could put the fires out immediately. The 17% failure rate is the
inherent probability of ending in a non goal terminal state based on the probabilistic outcomes of
the actions (i.e., a block was knocked to the floor and thus the tower could never be fully built).

9

N. REIFSNYDER AND H. MUNOZ-AVILA

The second domain is a probabilistic version of Marsworld (Dannenhauer, Munoz-Avila, and
Cox, 2016), which is itself a variant of Mudsworld presented in Molineaux and Aha (2014). In this
domain the agent navigates a N × N grid seeking to turn on 3 randomly placed beacons (we use
N = 10). The agent can take actions to move forward, backward, up, or down. We added
probabilistic outcomes: each movement action had a .9% chance to move successfully, or a .1%
chance to take the counter-clockwise direction (e.g., the action forward could result in moving
up). The agent also has a finite fuel resource that is required by and used by the actions. Once the
agent runs out of fuel, we say the agent has reached a non-goal terminal state (i.e., a "dead end").
For this domain, our planner created a successful policy with probability ρ = .81

Figure 6: (a) Accumulated costs -
Marsworld Domain; (b) Failure rates
- Marsworld Domain

Like in Dannenhauer and Munoz-Avila (2015), there are
two exogenous events that were not planned for: first, the agent
might get stuck in mud, requiring replanning to get unstuck.
Once unstuck, the agent continues seeking to turn on the bea-
cons. Each spot within the grid has a 10% chance of turning
into mud. Only tiles adjacent to the agent can turn into mud.
Second, beacons might turn off due to external factors. There
is a 5% chance after each action is taken by the agent for a lit
beacon to be turned off. When the discrepancy is detected, the
agent generates a policy to turn on the beacon (the relight
action can be taken from anywhere on the grid) and complete
the rest of the problem. All actions have a cost of 1, with
the exception of unstuck which costs 5. Fuel consumption
matches the cost of the action.

Figure 6(a) shows the accumulated costs to turn on the 3
beacons. Informed Expectations had the largest action cost to
turn on the 3 beacons. This is due to the fact that the plan
including Informed Expectations had no ability to avoid the
mud patches; so it frequently needs to perform the unstuck ac-
tion. Immediate, Regression, and G-Regression expectations
take into account preconditions of future actions. Since the
movement actions have preconditions of the spot being clear
(i.e., without mud), a discrepancy is triggered if a necessary

tile turns to mud. G-Regression has a slightly higher action cost compared to Policy Regression and
Immediate Expectations but as shown in Figure 6(b), Policy Regression and Immediate expectations
had extremely high failure rates. This means the agent reached a terminal state without all 3 beacons
having been turned on. They don’t check for the persistence of effects from previous actions taken
by the agent. Goal Regression Expectations triggers a discrepancy if a Beacon is turned back off..

8. Related Work

Goal regression determines the minimal preconditions needed to execute a plan Reiter (1991) and
has been used for plan reuse Veloso and Carbonell (1993). Goal regression has also been used to

10

NON-DETERMINISTIC EXPECTATIONS

avoid unnecessary replanning Fritz and McIlraith (2007), further extended for dealing with unex-
pected events in Fritz and McIlraith (2009b), and subsequently for domains with random variables
such as the price of the stock market Fritz and McIlraith (2009a). All these works assume solutions
to planning problems to be a sequence of actions unlike policies in our work.

For FOND planning, goal regression has been used to bias the policy generation process Ramirez
and Sardina (2014). Goal regression plays a central role in the PRP planner Muise, McIlraith, and
Beck (2012); it incrementally builds a solution policy by aggregating so-called weak plans: se-
quences of actions from the start state to a goal state. Goal regression is applied on the weak plans
to generate the necessary conditions needed to generate that weak plan. This was further extended
to deal with conditional effects computed over the weak plans Muise, McIlraith, and Belle (2014).
Whereas in these works regression is performed over action sequences (i.e., the weak plans), in our
work we are defining regression for on fully formed policies.

9. Conclusions

We introduce Policy Regression Expectations, which is defined based on the possible trajectories
backwards from the terminal states. We also introduce the notion of execution policy enabling
continuing execution even when a state visited doesn’t match any of the policy’s states but match
their expectations. We report on a comparative study of policy regression versus immediate and
informed expectations adapted for probabilistic domains, and to policy regression without goals ex-
pectations. We performed experiments on the Arsonist and the Marsworld domain. Goal Regression
and Informed expectations are the only ones guaranteeing the agent to reach a terminal state without
failures (i.e., goals are achieved). However, informed expectations do so by having the higher costs
than Goal Regression expectations.

For future work, we plan to explore situations where the probability distributions of the ND
effects are unknown and statistical learning techniques are used to learn these distributions online.
The challenge in that context is that the agent will be operating with (possibly poor) approximations
of the probability distributions. This will require the agent to also reason with confidence levels of
its own expectations.

Acknowledgements.

This research was supported by ONR under grants N00014-18-1-2009 and N68335-18-C-4027 and
NSF grant 1909879.

References

Aha, D. W. 2018. Goal reasoning: foundations emerging applications and prospects. AI Magazine.

Cormen, T.; Leirson, C.; Rivest, R.; and Stein, C. 2001. Introduction to Algorithms. MIT Press.

Cox, M. T., and Ram, A. 1999. Introspective multistrategy learning: On the construction of learning
strategies. Artificial Intelligence 112(1-2):1–55.

11

N. REIFSNYDER AND H. MUNOZ-AVILA

Cox, M. T.; Dannenhauer, D.; and Kondrakunta, S. 2017. Goal operations for cognitive systems. In
AAAI, 4385–4391.

Cox, M. T. 2007. Perpetual self-aware cognitive agents. AI magazine 28(1):32.

Dannenhauer, D., and Munoz-Avila, H. 2015. Raising expectations in gda agents acting in dynamic
environments. In IJCAI, 2241–2247.

Dannenhauer, D.; Munoz-Avila, H.; and Cox, M. T. 2016. Informed expectations to guide gda
agents in partially observable environments. In IJCAI, 2493–2499.

Dannenhauer, D. 2018. Self Monitoring Goal Driven Autonomy Agents. Ph.D. Dissertation, Lehigh
University.

Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity results for hierarchical task-network
planning. Annals of Mathematics and Artificial Intelligence (AMAI) 18:69–93.

Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan stability: Replanning versus plan repair.
In ICAPS, volume 6, 212–221.

Fritz, C., and McIlraith, S. A. 2007. Monitoring plan optimality during execution. In ICAPS,
144–151.

Fritz, C., and McIlraith, S. 2009a. Computing robust plans in continuous domains. In Nineteenth
International Conference on Automated Planning and Scheduling.

Fritz, C., and McIlraith, S. A. 2009b. Generating optimal plans in highly-dynamic domains. In
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, 177–184.
AUAI Press.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Planning: Theory and Practice. Morgan
Kaufmann.

Gregg-Smith, A., and Mayol-Cuevas, W. W. 2015. The design and evaluation of a cooperative
handheld robot. In Robotics and Automation (ICRA), 2015 IEEE International Conference on,
1968–1975. IEEE.

Kuter, U., and Nau, D. S. 2005. Using domain-configurable search control for probabilistic plan-
ning. In National Conference on Artificial Intelligence (AAAI), 1169–1174.

Mason, G. R.; Calinescu, R. C.; Kudenko, D.; and Banks, A. 2017. Assured reinforcement learning
for safety-critical applications. In Doctoral Consortium at the 10th International Conference on
Agents and Artificial Intelligence. SciTePress.

Molineaux, M., and Aha, D. W. 2014. Learning unknown event models. In AAAI, 395–401.

Molineaux, M.; Klenk, M.; and Aha, D. W. 2010. Goal-Driven Autonomy in a Navy Strategy
Simulation. In AAAI.

Molineaux, M.; Kuter, U.; and Klenk, M. 2012. Discoverhistory: Understanding the past in planning
and execution. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, 989–996. International Foundation for Autonomous Agents and
Multiagent Systems.

12

NON-DETERMINISTIC EXPECTATIONS

Muise, C. J.; McIlraith, S. A.; and Beck, C. 2012. Improved non-deterministic planning by ex-
ploiting state relevance. In Twenty-Second International Conference on Automated Planning and
Scheduling.

Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-deterministic planning with conditional effects.
In Twenty-Fourth International Conference on Automated Planning and Scheduling.

Muñoz-Avila, H.; Jaidee, U.; Aha, D.; and Carter, E. 2010. Goal-Driven Autonomy with Case-
Based Reasoning. In Case-Based Reasoning. Research and Development. Springer. 228–241.

Munoz-Avila, H.; Dannenhauer, D.; and Reifsnyder, N. 2019. Is everything going according to
plan? - expectations in goal reasoning agents. In Proceedings of AAAI-19.

Paisner, M.; Maynord, M.; Cox, M. T.; and Perlis, D. 2013. Goal-driven autonomy in dynamic
environments. In Goal Reasoning: Papers from the ACS Workshop, 79.

Pollock, J. L. 1998. The logical foundations of goal-regression planning in autonomous agents.
Artificial Intelligence 106(2):267–334.

Ramirez, M., and Sardina, S. 2014. Directed fixed-point regression-based planning for non-
deterministic domains. In Twenty-Fourth International Conference on Automated Planning and
Scheduling.

Reiter, R. 1991. The frame problem in the situation calculus: A simple solution (sometimes)
and a completeness result for goal regression. In Lifschitz, V., ed., Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, (Ed.). Academic
Press.

Veloso, M. M., and Carbonell, J. 1993. Derivational analogy in PRODIGY: Automating case
acquisition, storage and utilization. Machine Learning 10(3):249–278.

Warfield, I.; Hogg, C.; Lee-Urban, S.; and Munoz-Avila, H. 2007. Adaptation of hierarchical task
network plans. In FLAIRS conference, 429–434.

Appendix 1. Preliminaries

A state s is a mapping s : V → C, instantiating each variable to a constant. S denotes the collection
of all states. A partial function f : V 9 C, is mapping a subset of V , denoted by Vf , such that
for each v ∈ Vf , f(v) ∈ C. If v ∈ V − Vf , then f(v) is undefined. A goal is a partial mapping
G : V 9 C. Any solution π is correct if for every v ∈ VG, s(v) = G(v)(s a terminal state of π).

An action is a a = (namea, prea, Effa) triple where prea is a partial mapping prea : V 9 C.
Effa is a finite set of possible effects and a probability distribution among these effects. Specif-
ically, if Effa = {(effas1 , P

a
s1) . . . (effask , P

a
sk

)}, then each effasi is a partial mapping effasi :
V 9 C and P asi is the probability that the outcome of a is effasi . An operator is a lifted action (see
Table 1 for examples). Applying effasi to a state s, results in a state si defined as follows: (1) If
v ∈ Veffasi then si(v) = effasi(v). (2) If v /∈ Veffasi then si(v) = s(v) (i.e., the variable’s value
remains unchanged).

A planning problem P is defined as a triple (s0,A,G), indicating the initial state, the actions
and the the goals respectively. A policy π : S 9 A, a partial mapping from the possible states in

13

N. REIFSNYDER AND H. MUNOZ-AVILA

the world S to actions A. A policy π is a solution to P with probability ρ ∈ (0, 1] if when π is
executed from s0 it reaches a state s satisfying G with probability ρ. Figure 2 is an example of an
policy to the problem defined by Table 2 using the operators in Table 1.

Appendix 2. Constructing the Plan Tree Tπ
We construct the Plan Tree Tπ= (VT , ET) with root s0 for G(π) = (Vπ, Eπ) as shown in Algo-
rithm 1. The initial call is: CONSTRUCTTREE(G(π), s0, ∅) and ET = VT = ∅ holds.

Algorithm 1
1: procedure CONSTRUCTTREE(G(π),α, Edges)
2: for e = (α, α′) ∈ G(π) and e /∈ Edges do
3: ET = ET + e
4: VT = VT + α+ α′

5: if e is a branching edge then
6: Edges = Edges+ e
7: ConstructTree(G(π), α′, Edges)
8: else
9: ConstructTree(G(π), α′, Edges)

The Edges parameter in ConstructTree accumulates all branching edges, that is, edges of
the form: (α, v1) . . . (α, vm) (i.e., two or more edges starting from the same source α), observed
while constructing Tπ. Edges is used so that the algorithm traverses any branch, (α, vk), at most
once on each path explored. This prevents any infinite loops from forming while also ensuring that
all paths from the starting state to a terminal node are accounted for. ConstructTree iterates through
all edges in G(π) with source α that are not present in Edges, adding each edge e to ET and its
source and end vertices, α and α′, into VT (Steps 3 and 4). If e is a branching edge (Step 5), it
is added to Edges (Step 6), and Tπ is recursively built from e’s end, α’ (Step 7). If e is not a
branching edge, the algorithm is recursively called from α’ (Step 9).

Figure 3 showcases a resulting plan tree for G(π) in Figure 2. An example of an expanded
branching edge is the edge e = (stack(4, 5), s01). We again expand the subtree rooted at s01 and
point the edge from stack(4, 5) to the new subtree. Edge e is left out of this new subtree. When
looking at the right of Figure 3, we can see a pruned tree that ends in the terminal nodes. The
edge eb = (stack(1, 2), S2) is the last back edge to be expanded on this path, as the back edges
e1 = (stack(2, 3), S1) and e2 = (stack(1, 2), S2) have been pruned on the path following eb.

Appendix 3: Regression Expectations with Three Composite Operators

We introduce three composite operators that are used to define goal regression precisely. Specifi-
cally, they propagate backwards conditions on Tπ.

We define D = A 	 B, for A : V 9 C and B : V 9 C as a partial function D : V 9 C
defined as follows: (1) If v ∈ VA−VB thenD(v) = A(v). (2) For all other variablesD is undefined:

14

NON-DETERMINISTIC EXPECTATIONS

VD = VA − VB . Informally, A 	 B takes two partial functions, and creates a new partial function
that is defined for all variables from A which are not defined in B, and keeps the values from A.

We defineD = A�k, forA : V 9 2C×[0,1]) and k ∈ Z+ as a partial functionD : V 9 2C×[0,1]

defined as follows: (1) if v ∈ VA : for every (c, p) ∈ A(v), then (c, p ∗ k) ∈ D(v). (2) For all
other variables, D is undefined (i.e., VD = VA) Informally, A � k takes the partial function A
and multiplies all probabilities in its probability distribution of constants from variables by the
probability k (which is in the range [0,1]).

We define D = A ⊗ B, for A : V 9 2C×[0,1]) and B : V 9 2C×[0,1]) as a partial function
D : V 9 2C×[0,1] defined as follows: (1) If v ∈ VB − VA then D(v) = B(v). (2) If v ∈ VA − VB
then D(v) = A(v). (3) If v ∈ VA ∩ VB : (a) For every (c, p) ∈ A(v) where (c, p′) /∈ B(v),
(c, p) ∈ D(v). (b) For every (c, p) ∈ B(v) where (c, p′) /∈ A(v), (c, p) ∈ D(v). (c) For every
(c, p) ∈ A(v) where (c, p′) ∈ B(v), (c, p+ p′) ∈ D(v). (4) For all other variables D is undefined:
VD = VA ∪ VB . Informally, A⊗B takes two partial functions, A and B, and aggregates the values
for all variables from both A and B. When a value for a variable in both A and B share a constant,
we add the probabilities together.

Example. These three operators are combined to regress the expectations shown in Figure 4. In
the figure, an operator is applied to a state A. The operator has a single precondition, {v′ : (a, 1.0)}
and two ND effects, each with a probability 0.5: v′ = d and v′ = e, reaching states B and C
respectively. First we use 	 to subtract out the preconditions of the action from the children node
expectations, i.e., reg′B = regB 	 preA = {v : (b, 1.0} and reg′C = regC 	 preA = {v : (c, 1.0)}
Then we use � to scale the expectations by how many children there are, i.e reg′′B = reg′B �
2 = {v : (b, .5)} and reg′′C = reg′C � 2 = {v : (c, .5)}. Lastly, we use ⊗ to aggregate the
the modified children expectations and the preconditions to calculate the parents expectations, i.e.,
regA = preA ⊗ reg′′B ⊗ reg′′C = {v′ : (a, 1.0), v : (b, .5), v : (c, .5)}.

We define regression expectations, NXpol
regress(π,s), for a policy, π as NXpol

regress(π,s) = regpols .

The variable regpols is a partial mapping regpols : V 9 2C×[0,1] that maps variables to a probability
distribution of constants. For example, in Figure 4, NXpol

regress(π,A) = {(a, 1.0), v : (b, .5), v :

(c, .5)}. We compute regpols over Tπ as follows:
(1) If s is a terminal non-goal state, then regpols = (∅, 1.0). The ∅ expectation indicates the

probability the plan will terminate in a non-goal state, thus this expectation states we will terminate
in a non-goal state with a 100% probability. (2) If s is a terminal goal state and G= {g1, . . . , gm},
then we can define Policy Goal Regression regpolT = {(g1, 1.0), . . . , (gm, 1.0)} .3 This condition is
saying that in the terminal state the agent expects all goals to be achieved with 100% probability. (3)
For every action π(s), we define gpreπ(s) : V 9 2C×1 that for every variable v defined in preπ(s),
i.e., preπ(s)(v) = c, defines gpreπ(s)(v) = {(c, 1.0)}. This indicates that the agent expects that each
of the preconditions of the actions to be true with 100% probability. (4) If s is not a terminal state,
regpols is defined recursively as follows: For a state s, let {si...sk} be the children of π(s). We
define: regpols = gpreπ(s) ⊗((regpolsi 	 eff

π(s)
si 	 gpreπ(s)) � P

π(s)
si) ⊗... ⊗((regpolsk 	 eff

π(s)
sk 	

3. If the goals are unknown, i.e., G = ∅, then regpolT = ∅.

15

N. REIFSNYDER AND H. MUNOZ-AVILA

gpreπ(s)) � P
π(s)
sk) where, for i ≤ j ≤ k: (1) regpolsj is the regressed expectation for the child sj of

π(s); (2) effπ(s)sj are the ND effects of π(s) that result in sj with a probabilities P π(s)sj .

Appendix 4: Properties

Theorem 1. Algorithm 1 terminates and the resulting Tπ is unique.
Proof sketch. Termination is guaranteed because every loop in G(π) can be attributed to a

branching edge. Taking an arbitrary node v, the algorithm will either have to choose an edge e′ =
(v, v′) that will loop back or to continue with a different branch e′′ = (v, v′′) towards a terminal
node, thus making both e′ and e′′ branching edges. Since e′ is a branch, it will be cut off after
one iteration thus removing the loop and allowing the algorithm to terminate. To prove uniqueness,
the crucial observation is that regardless of the order in which an edge euv = (u, v) is visited in
Line 2 of Algorithm 1, the subtree Tv rooted in v will be the same. The reason for this is that
the only modifier for the loop is the set Edges, which comes directly from the parent node, and is
unaffected by the expansion of the other children. Specifically, if there is a node a with branching
edges e1 = (a, v1), e2 = (a, v2) such that both v1 and v2 have a path to a node v with a back edge
eb = (v, x), eb will be expanded when the algorithm traverses the path from v1 to x and expanded
again when the algorithm traverses the path from v2 to x. This is regardless of whether v1 or v2 is
expanded first.

Theorem 2. Let G(π) = (E, V) and Tπ be its policy tree, then the size of Tπ is bounded by
|E||V |(|V |+ 1)/2.

Proof Sketch. Each branching edge can add at most |V |(|V |+ 1)/2 vertices to Tπ. This worst
case happens in a fully connected graph, where all edges are branching edges. The first time, an
edge e = (u, v) is visited, e is added to Edges, and in the recursive call, in the worst case, all
vertices are added to Tπ (since the graph is fully connected). The second time the algorithm is
expanding from u along each path, edge e will not be expanded since it is in Edges, which makes v
no longer a child of u, thus it will add at most |V | − 1 vertices to Tπ. This repeats recursively until
only 1 edge is added to Tπ and there are no more edges that can be expanded. This summation is
equal to |V |(|V | + 1)/2 and can occur for each edge, resulting in |E||V |(|V | + 1)/2 in the worst
case.

Theorem 3. Tπ subsumes all other trees derived from π.
Proof Sketch. Let T ′ be a tree derived from π and P ′ a complete path in T ′ with expectation

X(T ′, s) for the first occurrence of state s in P ′, we will prove that there is a complete path P in Tπ
such that for the first occurrence of state s in P , X(π, s) = X(Tπ, s) = X(T ′, s) holds. The only
complete paths in some tree T ′ that aren’t directly represented in Tπ are paths that take a back edge
more than once. Consider one such complete path P ′ in T ′ that takes a back edge (π(v), v′) more
than once. The reason why the expectations for P ′ are still represented in Tπ is that taking (π(v), v′)
a second time, the procedure results in the same expectation set as when the procedure follows the
back edge the first time. This can be seen first in the simple case that the back edge points from a
node to itself (i.e., (π(v), v)). This means that the action π(v) taken in state v had no changes made
to state v, which is why it branches back to v. Thus, it doesn’t change the expectation set. When
expanding this example to the back edge (π(v), v′) leading to a path v π(v) v′ π(v′) . . . v back to

16

NON-DETERMINISTIC EXPECTATIONS

to v, we can observe the same fact. This is because by returning to v, we have assigned the same
values to variables in state v, thus in effect what amounts to a no-op action over multiple actions.4

4. It is still necessary to traverse the path v π(v) v′ π(v′) . . . v the first time, so the procedure can compute expectations
for those states visited in the path.

17

