
Advances in Cognitive Systems X (20XX) 1-6 Submitted X/20XX; published X/20XX

Computing Numeric Expectations for Cognitive Agents

Noah Reifsnyder NDR217@LEHIGH.EDU

Hector Munoz-Avila MUNOZ@CSE.LEHIGH.EDU

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015 USA

Abstract
One of the crucial capabilities for robust agency is self-assessment, namely the capability of the
agent to compute its own boundaries. Goal reasoning agents do this by computing so-called ex-
pectations: constructs defining the boundaries of their courses of action as a function of the plan,
the goals achieved by that plan, the initial state, the action model and the last action executed. In
this paper we redefine four forms of expectations from the goal reasoning literature but this time
the agent reasons with numeric fluents and we present a comparative study highlighting their trade
offs.

1. Introduction

Over the past years there has been an increasing interest in goal reasoning agents; agents that may
change their goals over time as a result of changes in the environment and/or changes in the user’s
requirements (Aha, 2018). One of the main motivations for goal reasoning is the robust intelligence
problem, where agents exhibit self-assessment capabilities, namely, they are aware of their own
boundaries. In this paper we focus on the self-assessment problem of goal reasoning agents. Our
work is motivated by the premise that it is infeasible for the agent to plan ahead for every possible
contingency that it may encounter when executing a course of action and it is also unfeasible to
replan to every possible contingency (Ghallab et al., 2014).

In domains with numeric fluents, it has been observed that it is contrived to assume after per-
forming each action, each fluent will be expected to have an exact value (Scala et al., 2016). For
instance when traveling between two locations assuming that a precise amount of gasoline will be
consumed by the vehicle. Even under "usual" conditions, factors such as traffic accidents may cause
consumption changes. Authors have observed that a robust way to handle numeric fluents is to use
intervals or margins of error (Moore et al., 2009). This reduces replanning since the agent can plan
accounting for variations. Nevertheless, the agent may encounter conditions under which fluents
may take values outside predefined ranges.

To address the necessity for failure detection, agents compute expectations, X(π, s,G), as a
function of the current state s, the policy π, and the goals G. Expectations are conditions that are
checked against the observed environment, O(s), during execution. When the conditions are not
met, we consider this a discrepancy that must be addressed. Expectations are needed, because the
environments are dynamic and the conditions under which a plan was generated may change at
execution time. Numeric fluents can be altered by actions through functions instead of by simple

c© 20XX Cognitive Systems Foundation. All rights reserved.

N. REIFSNYDER AND H. MUNOZ-AVILA

value assignment (Hoffmann, 2003; Coles et al., 2010). For example, for a navigate action, if
a variable fuel(r1), has a value of the fuel level of rover r1, then the variable could take a new
value fuel(r1) - (travel-time(?y,?z) * rate(r1)), where ?y and ?z are locations. The starting state, s0
includes numeric fluents such as the fuel level of r1, travel time between locations, and symbolic
fluents such as the starting location of r1. Frequently, for planning purposes these functions are
assumed to be monotonic (Edelkamp, 2003; Hoffmann, 2003; Bajada et al., 2015) although some
paradigms drop this assumption (Scala et al., 2016). Scala et al. (2016) shows an algorithm for
heuristic planning with numeric fluents using intervals. The general problem of planning with
numeric constraints is undecidable (Helmert, 2002) although under some conditions it is polynomial
(Aldinger et al., 2015). Our work doesn’t make any assumptions of how the plan π was generated.

The following are the main contributions of the paper: (1) we re-examine a taxonomy that
encompasses expectations as computed by goal reasoning systems for symbolic fluents reported in
Dannenhauer & Munoz-Avila (2015); Munoz-Avila et al. (2019) and extend it to a taxonomy for
numeric fluents and their margins of error. Up until now, the bulk of the research on goal reasoning
has focused on domains where actions have symbolic fluents. The few exceptions will be discussed
in the related work section. (2) We also analyze the tradeoffs between those expectations. (3) We
report experiments on a goal reasoning system with the five forms of expectations and discuss their
trade-offs.

2. Preliminary definitions

This section provides intuition into the definitions of the basic terminology we use. For the formal
definitions please refer to Appendix A1. A state is a collection of variables that takes interval values.

In this paper we will focus on actions with numeric fluents for simplicity of the exposition. To
represent states we use a collection of variables V ; a state s indicates the binding of the value s(v)
of each variable v ∈ V . For instance, the variable at-y(r1) returns the y-coordinate as a confidence
interval [1.9, 2.3] for rover r1. We use x for the lower bound of an interval x and x for its upper
bound.

As exemplified in Table 2, an operator is a 4-tuple o=(name parameters precondition effect).
The parameters are a collection of free variables, which are used to facilitate writing operators.1 We
denote free variables by using "?". For instance ?r denotes the free variable r (i.e., a rover).

The preconditions are a list of interval constraints. Interval constraints are of the form ei-
ther within (v, i) or not-within (v, i), where v is a state variable and i is an interval. The for-
mer checks if in the current state s, the state variable s(v) is within interval i whereas the lat-
ter checks if s(v) is not within i (i.e., s(v) may partially overlap or maybe totally disjoint from
i). For instance, in the operator shown in Table 2 we are checking if the interval for the variable
fuel(?r) = [fuel(?r), fuel(?r)] is within the interval left bounded by rate(?r) and right bounded
by∞. That is, even if the highest fuel consumption, rate(?r), occurs, there is enough fuel to exe-
cute this action. If all the constraints within the preconditions of an action a are satisfied by a state
s, then we say that a is applicable in s.

1. We call these free variables to distinguish them from the state variables.

2

NUMERIC EXPECTATIONS

Table 1. Planning problem with solution plan
(:Initial State
{fuel : {r1: [10,10]}}
{at-y : {r1: [2, 2], Beacon1: [0,0]}}
{at-x : {r1: [0,0], Beacon1: [2,2]}}
{lit : {Beacon1: [0, 0]}}
{rate : {r1: [.9, 1.1]}}
:Actions
move_north, move_south, move_east,
move_west, light_beacon
:Goals
{lit : {Beacon1: [1, 1]}}
:Plan π
move_north, move_north, move_east,
move_east, light_beacon

Table 2. example operator with numeric fluent (fuel)
(:operator move_north
:parameters ?r
:condition within(fuel(?r), [rate(?r),∞])
:effect
at-y(?r) = [f1(?r), f2(?r)],
fuel(?r) = [f3(?r), f4(?r)],
f1(x) = at− y(x)− 1,
f2(x) = at− y(x)− 1,
f3(x) = fuel(x)− rate(x),
f4(x) = fuel(x)− rate(x)

The effects indicate changes in value to the state variables. For example, Table 2 shows an
example of an operator. It alters the variable fuel(?r) = [fuel(?r), fuel(?r)] as follows: fuel(?r) =
[fuel(?r)− rate(?r), fuel(?r)− rate(?r)]. move_north also alters value of the variable as follows:
at-y(?r) = (at-y(?r) − 1, at-y(?r) − 1). This denotes a change in y-position of the rover of -1
(north). So all together, the action move_north consumes the interval of rate(?r) amount of fuel
while moving -1 in the y-coordinate plane.

The set of goals G is indicates desired values for variables in V . For example, we may state
for the domain in Table 1 that the goals are to turn on Beacon1 (as represented by the fluent lit
Beacon1). A plan achieves the goals in G. For example, the plan in Table 1, describes a plan that
navigates an agent from its initial position of (0,2) to the position of the beacon at (2,0) and then
turns on the beacon.

3. Immediate Expectations with Numeric Values

Immediate Expectations takes ideas from plan monitoring execution literature (see related work
discussion). Informally, agents using immediate expectations check that the preconditions of the
next action to execute ai+1 hold in the observed state si (Cox, 2007).

4. Informed Expectations with Numeric Values

Informed Expectations accumulate the effects from all previous actions executed so far in π. We
present them informally here. The formal definition is in Appendix A3, which depends on the basic
operator ⊕S , defined formally in Appendix A2.

At any point in time, we have executed a prefix of the plan πprefix = a1 . . . ai−1, this has re-
sulted in a sequence of states s0 s1 . . . si−1, where s0 is the starting state and si−1 is the current

3

N. REIFSNYDER AND H. MUNOZ-AVILA

state. At each time, we compute the informed expectations inf0, inf1 inf2 . . . infi−1. Informed
expectations carries out the accumulated effects for each variable v = [v, v] as it has been trans-
formed over time v, starting from its value in the initial state [v0, v0]:

[v0, v0], [f ′1(v
0), f ′2(v

0)], . . . [f1
′...′(f ′1(v

0)), f ′...2
′(f ′2(v

0))]

where (f ′1, f
′
2) are the effects for v of a1 and (f1

′...′, f ′...2
′) are the effects for v for ai−1. Infor-

mally, informed expectations compounds functions tuples, so that infi−1(v) = [vi−1, vi−1] with
vi−1 = f1

′...′(f ′1(v
0)) and vi−1 = f ′...2

′(f ′2(v
0)).

If v is not changed in some action a in πprefix, then we assume that its effects are f1(x) =
f2(x) = x (i.e., the identity function) and therefore when applying composite functions the values
do not change.

Figure 1. An Example of Informed expectations from the initial state in Table 1 using the operator in Table 2

Example. Figure 1 shows an example. The starting value of the variables at-y(?r1) = [2, 2] and of
fuel(?r1) = [10, 10] is propagated forwards by the suffix plan πprefix = move_north move_north
resulting in:

• at-y(?r1) = [f1((f1(2)), f2(f2(2))] = [0, 0]

• fuel(?r1) = [f3((f3(10)), f4(f4(10))] = [7.8, 8.2].

5. Regression Expectations with Numeric Values

Regression Expectations are an extension of goal regression. Goal regression determines the weak-
est preconditions needed to execute a plan (Veloso & Carbonell, 1993). Our extension accounts for
our representation of the variables as intervals and the manipulation of numeric fluents. We present
them informally here. The formal definition is in Appendix A4, which depends on the basic operator
	P , defined formally in Appendix A2.

The goals G are a conjunction of numeric constraints on the variables. Therefore, in regression
we carry back conditions on each of these variables v over a suffix of the plan πsuffix = ai . . . an,
where an is the last action of the solution plan π and ai is the next action to execute. Regression
over πsuffix results in a sequence of regressed conditions regvi reg

v
i+1 . . . reg

v
n. The value of regvn

4

NUMERIC EXPECTATIONS

is the condition: v = [vn, vn], where [vn, vn] is the value of v in the final state for all v in G. To
compute the value of regvn−1, we first copy regvn into regvn−1, and then modify it according to the
following three cases:

• if v is not mentioned in an (that is, its value is not changed in the effects nor it is mentioned
in the preconditions), then regvn−1 remains unchanged (i.e., regvn−1 = regvn).

• if the value of v is changed in the effects of an, say v = [vn, vn] = [f1(vn−1), f2(vn−1)],
then v = [f−11 (vn), f

−1
2 (vn)] is added as a condition regvn−1 replacing the previous condition

v = [vn, vn].2

• Finally, all constraints mentioned within the preconditions of an are added to regvn−1. If any
of the preconditions has a condition requiring a value of v already in regvn−1, this replaces
any previously assigned value for v.

Each of the previous values regvn−2, ..., regvi are computed using the same three cases.

Example. Figure 2 shows an example, the regressed conditions for each state as obtained as fol-
lows:

• State 5. The goal is for lit(Beacon1) to have a value [1, 1] (i.e., the Beacon 1 should be
"on"), hence reglit(Beacon1)

5 has as single condition: lit(Beacon1) = [1, 1].

• State 4. The light_beacon action requires that lit(Beacon1) = [0, 0] and that the vehicle
r1 to be in the same location as Beacon1, hence, reglit(Beacon1)

4 consists of 3 conditions:
at-x(r1)=[0,0], at-y(r1)=[2,2] and lit(Beacon1)=[0,0].

• State 3. The move_east action changes the value of at-x(r1) when applied in state 3 us-
ing functions f and g. Therefore, at-x(r1) = [f−1(2), g−1(2))] is added as a condition of
reg

lit(Beacon1)
3 , replacing its previous value at-x(r1)=[2,2] in state 4. The fuel level of r1 is

added to reglit(Beacon1)
3 because it is a precondition from the move_east action. The condi-

tions on the variables at-y(r1) and lit(Beacon1) are retained from reg
lit(Beacon1)
4 .

6. Goldilocks Expectations with Numeric Values

Goldilocks Expectations, defined for the symbolic case in Reifsnyder & Munoz-Avila (2018),
combine Informed and Regression Expectations. Extrapolating from the symbolic case, they can
be computed by calculating informed expectations from the starting state (i.e., in the numeric
case by compounding functions v′...′ = f ′...′(. . . (f ′(v)) . . .)), then regressing off from the fi-
nal states’ informed expectations (i.e., in the numeric case by compounding inverse functions
v = f−1′ (. . . (f−1′...′(v′...′)) . . .)). This would not work in the numeric case since it will regress
to the exact same value.

2. f−1 denotes the inverse function of f .

5

N. REIFSNYDER AND H. MUNOZ-AVILA

Figure 2. An Example of regression expectations from the goal state in Table 1. f(x) = left(at-x(x)) − 1
and g(x) = right(at-x(x))− 1

Figure 3. Illustration of Goldilocks expectations. The projected intervals from informed expectations are in
blue and those of regression are shown in red. The dashed lines correspond to the Goldilocks expectations

We present a slightly different definition for Goldilocks Expectations tailored towards numeric
interval variables; it "intersects" Informed and Regression Expectations by checking that both are
met. Figure 3 provides an illustration for a plan π = a1 a2 . . . an. Function composition tends to
enlarge the intervals are they are projected forwards from a1 and backwards from an.

Our motivation for checking both, informed and regression simultaneously, is that Regression
can detect when the agent will not achieve its goals, while Informed can detect that something is
wrong in the execution of the plan. By looking at them simultaneously, the agent can make decisions
over trade-offs between achieving the goals and how the agent is achieving them. For example, using
the navigation domain from Table 1, an agent might have a goal to end the plan trace π with a range
of fuel left, e.g., {fuel : {r1 : [0,∞)}}. In this scenario, Regression Expectations will make sure
the agent has enough fuel to finish π. While this is important, it is also important to realize that
Informed Expectations keep track of accumulated effects of the actions executed so far. Informed
is monitoring here the fuel consumption of the agent, and making sure it remains within the bounds
as inferred from the action model. If the agent drifts out of those bounds, there may be a flaw with

6

NUMERIC EXPECTATIONS

the agent causing it to consume more fuel than projected. So the agent might still achieve the goals
but consume more fuel than expected. Recognizing this expectation failure can allow the agent to
trigger a discrepancy and avoid needlessly wasting fuel. By considering both of these expectations,
the agent can detect a variety of possible failures at their onset beyond "just" achieving the goals.

Example. When the agent completes action a3 of the plan trace π in Table 1 (the first instance
of move_east), it calculates the Goldilocks Expectations gold3 as follows. gold3 = (inf3, reg3),
both of which have the following values (for details on how these values were computed see the
examples in Appendix A3 and A4):

• inf3 = ({at−y : {r1 : [0, 0]}, at−x : {r1 : [1, 1]}, fuel : {r1 : [6.7, 7.3]}}

• reg3 = {at−y : {r1 : [0, 0]}, at−x : {r1 : [1, 1]}, fuel : {r1 : [1.1,∞)}, lit : {Beacon1 :
[0, 0]}})

There is a difference in the two expectations over the expectations computed for variable
fuel(r1). On the Informed side we expect between 6.7 and 7.3 fuel units, but on the Regres-
sion side, we just expect to have more than 1.1 fuel units. If we violate the Informed side but not the
Regression side, we know we can likely finish the plan, but it will indicate a larger than expected
fuel consumption.

7. Empirical Evaluation

In our experiments, we did a comparative study of the 5 different types of expectations across nu-
meric extensions of 2 domains used in the goal reasoning literature. For planning purposes, we use
the Pyhop HTN planner Nau (2013), which handles numeric fluents and the HTN methods config-
ured to generate correct plans. Other than the expectation type, the agent uses the same planning
and discrepancy handling processes. Whenever a discrepancy is observed from the expectations, we
use a simple goal-reasoning process to generate a goal to re-plan from the current state. Thus, any
performance changes is attributable to the expectations.

Marsworld Definition. The first domain we used is a numeric variant on the domain Marsworld
(Dannenhauer et al., 2016; Dannenhauer & Munoz-Avila, 2015), itself inspired by Mudsworld (Mo-
lineaux & Aha, 2014). The agent has to navigate a 10x10 grid to turn on 3 randomly placed beacons.
Each movement action drains some amount of the agents fuel. Lighting each beacon also requires
fuel, and consumes fuel from a different fuel reserve than from where the agent draws from for
movement.

While executing its actions, the agent may unexpectedly have damage caused to it, forcing it
to use more fuel per action until repaired (this can occur with a 5% probability after each action
is taken). It can also lose some of its beacon fuel with a 5% probability after each action as well.
During our testing, we ran 200 trials, each trial placed the rover and beacons randomly on the grid.
During the trials we measured total fuel consumption as well as whether or not an execution failed.
A failure means the preconditions of some action were not met when it was to be executed.

Results for Marsworld. In Figure 4, we can see that Regression and Goal Regression Expec-
tations consumed the most fuel, with the 3 other expectation types performing basically equally.

7

N. REIFSNYDER AND H. MUNOZ-AVILA

Figure 4. Accumulated Fuel Consumption in Marsworld across different types of expectations. Only In-
formed failed trails, which occurred 27% of the time

This occurs because Regression and Goal Regression Expectations are the only ones not noticing
when the agent is damaged, causing increased fuel consumption. They only look at future precon-
ditions, so they only realize the damage once it drains enough fuel so that the plan can no longer be
completed. The other 3 expectation types identify increase consumption after 1 action, since they
monitor effects of the actions.

Immediate, Regression, Goal Regression and Goldilocks are able to ensure that the plan will
be completed without failures, while 27% of trials failed for Informed Expectations. Informed fails
because it will attempt to execute an action without it’s preconditions being met. All other expec-
tation types check preconditions. Specifically, in this scenario, agents using Informed expectations
will attempt to light a beacon after having lost some beacon fuel, thus failing the action.

Blockscraft Definition. The second domain we tested in is a numeric variant of the Blockscraft
domain (Dannenhauer et al., 2016). In our variant, there are three central towers of blocks, colored
red, blue and yellow. Each block has a random mass. The mass of each block can only be guessed
at planning time but a range for the mass from all blocks is known at planning time. The agent is
tasked with collecting all the blocks from a particular color (chosen arbitrarily) and putting them in
its own depot, which is limited by the amount of mass it can store. The total mass of the blocks
in each individual tower is guaranteed to be less than the maximum capability of the agent’s depot.
The agent can only access the top block in each tower.

There is another actor in the environment who can also take blocks from the 3 central towers.
There is a 8% chance after each action that the other actor will take a block out of the 3 central
towers and move it to its own depot, and a 2% chance that the actor will take a block from the 3
central towers and place it in the agent’s depot. The agent can also: (1) scan the other actor’s depot
for blocks and collect them into its own inventory, and (2) scan its own inventory and dispose of any

8

NUMERIC EXPECTATIONS

block. The plans repeatedly pick the top block of the tower with the selected color and store that
block into its own depot. So without the actor, the plans are guaranteed to achieve its task.

We ran 200 trials, where the mass of the blocks were randomized each trial. We measured the
total mass obtained by the agent during each trial, as well as if the trial failed or not. A failure
happens if the agent finishes and the total mass in its depot exceeds its capability, or an action’s
preconditions are not met when it is to be executed (the only possible occurrence of this is when the
agent attempts to take a block from the central towers that is no longer there because the other actor
removed it) and the agent doesn’t check the preconditions.

Results for Blockscraft. Figure 5 shows the total mass accumulated across 200 runs for an agent
using each type of Expectations. Informed and Goldilocks both accumulated roughly the same
amount of mass. The reason is because agents using these expectations recognize when the actor
adds to the agents collection and thus able to remove the extra block from its depot. By monitoring
the effects of actions, the agent knows how much mass is has collected so far. Regression and In-
formed collected the most, as they are not monitoring the collected mass. Goal Regression monitors
the collected mass ensuring that it will not exceed the maximum limit. This is why it resulted in
more mass than Goldilocks and Informed while also collecting less than Regression and Immediate.
Collecting less total mass is desirable because an increased amount of mass collected would mean
an excess amount of un-needed blocks have been collected.

Only an agent using either Goldilocks or Goal Regression Expectations were able to complete
the plan and have the goals fulfilled. Regression and Immediate both failed roughly 70% of their
trials. These failures occurred when the other actor placed blocks into the agent’s collection, even-
tually exceeding the maximum carry weight. Effects of actions are not monitored for those ex-
pectations, so the agent is not monitoring total mass of its collection. Informed failed 29% of its
trials. This occurred due to the other actor removing blocks from the central tower that the agent
had planned to obtain. The action then to collect that block failed because the block didn’t exist in
the tower any more. Goldilocks and Goal Regression had a 0% failure rate because they checked
preconditions while assuring the goals would be achieved.

8. Trade-offs between Expectations

For the complexity analysis we use n, the length of the trace, and m, the maximum number of
preconditions or effects.

Immediate expectations can be computed in O(1 ∗m) because it only checks the preconditions
of one action. It only recognizes failures as they happen, and only of the form where an action
can no longer be executed. Still, in simple environments where the agent can expect little to no
interference, immediate expectations can be sufficient.

Informed expectations can be computed in O(n ∗m) time because they traverse the whole trace
in the worst case while accumulating the effects. It allows the agent to ensure all accumulated
changes the agent made to the environment are tracked. This in turn means that as long as the goals
are satisfied due to the agents actions, than they will be satisfied at the end of execution. Secondly, as
shown by the experiments above, informed expectations also allows the agent to detect discrepancies
in its actions that may not affect its ability to achieve the goals, but may affect other factors such

9

N. REIFSNYDER AND H. MUNOZ-AVILA

Figure 5. Accumulated Mass Obtained in the Blockscraft Domain across different types of expectations. Re-
gression and Immediate failed 70% of their trials, while Informed failed 29% of the trials. Goldilocks and
Goal Regression completed all trials without failing.

as efficiency. For example, as shown in the Marsworld experiments, the agent was able to conserve
fuel. However, Informed lacks any ability to reason about the next actions to execute, and this can
be shown by the agent frequently collecting more than the allowed mass in the Blockscraft domain.

Regression can be computed in O(n ∗ m) time because it may traverse the whole trace while
collecting the preconditions. It allows the agent to certify the rest of the plan is able to be executed.
Without a set of goals to regress off of, it cannot certify that the goals will be satisfied upon the
completion of the plan’s execution. As a result it frequently collects more than the allowed mass.

Goal Regression shares the pros and cons of Regression, with one additional helpful aspect.
By starting the regression calculation with a set of goals, we can assure that the rest of the plan
is applicable and the goals will be achieved at the termination of execution. This allows it to be
sufficient to ensure that the agent finishes it’s plan and achieves its goals in all scenarios.

Goldilocks can be computed in O(n ∗m) because it will perform exactly one pass through the
trace, namely, informed expectations up to the action and regression from the end to that action.
It also provides the most use to the agent. Goldilocks allows the agent to both know that the rest
of the plan can be executed (and that the goals will be achieved upon the termination of execution
when using Goal Regression) and identify small discrepancies in the effects of actions that may not
impede the ability to achieve the goals but can allow the agent to optimize other metrics such as cost
or fuel consumption.

9. Related Work

Scala (2013) proposed using kernel methods to compute the necessary numerical conditions Ki

needed to complete the rest of the plan ai . . . an, akin to our regression expectations. While not de-

10

NUMERIC EXPECTATIONS

fined that way, Ki(v) = f−1i (. . . (f−1n (v)) . . .), where v is a goal condition and f−1j is the inverse
function for v in aj (with i ≤ j ≤ n). Scala & Torasso (2014) expands this to distances around the
values of v playing a similar role as our error intervals; Fritz & McIlraith (2009) assumes Gaussian
distribution for this same purpose. Our work differs in some important aspects: by explicitly using
inverse functions we provide a concrete way to compute these kernels. More importantly, we in-
troduce two forms of expectations for numeric fluents: informed and Goldilocks. As shown in our
experimental evaluation, Goldilocks allows the detection of deviations in the values of numerical
values that are pivotal in finishing the provided plan with the expected outcomes, even when the
goals are unknown.

We know of two systems using numeric fluents for goals reasoning. Weber et al. (2012) rep-
resents quantities as numeric fluents for a goal reasoning agent playing an adversarial real-time
computer game. For instance, an action to produce 10 archers, will have as an expectation that 10
archers are produced. After executing the action, if the number of archers is num with num < 10,
then a discrepancy is detected. The agent will formulate a new goal to produce 10− num archers.
In the context of the taxonomy we presented, this agent maintains immediate expectations. Fur-
thermore, no margins of error are maintained as the agents expectations are exact natural numbers.
Wilson et al. (2014) uses what we call informed expectations. They project forward the expected
numerical values within intervals and detect discrepancies when the values are outside of these
projected intervals. Our experiments show how informed expectations can incur into the highest
number of errors because they don’t regress conditions on the goals. This leads to a high volume of
failures during execution.

Plan monitoring execution systems annotate the plan with conditions necessary for the plan’s ex-
ecution to be valid (Fikes et al., 1972). While not using "expectations" as a term, Ambros-Ingerson
& Steel (1988) checks for the causal links, triples (effect, fluent, precondition) are met when the
action having the precondition is to be executed. From our definitions, this is subsumed by im-
mediate expectations. Plan monitoring execution has also been used to monitor optimality. For
instance, Fritz & McIlraith (2007) uses goal regression to define necessary conditions to guarantee
the optimal execution of the plan. These works use symbolic fluents.

10. Conclusions

We re-introduce 5 forms of Expectations over interval numerical fluents: Immediate, Informed,
Regression, Goal regression, and Goldilocks. In our empirical evaluation, only agents using either
Goldilocks or Goal Regression solved problems without failures across all domains. Goldilocks
projects forward all changes the agent makes to the state, as well as making sure the agent is on
track to meet the goals. The agent using Goal Regression was shown to be inefficient over the fuel
consumption in one of the domains. The reason is that Goal Regression only checks if the agent
is on track to satisfy the goals but makes no consideration of any other deviation from the action
model.

Time series have been used to build statistical models of "normal" or expected readings for
numerical values and in doing so detect outliers to predict malfunctions (Tsay, 1988). In this work,
we assume the "normal" ranges has been given in the effects of the actions. However, in future

11

N. REIFSNYDER AND H. MUNOZ-AVILA

work, such models could be used in situations when we expect the effects of the actions to change
over time.

Acknowledgements

This research was supported by ONR under grants N00014-18-1-2009 and N68335-18-C-4027 and
NSF grant 1909879.

References

Aha, D. W. (2018). Goal reasoning: foundations emerging applications and prospects. AI Magazine.

Aldinger, J., Mattmüller, R., & Göbelbecker, M. (2015). Complexity of interval relaxed numeric
planning. Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz)
(pp. 19–31). Springer.

Ambros-Ingerson, J. A., & Steel, S. (1988). Integrating planning, execution and monitoring. AAAI
(pp. 21–26).

Bajada, J., Fox, M., & Long, D. (2015). Temporal planning with semantic attachment of non-linear
monotonic continuous behaviours. IJCAI (pp. 1523–1529).

Coles, A. J., Coles, A. I., Fox, M., & Long, D. (2010). Forward-chaining partial-order planning.
Twentieth International Conference on Automated Planning and Scheduling.

Cox, M. T. (2007). Perpetual self-aware cognitive agents. AI magazine, 28, 32.

Dannenhauer, D., & Munoz-Avila, H. (2015). Raising expectations in gda agents acting in dynamic
environments. IJCAI (pp. 2241–2247).

Dannenhauer, D., Munoz-Avila, H., & Cox, M. T. (2016). Informed expectations to guide gda
agents in partially observable environments. IJCAI (pp. 2493–2499).

Edelkamp, S. (2003). Taming numbers and durations in the model checking integrated planning
system. Journal of Artificial Intelligence Research, 20, 195–238.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. National
Conference on Artificial Intelligence (AAAI) (pp. 1123–1128).

Fikes, R. E., Hart, P. E., & Nilsson, N. J. (1972). Some new directions in robot problem solving.
Machine Intelligence, 7, 405–430.

Fritz, C., & McIlraith, S. (2009). Computing robust plans in continuous domains. Nineteenth
International Conference on Automated Planning and Scheduling.

Fritz, C., & McIlraith, S. A. (2007). Monitoring plan optimality during execution. ICAPS (pp.
144–151).

Ghallab, M., Nau, D., & Traverso, P. (2014). The actor’s view of automated planning and acting: A
position paper. Artificial Intelligence, 208, 1–17.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical state vari-
ables. AIPS (pp. 44–53).

12

NUMERIC EXPECTATIONS

Hoffmann, J. (2003). The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research (JAIR), 20, 291–341.

Molineaux, M., & Aha, D. W. (2014). Learning unknown event models. AAAI (pp. 395–401).

Moore, R. E., Kearfott, R. B., & Cloud, M. J. (2009). Introduction to interval analysis, volume 110.
Siam.

Munoz-Avila, H., Dannenhauer, D., & Reifsnyder, N. (2019). Is everything going according to
plan? - expectations in goal reasoning agents. Proceedings of AAAI-19.

Nau, D. (2013). Pyhop, version 1.2.2 a simple htn planning system written in python. https:
//bitbucket.org/dananau/pyhop. Accessed: 2019-01-30.

Reifsnyder, N., & Munoz-Avila, H. (2018). Goal reasoning with goldilocks and regression expec-
tations in nondeterministic domains. 6th Goal Reasoning Workshop at IJCAI/FAIM-2018.

Scala, E. (2013). Numeric kernel for reasoning about plans involving numeric fluents. Congress of
the Italian Association for Artificial Intelligence (pp. 263–275). Springer.

Scala, E., Haslum, P., Thiébaux, S., & Ramirez, M. (2016). Interval-based relaxation for general
numeric planning. Proceedings of the Twenty-second European Conference on Artificial Intelli-
gence (pp. 655–663). IOS Press.

Scala, E., & Torasso, P. (2014). Proactive and reactive reconfiguration for the robust execution of
multi modality plans. ECAI 2014 (pp. 783–788). IOS Press.

Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series. Journal of forecasting,
7, 1–20.

Veloso, M. M., & Carbonell, J. G. (1993). Toward scaling up machine learning: A case study with
derivational analogy in PRODIGY. In S. Minton (Ed.), Machine learning methods for planning.
San Francisco: Morgan Kaufmann.

Weber, B. G., Mateas, M., & Jhala, A. (2012). Learning from demonstration for goal-driven auton-
omy. Twenty-Sixth AAAI Conference on Artificial Intelligence.

Wilson, M. A., McMahon, J., & Aha, D. W. (2014). Bounded expectations for discrepancy detection
in goal-driven autonomy. AI and Robotics: Papers from the AAAI Workshop.

Appendix

A1. Preliminary Definitions

A state is a mapping s : V → I from a collection of variables V to a collection of intervals I. A
state is a mapping s : V → I from a collection of variables V to a collection of intervals I. As in
Scala et al. (2016), we represent an interval as x = [x, x] where x is the lower bound on x and x is
the upper bound (similarly for open and mixed intervals), or if either side is unbounded, that bound
is represented as an open interval bound on∞ (or −∞).

An operator is a 4-tuple o=(name parameters precondition effect), where

• The parameters are a collection of free variables.

13

N. REIFSNYDER AND H. MUNOZ-AVILA

• The preconditions are a list of interval constraints. Interval constraints are of the form either
within (v, i) or not-within (v, i), where v is a state variable and i is an interval. within checks if
in the current state s, s(v) ≥ i and s(v) ≤ i hold. not-within checks if s(v) ≤ i or s(v) ≥ i.

• The effects indicate changes in value to the state variables. Effects are represented as function
tuples F = {(f1, f2)|f1 and f2 are functions} (open and mixed intervals are allowed). The
effects can be represented as the partial mapping eff : V 9 F, where each variable v ∈ Veff
therefore has the function tuple (fv1 , f

v
2), where fv1 and fv2 are the changes to the left and right

boundaries to the variable v.

• Effects takes a variable v ∈ V and assigns v value [f1(v), f2(v)], where (f1, f2) ∈ F and
f1(x) ≤ f2(x) for all x.

The set of goals G is a mapping G: V → I. We say G is satisfied by a state s if for every variable
vg in G, within(s(vg),G(vg)) is true. A plan π is executable if for each action ai, the preconditions
for ai hold in state si and state si+1 is the result from applying ai to si. A plan π is correct if it is
executable and transforms s0 into a state sn+1 that satisfies all the goals in G.

A2. Formal Definition of the Two Operators

We define D = A⊕S B, where A are a collection or variable-interval assignments, S is the current
state and B are an action’s effects. More generally, for any partial functions A : V 9 I, S : V → I,
and B : V 9 F, A⊕S B is a partial mapping D : V 9 I defined as follows:

1. if v ∈ VA ∩ VB and B(v) = (f1, f2), then D(v) = [f1(A(v)), f2(A(v))].

2. if v ∈ VA − VB then D(v) = A(v).

3. if v ∈ VB − VA and B(v) = (f1, f2), then D(v) = [f1(S(v)), f2(S(v))].

4. for all other variables D is undefined (i.e., VD = VA ∪ VB)

Informally, A ⊕S B applies the function tuple in B(v) either to A(v) when the variable v is
defined in A and B (Case 1), or to S(v) when v is defined in B but not A (Case 3). If the variable
v is defined in A but not B, it’s assigned A(v) (Case 2). When it’s undefined in A and B, then it’s
left undefined (Case 4).

Example. If A, S, and B are defined as:

• A = {a : [2, 3]}

• S = {a : [2, 3], b : ¬[7, 7], c : [8, 9], d : [6, 6]}

• B = {a : [x− 2, x− 1], b : [x+ 1, x+ 2], d : [x× 2, x× 3]}

Then D = A ⊕S B = {a : [0, 2], b : ¬[8, 9], d : [12, 18]}. In the resulting partial function
D(a) = [0, 2] is obtained by evaluating the functions tuple B(a) = [x − 2, x − 1] on the interval
A(a) = [2, 3] which gives [(x − 2)(2), (x − 1)(3)] = [0, 2] (Case 1); D(b) = ¬[8, 9] is obtained

14

NUMERIC EXPECTATIONS

by evaluating the functions tuple B(b) = [x+ 1, x+ 2] on the value of S(b) = ¬[7, 7] which gives
¬[(x + 1)(7), (x + 2)(7)] = ¬[8, 9] (Case 3); and D(d) = [12, 18] is obtained by evaluating the
functions tuple B(d) = [x× 2, x× 3] on the value of S(d) = [6, 6] which gives [(x× 2)(6), (x×
3)(6)] = [12, 18] (Case 3).

We define D = A 	P B, where A are some variables-interval assignments, P are an action’s
preconditions and B are the action’s effects. More generally, let A : V 9 I, P : V 9 I, and
B : V 9 F, we define A	P B as a partial mapping D : V 9 I with:

1. if v ∈ VA − VB then D(v) = A(v).

2. if v ∈ VA ∩ VB and B(v) = (f1, f2), then

D(v) = [f−11 (A(v)), f−12 (A(v))].

3. if v ∈ VP then D(v) = P (v)

4. for all other variables D is undefined (i.e., VD = VA ∪ VP)

Informally, A	P B results in a new partial mapping that is defined for all variables from A and
P . The new mapping takes the value A(v) if v is defined in A but not in B (Case 1). If a variable v
is defined in A and B, the new mapping takes the values after applying the inverse of the functions
tuple defined in B(v) to the value of A(v) (Case 2). If a variable v is defined in P but not in A, the
new mapping takes the value of P (v) (Case 3). If a variable is not defined in either A or P , it is left
undefined (Case 4).

Example. if we have the three partial functions A, P , and B, as follows:

• A = {a : ¬[2, 3], b : [5, 6]}

• P = {c : [4, 4]}

• B = {b : [x+ 1, x+ 2]}

ThenD = A	PB = {a : ¬[2, 3], b : [4, 4], c : [4, 4]}. In the resulting function,D(a) = ¬[2, 3]
since a is defined in A but not in B (Case 1); D(b) = [4, 4] since A(b) = [5, 6] and B(b) =
[x+1, x+2], hence the inverse functions are [x−1, x−2] so we get [(x−1)(5), (x−2)(6)] = [4, 4]
(Case 2); and D(c) = [4, 4] since c is defined in P (Case 3).

A3. Formal Definition of Informed Expectations

Xinf (π, si, ∅) = infi. Each infi is generated as follows: inf0 = ∅. That is, before the first action
is executed, we have no accumulated effects. For i > 0, infi is defined recursively as follows:
infi = infi−1 ⊕si−1 eff

ai
si . Agents using Informed Expectations check that the compounded

effects are valid in the environment.
Example. If we have just completed action a2 of the plan trace π (the second instance of

move_north in Table 1), we calculate the Informed Expectations Xinf (π, s2, ∅) = inf2 as follows
from the initial state. We have:

15

N. REIFSNYDER AND H. MUNOZ-AVILA

• inf1 = {at−y : {r1 : [1, 1]}, fuel : {r1 : [8.9, 9.1]}}

• inf2 compounds inf1 with the effects from a2, the second move_north: effmove_north
s2 =

{at−y : {r1 : [x− 1, x− 1]}, fuel : {r1 : [x− 1.1, x− .9]}}

• Thus, inf2 = inf1 ⊕s1 eff
move_north
s2 = {at−y : {r1 : [0, 0]}, fuel : {r1 : [7.8, 8.2]}}

For computing at-y(r1) we compute [(x − 1)(1), (x − 1)(1)] = [0, 0] and for fuel(r1) we compute
[(x − 1.1)(8.9), (x − .9)(9.1)] = [7.8, 8.2]. This expectation set means that we expect to have
between 7.8 and 8.2 units of fuel and to be at y=0 on the coordinate frame (any x coordinate is fine)

A4. Formal Definition of Regression Expectations

We distinguish between two types of regression expectations: goal regression, when the goals are
known and hence G 6= ∅, and regression when G = ∅; an example of the latter is when π is generated
by a user but we don’t know the goals. Another example is when the plan is generated using HTN
planning techniques (Erol et al., 1994). In HTN planning the objective is given by tasks; tasks
doesn’t need to map to particular atoms to be true in the state. Therefore, unlike goals, they cannot
be determined to be true by just examining the atoms in a state.

Formally, Xregress(π, si,G) = regi. Each regi is generated as follows: regn = G. That is,
when in the last state, the agent expects G to hold (when the goals are unknown, G equals the empty
set {}). For i < n, regi is defined recursively as follows: regi = regi+1 	preai+1 eff

ai+1
si+1 .

Example. If we have just completed a3 of the plan trace π in Table 1 (i.e., the first instance of
move_east), we calculate the Regression Expectations reg3 = Xregress(π, s3, ∅) as follows (the
preconditions and effects for move_east and light_beacon have not been shown before):

• reg5 = {lit : {Beacon1 : [1, 1]}}, i.e,. the goal.

• reg4 = {at−y : {r1 : [0, 0]}, at−x : {r1 : [2, 2}, lit : {Beacon1 : [0, 0}} which are the
preconditions for a5, light_beacon.

• reg3 = reg4 	prea4 eff
a4
s4 , where:

– prea4 = {at−x : {r1 : [0, 1]}, fuel : {r1 : [1.1,∞)}}
– effa4s4 = {at−x : {r1 : [x+ 1, x+ 1]}, fuel : {r1 : [x− 1.1, x− .9]}}

• Thus, reg3 = {at−y : {r1 : [0, 0]}, at−x : {r1 : [1, 1]}, fuel : {r1 : [1.1,∞)}, lit :
{Beacon1 : [0, 0}}

reg4 follows from the preconditions of light_beacon. reg3 = reg4 	premove_east effmove_east
s4 ,

where a4 is the second instance of move_east. Since fuel(r1) is in premove_east, in reg3:
fuel(r1) = premove_east(fuel(r1)) = [1.1,∞). Since at−y(r1) and lit(Beacon1) are in reg4
and not in effmove_east

s4 , they carry over from reg4 into reg3. at−x(r1) is in both, reg4 and
effmove_east

s4 , so we compute the inverse functions from effmove_east
s4 to get in reg3: at−x(r1) =

[(x− 1)(2), (x− 1)(2)] = [1, 1]. Overall, this expectation set means that we expect to have at least
1.1 units of fuel, to be at y=0 and x=1 on the coordinate frame, and for the beacon to not be lit.

16

NUMERIC EXPECTATIONS

A5. Formal Definition of Goldilocks Expectations

We define Goldilocks Expectations as Xgold(π, si,G) = goldi, where goldi = (infi, regi). That
is, for every state si, goldi is the pair containing the Informed and Regression Expectations for
that state. An agent using Xgold(π, si,G) checks the overlap of the regressed and the informed
intervals, [infi(v), infi(v)]∩ [regi(v), regi(v))]. This ensures completing the goals while checking
for inferred considerations from the action model such as efficiency.

17

