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Abstract 
The use of rules to encode procedural knowledge is a common modeling assumption used in 
cognitive architectures. In many architectures reasoning is viewed as just another skill, and the 
same rule mechanisms are used to implement it. This uniformity has its attractions, but we suspect 
it is an oversimplification. We argue that the reasoning that rules perform in many cognitive 
architectures might be better performed using analogical reasoning. The advantages of analogical 
reasoning include that it can provide effective reasoning even without complete or correct domain 
theories, including handling incomplete knowledge. This paper explores the analogy/rules tradeoff 
through the lens of two tasks, commonsense reasoning and natural language interpretation.  
 

1.  Introduction 

How to encode and learn procedural knowledge is a core design decision in any cognitive 
architecture.  This usually entails rules, often in the form of production systems (e.g. SOAR 
(Laird 2012), ACT-R (Anderson, 2009)). Other architectures encode procedural knowledge using 
a variety of rules and plan operators (e.g. ICARUS (Choi & Langley, 2017)). Historically one of 
the signature phenomena explained by cognitive architectures is skill learning, notably modeling 
the power law of learning. Even now, subtleties in skill learning are leading to finer-grained 
decompositions of what rules are in some architectures (e.g., ACT-R’s PRIMS, SOAR’s PROPs). 
The Companion cognitive architecture focuses instead on higher levels of cognition: the Rational 
and Social bands (Newell, 1990), ranging from minutes to months. For us, modeling textbook 
problem solving, conceptual change, and learning by reading are signature phenomena (Forbus & 
Hinrichs, 2017). The Companion architecture, following Gentner’s (2003) suggestion that 
analogy is central to human cognition, treats analogy as a core operation. But our architecture also 
includes rules and HTN plans as essential mechanisms, and we are continually exploring the 
tradeoffs between analogy and rules. This paper summarizes progress and questions.  

2.  Background and Framing 

We begin by briefly summarizing how rules and analogies are used in cognitive architecture, then 
summarize the tradeoffs in an abstract way, to set the stage for the task examples. 
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2.1  Rules in Cognitive Architecture 

A variety of forms of rules have been used in cognitive architectures. The two most common 
architectural choices are production rules, which operate via forward-chaining over chunks 
(structured representations of data), and logic-like rules, which can operate with different control 
strategies over data encoded in predicate-calculus style statements. In both cases, it is assumed 
that there can be potentially many rules, leading to the knowledge deployment problem. In SOAR 
and ACT-R, rule and chunk selection are handled via spreading activation mechanisms intended 
to model human memories. In the Companion architecture, Horn clause rules are backward 
chained, similar to Prolog, but without any imposed ordering across rules. All relevant rules are 
run with respect to the logical environment of a query, i.e. a Cyc-style microtheory and what it 
inherits from. Computation only operates on data and rules visible within the logical environment.  
 Functionally, rules can play many roles. One is encoding, translating from input representations 
available to the system into forms more amenable for subsequent processing.1 Another is 
reasoning, drawing conclusions from other information. A third is acting through predicates that, 
when concluded, are tied to the system’s effectors. In architectures which include planners as an 
explicit module, acting is often restricted to primitive plan operators, and plans provide a 
procedural language for organizing multi-step operations. Thus, when control structures are 
needed, plans tend to be used (often HTN plans), although in other architectures control structures 
are provided by operators implemented via rules (e.g. SOAR).  

2.2  Analogy in Cognitive Architecture 

We use Gentner’s (1983) structure-mapping theory of analogy, where analogy and similarity are 
modeled via a comparison process that aligns elements of structured representations. We have 
developed computational models of analogical matching, retrieval, and generalization that have 
been used to model existing psychological phenomena and have made successful psychological 
predictions.2 The Structure-Mapping Engine (SME) provides a computational model of analogical 
matching. Analogical retrieval is modeled via MAC/FAC which uses a two-stage map/reduce 
process for scalability. Analogical generalization is modeled via SAGE, which uses SME and 
MAC/FAC to construct probabilistic structured representations incrementally from a stream of 
examples. These models have also been used in performance-oriented systems, and are used in 
the Companion architecture, via procedural attachments to predicates, which invoke these models 
on the representations denoted by their arguments.  
 Unlike similarity operations involving vectors, matrices, or tensors, which only produce a 
numerical estimate of similarity, SME produces mappings to describe a comparison. A mapping 
contains a numerical estimate of similarity, plus two other kinds of information. First, it provides 
correspondences that indicate which aspects of a description align with another. These explain 
the ways in which descriptions are alike. Second, it provides candidate inferences that describe 

 
1 ARCADIA (Bridewell & Bello, 2016) uses components intended to model aspects of visual processing 

which are flexibly combined based on attention to handle encoding; Companions use CogSketch for high-
level visual perception, which operates at a coarser level of modeling and without an attention model. 

2 Space limitations preclude model citations, see (Forbus & Hinrichs 2017) for details. 
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how information from one description can be projected into the other using the correspondences. 
These provide a form of pattern completion, a way to conjecture new knowledge.  
 Because candidate inferences project information, analogical matching can be used to perform 
deduction, abduction, and induction (e.g. Forbus 2015). Consider for example an implies 
statement which is a candidate inference. If the mapping includes the antecedents for the 
implication, and the consequent is new, the inference is a deduction. If the consequent is known 
but one or more of the antecedents is not, the inference is an abduction. If the relationship in a 
candidate inference is not a connective, then it is an inductive hypothesis. Several other cognitive 
architectures have included analogy in some way as a component, e.g. some versions of 
PRODIGY included a derivational analogy system (Veloso & Carbonell, 1993) and AMBR 
(Kokinov & Petrov, 2001) implements analogy using micro-agents that also perform deduction 
and induction.  

2.3  Tradeoffs in using analogies versus rules 

It has been argued (Forbus & Gentner, 1997; Gentner & Medina, 1998) that there is a continuum 
of representations used in human learning, with the most concrete being specific examples, 
applied by analogy to new situations, and the most abstract being rule-like structures, constructed 
via analogical generalization. These sparse relational descriptions produced by SAGE are 
retrieved via MAC/FAC and applied to new situations via SME, providing an analogical 
mechanism for rule-like reasoning. This provides an attractive uniformity of mechanism. That 
said, Companions still use Horn clause rules for encoding, constraint checking, various forms of 
“glue” inference, and grammar rules for syntactic parsing. Whether this is an engineering 
approximation or something reflecting an architectural mechanism is an open question. Is there a 
transformation step, where sufficiently robust generalizations are converted into rules with 
explicit variables that are retrieved and applied via mechanisms besides analogy? Or can rules be 
eliminated? The analogy-based models shown for the two tasks in the rest of this paper illustrate 
the power to be found in some of those intermediate levels of representation.  

3.  Task 1: Commonsense Reasoning 

Commonsense reasoning is one of the most difficult challenges in AI (Davis & Marcus, 2015). 
Massive amounts of knowledge are needed, but approaches vary in how it is encoded. Cyc, for 
example, focuses on axioms in a highly expressive logic. While we view this as a valuable 
approach, it leaves out experiential knowledge, the everyday experiences people often use in 
reasoning. Recent neural network approaches distill massive amounts of text into language 
models and attempt to provide commonsense predictions. For example, Yang et al. (2018) 
demonstrate that ordinal judgments about everyday properties can be derived from a carefully 
designed language model. This seems worth pursuing, although the outputs from such models 
currently can be quite noisy (e.g. Bosselut et al. 2019). Our hypothesis is that language-level 
models are too low-precision to handle the range of human commonsense reasoning, but general 
axioms omit experience.  What role do such episodic memories play in commonsense reasoning 
and what is their structure?  
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 Our approach is to organize episodic memory as cases, suitable for analogical reasoning and for 
distilling more rule-like knowledge via analogical generalization. We have proposed that such 
cases should be small common sense units (CSUs), consisting of just one or two events that are 
extracted from larger interconnected episodic memories (Blass & Forbus, 2017). These are 
concrete descriptions applied by analogy to predict or explain situations. Their size makes them 
compositional, and thus we do analogical chaining, treating CSUs like rules, except applied via 
SME. This approach has provided reasonable performance on a subset of a commonsense test.3 
 CSUs have several advantages over rules. They can be directly generated via natural language 
microstories, one to three sentences long, e.g. “The airplane malfunctioned.  This caused the 
airplane to crash.”, in a process that is far simpler than formulating expressive logical rules. Each 
CSU can be used for both prediction and explanation, depending on which way the analogy 
works, e.g. if an airplane malfunctions it might crash, and if an airplane crashes, it could be due to 
a malfunction.  Unlike logical rules, they are not guaranteed to be sound, so using them is more of 
an evidential process. This can lead to bizarre conclusions at times, and being able to filter via 
additional experience about what combinations of events are common is one of several methods 
we are experimenting with to evaluate and guide such reasoning. A benefit of CSUs over logical 
axioms for abduction is that they are more focused and generate fewer possible explanations. 

4.  Task 2: Semantic interpretation of natural language 

High-precision natural language understanding remains an open challenge. Analogy has been 
proposed as the key mechanism by which people learn language (Tomasello 2003) and we have 
some computational evidence that structure-mapping can be used to learn and apply constructions 
(McFate et al. 2017). That said, as an engineering approximation we often use a layered approach 
in our language experiments, including an off-the-shelf parser with hand-built broad-coverage 
grammar, linked FrameNet/OpenCyc semantic information, and Discourse Representation Theory 
to handle higher-order constructs like counterfactuals and quantification. The tradeoff between 
rules and analogy comes at higher levels of interpretation, where task and context help focus and 
elaborate the analyses produced by the domain- and task-independent processes.  
 The rule-based approach consists of finding narrative functions (Tomai & Forbus, 2009), 
which are abductive hypotheses about the role of statements in the ongoing description of the 
meaning of the text. Similar rules are also used to interpret texts whose semantics can be captured 
in terms of qualitative models (McFate et al. 2014). While effective, hand-coding rules is labor-
intensive, and thus we have sought ways to automatically learn these higher levels of processing.  
 Our analogical Q/A training approach (Crouse et al. 2018) learns query cases for natural 
language question answering. The learning process operates by taking the space of interpretations 
produced by the NLU system for the questions (and for the answers, if weakly supervised data is 
given, or logical forms, if the task provides those) and uses connection graph techniques to find 
paths in the knowledge base that connect possible interpretations. For example, in “What states 
border Texas”, the meaning of state as a geopolitical entity can be linked with the interpretation 
for “Louisiana”, whereas a state of matter cannot. Query cases are automatically constructed as 

 
3 Limitations in our NLU system have to date prevented us from running Companions on the entire test. 
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small pieces of this analysis, so that they can be composed when answering questions. For 
example, having been trained on the example above, the system can already answer questions like 
“What states border states that border Nevada?” by applying the same query case twice. The 
application process during question-answering uses MAC/FAC to retrieve relevant query cases, 
thereby potentially providing scalability. Query cases consist of a consequent plus a set of 
antecedents. The analogical match of a query case to the interpretation of a new question provides 
substitutions for these statements, and the consequent is used in the query being constructed if a 
sufficient number of the antecedents are also included in the match. Analogical Q/A training 
provides considerable data efficiency over other machine learning techniques (Crouse et al. 2018) 
and has been used with other ML benchmarks as well as in a deployed system (Wilson et al. 
2019). Whether analogical Q/A training can be extended to learn all of the narrative functions 
needed for broad natural language understanding is an exciting open question. 

5.  Discussion 

Our results on analogical chaining and analogical Q/A training suggest that analogy can play a 
key role in cognitive architectures. Rules can be viewed as just one end of a continuum rooted in 
experience and refined via analogical generalization into increasingly abstract representations. 
Are all rules learned this way? Rules for encoding and reasoning seem excellent candidates, 
whereas action rules seem harder. Is there ever a transition to more traditional rules, complete 
with pattern variables and simpler pattern-matching strategies? Perhaps, and adapting chunking 
mechanisms found in SOAR and ACT-R might provide a path for this transformation. 
 The techniques used here are knowledge-intensive, e.g. using ontological reasoning to test 
conclusions, connection graphs over relational knowledge base contents in learning query cases. 
We expect these tasks only scratch the surface of the ways that cognitive architectures can benefit 
from large-scale knowledge bases. To help others explore these issues, our NextKB knowledge 
base, which integrates linguistic, visual, and conceptual knowledge, is publicly available under a 
Creative Commons Attribution-Only license, and the current version of SME is available as open-
source software.4 We encourage you to think about how your own cognitive architecture 
experiments might benefit from analogy and ample knowledge. 
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