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Abstract 
We describe the major architectural features of OntoAgent, an agent architecture that supports con-
tent-centric modeling. Content-centric modeling places the emphasis on maintaining and dynami-
cally expanding non-toy knowledge bases that are integrated with a combination of native and im-
ported modules for perception, reasoning, and action. The paper motivates the rationale for and 
utility of this architecture, and describes the infrastructure support provided by the OntoGraph API.  

1.  Introduction 

This paper describes OntoAgent, an architecture for implementing social agents, and OntoGraph, 
its knowledge management infrastructure. This introduction serves two purposes. First, we briefly 
motivate our choice to make OntoAgent content-centric and explain why we must use large 
amounts of knowledge. Second, we briefly describe what features in the OntoAgent environment 
support the agent’s ability to make decisions in bounded time, which is a core requirement of agent 
architectures.  

1.1  The Centrality of Content 

Our longstanding interest has been developing social intelligent agents. Like other AI agents, such 
agents must feature perception, reasoning and action capabilities. The main distinguishing feature 
of social agents is the ability to communicate with other agents in natural language. We believe that 
language understanding and generation can only reach a human level of quality if the agent under-
stands the content of texts and dialog turns. (In this paper, we will discuss only language under-
standing, as this suffices to motivate our agent architecture design decisions.) Understanding con-
tent means associating elements of language with elements of a model of the real world.1 This, in 
turn, requires developing formal world models, ontologies, and semantic lexicons – knowledge 
resources that connect words and phrases of language with particular ontological concepts. More-
over, to approach human levels of functioning, it is essential that the above knowledge resources 
have broad coverage. To be a full-fledged member of a human-agent team, the agent must under-
stand what the speaker or writer intends to convey, and represent this content in an expression (a 
text meaning representation, or TMR) in a metalanguage congruent with that of the ontological 
world model. Over the years, we have made significant progress on this task (see McShane and 
Nirenburg, in press, for the most up-to-date book-size report). Details of that work are not important 

 
1 This decision means, among other things, parting ways with surface string matching approaches to language processing 

that started with Weisenbaum’s Eliza  and Colby’s Parry and have continued, albeit in a much more sophisticated form, 
till this day. 
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for this paper. What is germane here is our conclusion that language processing in social agents 
requires the involvement of the agents’ general reasoning capabilities.  
  Reasoning is required for treating many phenomena regularly occurring in language inputs.  
Here, we briefly illustrate this point on the example of just two such phenomena – ellipsis and 
unknown words:  
a)  In the interests of saving time and lowering the cognitive effort of generating language, speak-

ers typically omit much detail of a situation or task in the expectation that hearers can recreate 
the elided meaning using their stored knowledge.2 To support this reasoning capability, our 
agents use scripts (represented as fillers of the HAS-EVENT-AS-PART property of all EVENTs in 
the ontology), which both aid in language understanding and guide action-related decisions.  

b)  Language inputs routinely include words, word senses, and (more rarely) syntactic construc-
tions unknown to particular readers/hearers. Still, those interlocutors are capable of deriving 
substantial meaning from them. To recreate this capability, our agents use the content of onto-
logical concepts underlying the known words in the input to construct expectations about the 
meanings of the unknown words. 

In addition to the above, language-endowed agents also have the option to behave in the face of 
imperfect analyses the same way humans do: they can extract as much of the speaker’s meaning as 
they can and then decide either to ask the speaker for clarifications or wait in the expectation that 
downstream utterances will provide that clarification. Once the agent understands the clarification, 
it updates its knowledge base so that the newly learned knowledge can be used in the future.  
 Such clarification dialogs can be viewed as instances of agent learning while executing tasks. 
Learning is a necessary functionality in a full-service agent architecture. In our approach, learning 
by instruction is used not only when clarifications are needed but also in other types of communi-
cation – recovering from errors, explaining, negotiating and advising as well as training for tasks 
and general instruction. Indeed, lifelong learning by instruction in natural language,3 applicable 
both during task execution and via dedicated instruction sessions, is the main method of agent 
learning in our approach. This kind of learning must be bootstrapped by the availability of a good 
quality, broad coverage language understanding system that relies on a non-toy amount of 
knowledge. See Section 5.2 below for a brief discussion of this functionality in OntoAgent. 

1.2  Mitigating Time-related Issues 

Cognitive system developers have argued that systems relying on large amounts of knowledge are 
not realistic: “There are tradeoffs between the amount of knowledge that can be stored about a 
situation, the accuracy with which it can be stored, and the efficiency and accuracy with which it 
can be retrieved in the future.” (Laird 2012, p. 32) This opinion expresses the practical concern  for 
building real-time applications. It is also motivated theoretically by invoking the notion of perfect 
rationality: “it is not possible for a knowledge-rich agent embedded in a complex and dynamic 
environment with non-trivial novel tasks to achieve perfect rationality.” (ibid.) The latter statement 
invokes Newell’s (1990) knowledge level, at which “an agent is not described using specific data 
structures, representations of knowledge, and algorithms” but instead “using the content of the 

 
2 This observation was the seed for Roger Schank’s work on scripts in the 1970s and was included in the description of 

the knowledge level by Newell (1990). 
3 In a large subset of domains combining language understanding with visual scene interpretation is also very helpful. 

While originally our work did not address such integration, the current version of OntoAgent overtly includes this 
functionality. 
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knowledge and the principle of rationality… whereby an agent selects actions to achieve its goals 
on the basis of the available knowledge. Achieving the knowledge level requires perfect rationality, 
which is computationally infeasible except when an agent has simple goals or limited bodies of 
knowledge.” (op. cit. p.8). We do not want to forgo developing real-time applications. On the other 
hand, we cannot jettison the non-toy content underlying our agents. The question is: How to deal 
with this tradeoff? In this paper, we will just say that we accepted that agents, just like people, will 
make mistakes. As our agents operate in teams, they will rely on being corrected by teammates.  
 We want our agents to be able to make decisions in bounded time but not because their 
knowledge is limited and their goals are simple. One useful strategy for reducing decision-making 
time is deemphasizing operating from first principles. Much of the problem of assuring that all 
system decisions are made in bounded time is constraining heuristic search in problem spaces. Our 
solution is, whenever possible, to avoid search: Our agents pursue goals using stored plans. When 
no known plan leads to a goal, the agent’s first choice is to ask for help (see above on learning by 
being told). Only if for some reason that cannot happen, and then only if they first assess that they 
have sufficient time to do so, they may opt to engage in reasoning from first principles – for exam-
ple, to start generating plans on the spot through heuristic search.4 (In some set-ups, to find a solu-
tion from an impasse, another alternative is to engage in learning by reading.) 
 We hypothesize that the above is the default pattern of human behavior in most situations: A 
social agent would prefer to ask somebody how to do something rather than explore independently. 
This might be viewed as a facet of the cognitive miser theory (Stanovich 2009), which posits that 
the well-known principle of least effort is at work with respect to cognitive effort as well as other 
human endeavors. This type of avoiding exploration to economize effort is only viable for lan-
guage-endowed, content-centric social agents.   
 One additional means our agents employ to speed up processing is operationalizing the observa-
tion that hearers often understand speakers’ intended meanings well before the latter finish their 
utterances. (We routinely interrupt one another in conversations not only because we don’t have 
manners, but also to enhance the time efficiency of the conversation.) As the agent processes lan-
guage input incrementally, it recognizes at what stage of the process the partial understanding re-
sults become actionable, at which time it can suspend language analysis and proceed to goal selec-
tion and downstream operations. 
 In addition to the above, we also seek ways to speed up processing on the knowledge represen-
tation and system engineering levels, for example, moving toward using construction-based instead 
of exclusively word-based lexicons. All of the above choices and operations demonstrate our at-
tention to the need to make the agent decide in bounded time. Still, our approach is, at base, content-
centric, and we are not prepared to compromise on that issue. As a result, agent applications built 
on the basis of our approach will have more problems with bringing response times closer to those 
of humans than systems that use limited amounts of knowledge. 
 The content-centric approach of relying on large amounts of stored knowledge about complex 
events saves cognitive effort – and speeds up agent processing – because a) the default method for 
choosing next steps does not involve search; and b) the main processing operations are checking 
the preconditions of available next steps and running preference heuristics for their selection. The 
speed of these operations relies primarily on efficient access to a variety of large knowledge bases. 

 
4 In our current agent applications reasoning from first principles is restricted to dealing with impasses. Since our con-

ceptual and architectural approach readily accommodates this type of operation, incorporating (or importing) such a 
module in any application that may require it will not require modification to the overall system, just the reconciliation 
of representation formats. 
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Thus, in our approach the availability of content and the efficient management of knowledge base 
access and modification operations are the main engineering prerequisites for reducing computa-
tional complexity and, therefore, response time in agents.   
 The OntoAgent and OntoGraph environments have been developed to support efficient operation 
of agents of the kind described above. 

2.  OntoAgent Basics 

OntoAgent is a platform for developing intelligent agent systems. It consists of (a) a network of 
processing modules, (b) a content module (comprised of several non-toy knowledge bases), and (c) 
an infrastructure module that supports system functioning, system integration, and system devel-
opment activities. OntoAgent fosters developing embodied or simulated intelligent agent models 
and testing their performance in application systems. The latest version of the system, OntoAgent 
II, supports the integration of various types of perception, reasoning, and action modalities. Sup-
ported channels of perception include language understanding, actual and simulated visual percep-
tion, and simulated interoception (i.e., the perception of bodily signals). Supported action modali-
ties include actual and simulated robotic motor action, natural language utterance generation, and 
simulated physiological action.  
 The orientation at human-level language processing necessitates solutions to  many problems – 
such as, for example, the many facets of ambiguity resolution required for language analysis and 
percept interpretation – that can be safely downplayed by approaches that operate with small-scale 
knowledge resources. Cognitive system applications typically operate with knowledge resources 
that offer limited coverage of both language and the world. While its main purpose is supporting 
full-blown content-centric systems, for limited-coverage applications OntoAgent can be configured 
with just a subset of its content. For example, while the language understanding module of On-
toAgent produces its best results when it has access to the situation model component of agent 
memory, it can also successfully generate actionable, if less precise, interpretations of language 
inputs without such access, relying exclusively on long-term memory components, such as the on-
tology and the semantic lexicon. Similarly, if speed of language analysis is more important than the 
depth and quality of output, the language interpretation service of OntoAgent can be configured to 
use only a lightweight subset of its disambiguation and inference-making capabilities.   
 In this paper we briefly describe the infrastructure developed to support the maintenance and 
functioning of the agent’s knowledge resources: the long-term semantic memory; its repository of 
recalled past events (its episodic memory); and a situation model containing active concept in-
stances in the agent’s working memory and their interconnections. The agent’s long-term memory 
is “first-person” in that it covers a particular agent’s beliefs about the world as well as its own goal 
and plan inventory, its individual attitudes, biases, and heuristic decision rules and its individual 
memories.  
 OntoAgent operates at a level of abstraction that supports interoperability across the various per-
ception, reasoning, and action modules by standardizing input and output signals for use by the in-
house modules. These signals are interoperable meaning representations (XMRs), in which X is a 
variable describing the particular type of meaning representation. The types of XMRs are: 
 
1. Perception meaning representations, for example, TMRs encoding the meaning of language in-

puts and outputs and VMRs for representing the meaning of visually perceived scenes or events; 
2. Action meaning representations (AMRs) that encode the meaning of robotic motor actions; and 
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3. Mental meaning representations (MMRs) that encode mental actions and are used, e.g.,, to update 
the agent’s situation model, to signal attention needs (e.g., to instantiate a goal instance), and to 
trigger any of the several truth maintenance, grounding and learning actions. (See English and 
Nirenburg, 2019, for details and examples.) 

  
XMRs are encoded using the same representation format as both the representation substrate of the 
agent’s memory system (the ontology, the episodic memory, and the situation model) and the On-
toAgent decision mechanisms. All in-house components of OntoAgent are designed to accommo-
date XMRs. But results of each imported module must undergo semantic interpretation and be rep-
resented in XMRs. Conversely, all externally developed action modules must receive inputs in their 
native format, which requires a native format generation step from AMRs. OntoAgent imports re-
sults of vision processing and thus must add a dedicated visual perception interpreter for each im-
ported vision system. On the action side, OntoGen, the language generation module of OntoAgent, 
is being developed in-house and generates text that is then sent to the imported speech synthesizer. 
A dedicated physical action generator was built to convert AMRs into procedure calls of a particular 
robotic system for a recent robotic application (Nirenburg et al. 2018).  

3.  Processing Services in OntoAgent 

OntoAgent is implemented as a suite of services, each comprising a set of specific executables. The 
service-based infrastructure allows for architecture components to be individually developed and 
scaled up at different rates. As OntoAgent is intended to support embodied as well as simulated 
agents, a given agent system conforming to this architecture may require components that tradi-
tionally belong to either cognitive or robotic architectures.  
 Services in OntoAgent may be producers and/or consumers of knowledge. A producer of 
knowledge will generate data (such as an XMR).  A consumer of knowledge will read from 
memory and/or input signals in order to operate. In practice, most services will be both. In what 
follows we present a necessarily very brief overview of the services in the latest version of On-
toAgent, illustrated in Figure 1. 

 

Figure 1. A top-level schematic view of the services in OntoAgent (much detail is omitted). Services in 
dashed-line octagons are expected to be imported.  

Perception services are responsible for the initial processing of perceptual input. OntoAgent can 
work with both actual or simulated perception services. Currently, OntoAgent perception covers 
speech-to-text conversion, results of simulated agent’s physiology (Nirenburg, McShane, and 
Beale, 2008) and a limited set of outputs from actual and simulated vision systems.  
 Interpretation services are responsible for semantically and situationally (pragmatically) inter-
preting the output of each of the perception services and generating representations of the meaning 
of the inputs in a uniform metalanguage of XMRs (cf. the discussion of OntoGraph in Sections 3 
and 4 below). Each of the perception services has its own dedicated interpretation service. OntoSem 
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(McShane, Nirenburg, and Beale, 2016; McShane and Nirenburg, in press) is one such interpreta-
tion service that operates on input text and generates a TMR; OntoViz, on which we will report 
separately, is our proof of concept vision understanding system, interpreting visually categorized 
and temporally anchored tokens into VMRs.  
 The attention service is a dispatcher and prioritizer service. On obtaining an input from a per-
ception interpreter or from the reasoning service5 it decides whether this input a) warrants the cre-
ation of a new goal instance; b) warrants the generation of an “direct” response action (this mech-
anism simulates reactive functioning); or c) should be ignored (this simulates not paying attention 
to certain object and event instances in the world).  
 If the decision is to ignore the input, the latter is simply stored in the situation model. If the 
decision is to generate a direct response (in Kahneman’s (2011) terms, a System 1, “fast thinking” 
process), a dedicated rule generates an AMR sent directly to the appropriate rendering service (ver-
bal, physical or physiological) bypassing the reasoning service. For example, if the visual interpre-
tation service generates a VMR signal describing an object starting to fall, the system will use a 
rule (provided specifically to cover this eventuality) to directly trigger the physical action generator 
to send a fall-prevention action specification to the motor action rendering service.  
 If in response to an interpreted input signal the attention service decides to engage the agent’s 
reasoning service (in Kahneman’s terms, a System 2, “slow thinking” process), the attention service 
selects an instance of a goal from the agent’s goal inventory. This goal instance is added to the 
agent’s goal agenda after which the attention service prioritizes the agenda to select the goal in-
stance for the agent to pursue.6 The prioritizer will operate even in the absence of input signals, as 
long as the agenda is not empty. The heuristics guiding the goal selection (prioritization) process 
involve a large number of diverse parameters from different parts of the agent’s memory. Support-
ing efficient mustering of heuristic knowledge is a core functionality of OntoAgent as a content-
centric model.  
 The reasoning service selects a plan for attaining the selected goal instance. At this time, while 
OntoAgent II includes several methods of recovering from planning impasses, it does not offer a 
full dynamic planning option. Each goal in the agent’s goal inventory is associated with a set of 
plans that can lead to the goal. The first task of the reasoning service is to select one plan out of this  
set to pursue. The reasoning service has several methods of doing this. A detailed description of 
planning in OntoAgent is outside the scope of this paper. (Suffice it to say that the reasoning service 
takes advantage of the richness of the OntoAgent knowledge resources that allows it to bypass the 
need for planning from first principles.) Plans are hierarchically organized sequences of component 
events. Each of them has (a) a set of preconditions that must be checked before the action is exe-
cuted, and (b) a set of effects that specify how the agent’s situation model should be modified as a 
result of the successful performance of the action. 
 The rendering service is responsible for converting individual steps of OntoAgent plans into 
commands for the effectors, such as a speech generator or a robotic arm. Depending on the capa-
bilities of the effectors, this step may itself involve planning because a single step in an OntoAgent 
plan may have to be unpacked into a sequence of primitive actions in the external effector service, 

 
5 The agent’s own reasoning generates MMRs that may serve as a trigger to action, without need for an 

external stimulus, when the attention service becomes aware of them. 
6 This is a natural place to incorporate parallelism in the system: after all the prioritizer may be allowed to 

select more than one goal for processing at the same time. We will not address this issue in this paper, only 
note that this option is under consideration, though we will incorporate parallelism only for the situations 
in which people habitually demonstrate it. 
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such as the fine motor control system of a robotic arm. The input to a renderer is an XMR. Its output 
is in the language required by the corresponding effector services. 
 Effector services include as speech generation from text, the motor control system of a robot or 
the regulator of a physiological model of an agent. These services manipulate effectors: for lan-
guage generation, a speaker; for robotic functioning, its arms, hands, wheels, etc. As an illustration, 
consider that when the reasoning service produces an action meaning representation (AMR) encod-
ing the command “move to the next room”, the rendering service will have to convert that into 
something like  “move forward 8 yards, turn 90 degrees clockwise, and move forward 3 yards”, 
and the motor action service effector will further convert that into “set wire 7 to hot for 16.9 sec-
onds, set wire 9 to hot for 1.2 seconds, set wire 7 to hot for 6.4 seconds.”  

4.  Memory Management 

Agent memory modeling is at the core of content-centric modeling. The agent’s memory in On-
toAgent includes: (a) a situation model (SM) that contains the elements of the world and of the 
agent’s internal state that are present and activated at the time of processing; (b) a long-term se-
mantic (LTS) memory of types of entities known to the agent; and (c) an episodic (LTE) memory 
that includes, among other properties, spatial and temporal information about each remembered 
event, state, and object instance, including a time stamp indicating when the knowledge was added 
to agent memory.  
 The memory management component of OntoAgent facilitates access, update and management 
of the knowledge elements (e.g., ontological concepts, concept instances, lexicon entries, etc.) 
stored in the agent’s memory. This component also controls what processing services in the system 
have access and modification privileges to particular memory spaces. System-level support for this 
functionality is provided by OntoGraph, described in Section 6. 
 Content-centric modeling emphasizes joint use of elements from different memory modules in a 
variety of operations, notably, decision-making by the agent. To facilitate this, the agent’s memory 
store is organized into memory spaces. This organization, which is standard in database manage-
ment, helps overall knowledge indexing and contextualizes knowledge elements. All agent services 
have unrestricted access to all the components of the agent’s memory, although in practice, each 
process only uses a subset of spaces.  The content-oriented memory spaces in the current version 
of OntoAgent (in alphabetical order) are listed below: 
 
o AGENDA: part of SM, AGENDA contains elements related to agenda processing; this includes 

the agenda, goal/plan/step instances, and miscellaneous supporting elements 
o ENV: part of SM,  ENV contains object instances in the current state of the spatial environment; 

something that is present in the environment but may be stored in another space may be cross-
referenced here (such as a known agent, who might be stored in long-term episodic memory) 

o GOALS: part of LTS, GOALS contains the inventory of goal types known to the agent 
o I(X)MR: shared by LTE and SM,  I(X)MR contains all of the input XMR signals interpreted 

from perception; in practice, each XMR is contained in a dynamic subspace with its own index 
(for example, TMR#123) 

o LEX: part of LTS,  LEX contains the entries from the agent’s semantic lexicon (at this time, only 
English is covered) 

o LTE: part of LTE, the LTE space contains long-term episodic memory elements that are not 
XMR signals 
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o ONT: part of LTS,  ONT contains ontological concepts known to the agent 
o OPT: part of LTS,  OPT contains the entries from the agent’s semantic opticon (connecting types 

of visually observable objects and events with the ontology) 
o O(X)MR: shared by LTE and SM, O(X)MR contains all of the output XMR signals generated 

by attention and reasoning; in practice, each XMR is contained in a dynamic subspace with its 
own index (for example, AMR#456) 

o SELF: part of SM, SELF contains the agent’s current view of itself (@SELF.AGENT.1), specifi-
cally, the status of its effectors, active background executables, and current physical and mental 
states 

o SM: part of SM, the SM space contains the remainder of the current situation model for the agent, 
holding instances that do not belong in ENV or ???; this space is used to store observed events, 
states, and non-local (physically) objects 

o SYS: part of LTS,  SYS contains all of the executables known to the agent (such as heuristic 
rules or direct response rules)  

o ???: part of SM, ??? contains as yet ungrounded instances that are expected to be co-referenced 
or grounded; once grounded they are moved to another space, as appropriate; this space is also 
used to store elements generated during counterfactual reasoning  

 
 Dividing memory into spaces is very important in a content-centric architecture. Knowledge in 
OntoAgent is common for all its services. OntoAgent-based application systems  are configured to 
include different inventories of the available services. The knowledge stratum of OntoAgent is 
designed to support any application system configuration. So it is critical that all services have well-
defined expectations about where to find knowledge required for its operation.  For example, any 
service expects to find all of the known ontological concepts in the ONT space, or all of the known 
goals in the GOALS space. Conversely, any service that generates knowledge stores it in its appro-
priate space, thus assuring this new data available to the rest of the system.   
 In addition to the content-oriented spaces defined above,  OntoAgent also maintains infrastruc-
ture-oriented spaces whose purpose is to support indexing and storage. For example, OntoAgent 
uses the IO space to index input and output XMRs  and the EXE space both for bookkeeping and 
to store entities that are not part of its “conscious” functioning, such as direct response signals or 
states in a simulated physiological model. OntoAgent also allows system developers to declare new 
spaces to cover any additional needs of specific applications. Providing convenient access to the 
creation and maintenance of memory spaces has been one of the objectives in the development of 
OntoGraph (see Sections 6 and 7 below). 

5.  Selected Functionalities and “Self-Improvement” Services in OntoAgent 

Implementation of a particular OntoAgent-based agent involves, minimally, implementing a subset 
of the services guaranteeing throughput. Several different configurations have been used in appli-
cation systems we developed to-date. In what follows, we briefly describe a subset of functionalities 
that the current version of OntoAgent offers to all services; these can be adopted as needed by 
individual implementations.  

5.1  Service functionalities 
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Situation model consolidation: grounding. Grounding is the process of identifying object or event 
instances in memory referring to the same ontological instance and merging the information into a 
single instance. It is an extension of the reference resolution task in language understanding. The 
most frequent type of grounding in a robotic application is associating an object instance mentioned 
in an utterance with the visually perceived object instance. Nirenburg et al. (2018) and Wood (2019) 
include descriptions of the OntoAgent approach to the cross-module grounding of objects and 
events from visual perception and language understanding. Another type of grounding connects 
elements of XMRs with remembered object and event instances stored in LTE. This allows the 
agent’s to reason using all the knowledge about a concept instance available in its long-term epi-
sodic memory, not just that part of this knowledge that is conveyed by an XMR. Work on enhancing 
OntoAgent’s approach to and coverage of grounding phenomena is ongoing. In architectural terms, 
grounding is a memory consolidation process commonly controlled by the attention service. 
 Operating Modes. Each service in OntoAgent can operate in one or both the signaled or cycled 
control mode.  In a signaled mode, the module expects and anticipates signals to trigger processing 
and might otherwise be idle.  A service defines which signals it expects (typically a type of XMR, 
optionally with specified content). When such a signal is received, the service uses it as input for 
executing appropriate processing elements.  In a cycled mode, a service operates on a continuous 
cycle, repeatedly polling relevant areas of memory looking for updates. As a result, OntoAgent-
based systems may employ a mixed pipeline and blackboard control architecture. 
 Signal Priority.  Signals sent to a service can be assigned priorities by their senders; priority can 
suggest that the receiving service handle the signal at its convenience, as soon as possible, or even 
request that the service interrupt its current task.  A common use for attaching priority to signals is 
in a multi-scheduler agent – one scheduler may need to overwrite the resource needs of another in 
a given situation, and can suggest this to the renderer and effector services.  

5.2  “Self-Improvement” services 

Figure 1 illustrates a basic, task-oriented configuration of OntoAgent. Such a configuration does 
not fully support content-centric modeling. The latter assumes the long-term perspective where 
agents are supposed to persist beyond particular task runs and be amenable to perform a variety of 
tasks. The overall objective is to model the constant accumulation of specific memories, facts and 
beliefs and life-long learning that is characteristic of humans. Accordingly, OntoAgent adds ser-
vices to support these functionalities. 
 Episodic memory consolidation. Functionality for manipulating memory into, out of, and within 
its LTE is offered by OntoGraph, and is intended to emulate human memory management pro-
cesses, such as memory consolidation and forgetting. and combining elements inside episodic 
memory (which is an extension of the notion of grounding). Nirenburg and Wood (2017) describes 
an example of the application of this service for consolidating in LTE of two different instances of 
a complex event. The result of this consolidation was then used (by the knowledge learning service 
described next) to learn an improved ontological representation of this complex event. This, in turn, 
improved the agent’s ability to attain the goal for which this complex event was listed as the default 
plan. 
 Knowledge learning.  OntoAgent is content-centric, so maintenance of knowledge is a core ob-
jective in it. Agents are supplied with initial stores of knowledge, including ontology, lexicon, op-
ticon, goal inventories, etc. As an agent experiences its environment and operates in it, it prompts 
itself to learn additional knowledge. This is typically done by reasoning over available knowledge. 
Triggers for learning include, among others, TMRs of definitional and descriptive utterances or 
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following up on the results of “emergency” recovery processing that a service when encountering 
any of a number of anomalies due to knowledge lacunae. Our past work along these lines is de-
scribed in Nirenburg, Oates, and English (2007) and McShane, Blissett and Nirenburg (2017). An 
experiment in learning complex events (ontological scripts) “hands-on”, when accompanied by in-
struction in natural language by a human teammate, is reported in Nirenburg and Wood (2017). A 
dovetailing direction of work, which involves the mixed-initiative acquisition of structured 
knowledge about low-density languages in support of NLP applications, is described in McShane 
et al. (2002). 

6.   An Example of Agent Operation 

We illustrate a small subset of task-related operation in an OntoAgent-based application system for 
assembling furniture in collaboration with a human. The system integrates native services of On-
toAgent with perception and action capabilities of a robotic system (Roncone, Mangin, and Scassel-
lati, 2017). The immediate purpose of this example is to illustrate how the system generates and 
uses knowledge. Due to space constraints, we show only those properties of the knowledge entities 
that are directly relevant to the presentation of the example. Additionally, the timing of the steps is 
not discussed, and all effectors are assumed to be available at the time they are needed. 
 The “native” services in this system include memory management, vision interpretation, text 
interpretation (OntoSem), attention (dispatcher and prioritizer), reasoning, and visual and verbal 
rendering services. Services imported from the robotic system include a vision preprocessor service 
(“camera”) that identifies objects and their properties (position, color, shape, size), a speech-to-text 
service (“microphone”), and a motor action service (“hand”). At the start of the example run the 
agent’s agenda is empty. 
 Step 1. The camera service processes a scene and outputs 1) an instance of a human, with a 
particular facial features profile; 2) a red screwdriver on a table directly in front of the agent; and 
3) a green screwdriver on a shelf far to the left. The vision interpretation service converts the input 
into a set of VMRs and stores it in the agent’s SM. The attention service notices the augmentation 
of the SM, disregards grounding in the SM space – since the latter does not (yet) contain anything 
but the current input – but carries out grounding against the LTE because the agent always attempts 
to recognize any humans that it sees. So, the system retrieves from the LTE the remembered in-
stance of HUMAN, @LTE.JAKE.1, that matches on the facial feature profile. It is then unified with 
the just generated VMR by adding  the current spatial coordinates supplied by the camera service. 
At the end of this step, the following VMRs are present:3 
 
@VMR.JAKE.1 
 LOCATION [4, 0, 5] 
 <a set of properties from @LTE.Jake.1> 
@VMR.TABLE.1 
 LOCATION [0, 0, 2] 
@VMR.SHELF.1 
 LOCATION [-10, 0, 8] 
@VMR.SCREWDRIVER.1 
 COLOR  RED 
 ON-TOP-OF @VMR.TABLE.1 
 LOCATION [0, 3, 2] 
@VMR.SCREWDRIVER.2 

 
3 The LOCATION property values in this example are simplified encodings of relative distances and directions of objects 

from the agent as the source, in feet) 
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 COLOR  GREEN 
 ON-TOP-OF @VMR.SHELF.1 
 LOCATION [-10, 5, 8] 
 
 Step 2. The attention service does not instantiate any goals for the agent because in this particular 
system the agent does not initiate activity. (This functionality was included in other OntoAgent-
based systems, e.g., in the MVP project (Nirenburg, McShane, and Beale, 2008).) 
 Step 3. Jake says, “Let’s build a chair.” The microphone service converts the audio input into 
text and sends it to the OntoAgent language interpretation service,  OntoSem. OntoSem makes use 
of all the components of the OntoAgent memory (LTS, LTE and SM) to carry out a large number 
of operations such as lexical and referential ambiguity resolution to generate a text meaning repre-
sentation for this input.4 OntoSem works incrementally. Having consumed the lexical token Let’s,  
it retrieves it’s meaning from the lexicon: an instance of the REQUEST-ACTION speech act (say, 
@TMR.REQUEST-ACTION.13 – which assumes that the agent has twelve instances of the ontological 
concept REQUEST-ACTION recorded in its LTE) that refers to an as-yet-unspecified action (say, 
@TMR.ACTION.37) whose AGENT case role filler is a set whose members are co-referential with the 
fillers for the AGENT (speaker) and the BENEFICIARY (hearer) case roles of @TMR.REQUEST-AC-
TION.13. Ontological knowledge establishes that fillers of these roles must be constrained to HU-
MANs or ARTIFICIAL-INTELLIGENT-AGENTs. So, the system knows about agents of @TMR.AC-
TION.37 even before it establishes what kind of action it actually is!. So, the system identifies 
@LTE.JAKE.1 as the speaker. To detect the filler (or fillers!) of the beneficiary role of @TMR.RE-
QUEST-ACTION.13, the system inspects the SM to establish what humans or intelligent agents are 
present there. It so happens that, in addition to the speaker, it is only the agent itself, 
@SELF.AGENT.1. OntoSem next consumes the remainder of the input, in the process concretizing 
@TMR.ACTION.37 to @TMR.BUILD-CHAIR.5. The resulting TMR (presented here in a simplified 
display format) is recorded in SM: 
 
@TMR.REQUEST-ACTION.13 
 TMR-ROOT True 
 AGENT  @LTE.JAKE.1 
 THEME  @TMR.BUILD-CHAIR.1 
 BENEFICIARY @LTE.JAKE.1 @SELF.AGENT.1  
@TMR.BUILD-CHAIR.5 
 AGENT  @TMR.SET.1 
 THEME  @TMR.CHAIR.87 
@TMR.SET.1 
 ELEMENTS @LTE.JAKE.1 @SELF.AGENT.1 
 
 Step 4. The attention service detects the above TMR. Since the agent’s model of self contains 
the information that the speaker has authority over the agent, the attention service decides that 
attention is due to this TMR. As a result, the goal of having built a chair, which is represented as 

 
4 The operation and capabilities of OntoSem have been described in great detail in many publications. See McShane and 

Nirenburg (in press) for the latest detailed presentation.  A shorter treatment available in McShane and Nirenburg 
(2019). Here, we trace its operation in a rather superficial way. (Readers uninterested in details of language analysis 
may skip to the end of this step.) The difficult issues that OntoSem tackles include lexical and referential ambiguity 
resolution, reconstructing meanings that are intended but are not overtly stated in language inputs, processing implica-
tures and non-literal language, and interpreting sentence fragments. Research in these areas is ongoing. Architecturally, 
the most interesting facet of the interaction between OntoSem and OntoAgent is that, for its last, “deepest” stage of 
language understanding, OntoSem uses the complete set of OntoAgent knowledge resources – including the ontology, 
the episodic memory, and the situation model. 
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the state listed in the EFFECT property of BUILD-CHAIR.5, the existence of CHAIR.87. So, 
@AGENDA.CHAIR.87 is added to the AGENDA space of SM.  
 Step 5. At this point, the prioritizer subservice of the attention service prioritizes each goal in-
stance on the agenda, based on a variety of parameters such as standing priorities, expected costs, 
resource availability, etc. In the example, the choice is easy: only one goal instance is present.  
 Step 6. The reasoning service receives the goal instance @AGENDA.CHAIR.87. The goal has a 
single plan associated with it, which happens to be the complex event BUILD-CHAIR.7 the HAS-
EVENT-AS-PART slot of the BUILD-CHAIR event contains a sequence (actually, a hierarchical transi-
tion network, HTN) of subevents (plan steps), the first of which (illustrated below) is for the agent 
to affix two dowels together using a screwdriver (the precondition and effect are glossed): 
 
@AGENDA.AFFIX.1 
 AGENT     @SELF.AGENT.1 
 THEME     @???.DOWEL.1 
 DESTINATION  @???.DOWEL.2 
 INSTRUMENT   @???.SCREWDRIVER.1 
 PRECONDITION  <the AGENT is holding the INSTRUMENT> 
  EFFECT     <a BRACE exists, made of the THEME and DESTINATION> 
 
The precondition states that the agent of AFFIX, @SELF.AGENT.1, must be holding the INSTRUMENT 
of AFFIX, an unspecified screwdriver, @???.SCREWDRIVER.1. The description of the current state 
of the agent in the SELF space does not state that this condition is met. As a result, a subgoal is 
created describing the (counterfactual) state of @SELF.AGENT.1 holding @???.SCREWDRIVER.1, the 
unspecified screwdriver that is the INSTRUMENT of the parent AFFIX event. The reasoning service 
then searches the LTS for a suitable plan, selects @ONT.PICK-UP (its EFFECT satisfies the subgoal): 
 
@ONT.PICK-UP 
 AGENT  @ONT.ROBOT 
 THEME  @ONT.PHYSICAL-OBJECT 
 EFFECT  <the AGENT is holding the THEME> 
 

and instantiates it with the parameters already specified for the parent goal: 6 
 
@AGENDA.PICK-UP.1 
 AGENT @SELF.AGENT.1 
 THEME @???.SCREWDRIVER.1 
 

 Step 7. In order for a plan to be executable, all of its props must be grounded to known objects.  
In our example, in order to pick up a screwdriver, the agent must select a particular screwdriver to 
pick up.  The SM contains two screwdrivers (see Step 1 above). The reasoning service must at this 
point decide which one to pick up. In the example, the decision is made on the basis of the single 
parameter of relative distance to the screwdrivers. @???.SCREWDRIVER.1 is subsequently grounded 
to the nearest screwdriver instance: @???.SCREWDRIVER.1 becomes @ENV.SCREWDRIVER.1 eve-
rywhere it is referenced in the environment, and the plan is updated on the agenda:  
 
@AGENDA.PICK-UP.1 
 AGENT @SELF.AGENT.1 
 THEME @ENV.SCREWDRIVER.1 

 

 
7 Notice that this version of the reasoning service does not need to use the presence of an instance of BUILD-CHAIR  in the 

input TMR to choose a plan. 
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The attention service keeps the current goal in focus (no other goals contend for the agent’s atten-
tion), so the reasoning component proceeds to the next processing step, which is to determine a 
primitive action that can be the first one in the complex event (plan) PICK-UP. The content of the 
HAS-EVENT-AS-PART slot of PICK-UP is retrieved from the ontology module of the agent’s LTS and 
instantiated on the agenda as follows  (once again, represented in a simplified way):  
 
@AGENDA.MOVE.1 
  PRECONDITION  <AGENT is within arm’s length of DESTINATION> 
  AGENT     @SELF.AGENT.1 
  DESTINATION  @AGENDA.PICK-UP.1.THEME.LOCATION   
    INSTRUMENT   @SELF.HAND.1 
@AGENDA.GRASP.1 
  PRECONDITION <INSTRUMENT is within grasp range of THEME> 
  AGENT    @SELF.AGENT.1  
  THEME    @AGENDA.PICK-UP.1.THEME 
  INSTRUMENT  @SELF.HAND.1 

 
The first subevent has a precondition: the agent must be within “arm’s length” of the destination – 
in this case, we know this to be true, as the agent selected the nearby screwdriver as the object to 
grasp.  Had the agent selected the other screwdriver, another step of subgoaling would be required 
to move (the agent) closer to the screwdriver. 
 Step 8. The current goal is still in focus. So, the reasoning service next processes the first action 
of the selected plan. It does so by converting this action into an AMR: 
 
@AMR.MOVE.1 
 AGENT    @SELF.AGENT.1 
 DESTINATION @ENV.SCREWDRIVER.1.LOCATION   
 INSTRUMENT  @SELF.HAND.1 

 

Step 9. The rendering service concretizes the AMR to include specific data and converts the 
format to conform with expectations of the effector service (a robotic arm movement system), pro-
ducing the following signal:  
 
@AMR.MOVE.1 
 AGENT   @SELF.HAND.1 
 DIRECTION <forward>  
  DISTANCE  <2 feet> 
  
 Step 10. The effector receives the above AMR.  Since the effector (the robotic arm) is not in use 
at the time, there is no need for scheduling (prioritizing) its use. As a result the effector service 
proceeds to convert the above AMR into a sequence of robotic commands (not illustrated in detail 
in this paper). Executing these commands will cause the arm to move forward a short distance.   
 Step 11 and Beyond. The agent has now completed the very first step in its plan; the attention 
service records this and, if the attention service does not force a change in what goal to pursue, 
proceeds to the next step in the plan, which will activate the grasping mechanism of the hand. 

7.  Infrastructure for Memory Management: OntoGraph  

The memory management service in OntoAgent requires support for multiple data views and flex-
ible retrieval across knowledge of different types and provenance. To respond to this need we cre-
ated OntoGraph, a knowledge base API that imposes a single interoperable metasyntactic format 
on all knowledge elements in the system; connects elements stored in different components of the 
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agent’s memory; implements efficient interaction with underlying datastores; and facilitates the 
development of ergonomic developer and knowledge engineering environments. OntoGraph ex-
tends the functionality found in industry standard database systems in order to a) present a view of 
data that is amenable for use in a graph database, b) natively support inheritance and allow 
knowledge to c) be organized dynamically along various dimensions. These three core functional-
ities are detailed below. 
 The OntoGraph API represents a graph database. The nodes in OntoGraph are frames, which are 
collections of properties with their value sets and unique identifiers. Some of the properties are 
relations, which point to other frames. This enables any data stored in OntoGraph to be viewed and 
queried as directed networks of frames. OntoGraph has built-in graph querying capabilities which 
support determining similarities and associations across elements of the agent’s memory. In partic-
ular, the OntoGraph API supports the representation of inheritance hierarchies: each frame in On-
toGraph can specify one or more frames to inherit from. Inheritance is implemented by making all 
property values from the ancestry tree locally available in each frame. OntoGraph further allows 
for a variety of inheritance-management strategies and views. For example, locally defined fillers 
override inherited ones by default, but non-default views can optionally show inherited values as 
well.  Figure 2 illustrates inheritance views. 
 

 

Figure 2: An example of inheritance views. 

OntoGraph organizes frames into spaces (see Figure 3). Each space can be used for organization or 
indexing, and their inventory and use can be defined either at the OntoAgent model level (see 
above) or in a specific application.  OntoGraph supports a variety of functionalities: e.g., frames 
can be generated in spaces, moved between spaces, and removed from spaces.  Relations can also 
cross space boundaries if desired. In addition to the above primary functionalities, the OntoGraph 
API also defines a large collection of convenience methods, such as: inverse relations: all relations 
in the graph are directed, but search and lookup can follow incoming (e.g., inverse) relations if 
specifically requested; frame consumption: one frame can fully absorb the property values of an-
other, removing the consumed frame from the graph – a useful tool when combining memory ele-
ments; ancestry lookups: detecting parents, ancestors, children, descendants, and siblings are com-
mon operations in the API; and query pipelines: search results for property values, ancestry, and 
graphing paths can be pushed through a pipeline of transformations and subqueries to produce spe-
cific results. 

@ONT.DOG
  COLOR                WHITE
  COLOR                BLACK
  COLOR                BROWN
  HAS-OBJECT-AS-PART   @ONT.FUR
  HAS-OBJECT-AS-PART   @ONT.SNOUT
  HAS-OBJECT-AS-PART   @ONT.PAW

@ONT.CHOCOLATE-LAB
  IS-A                 @ONT.DOG
  COLOR                BROWN

@ONT.CHOCOLATE-LAB
  IS-A                 @ONT.DOG   (local)
  COLOR                BROWN      (local)
  HAS-OBJECT-AS-PART   @ONT.FUR   (dog) 
  HAS-OBJECT-AS-PART   @ONT.SNOUT (dog)
  HAS-OBJECT-AS-PART   @ONT.PAW   (dog)

@ONT.CHOCOLATE-LAB
  IS-A                 @ONT.DOG   (local)
  COLOR                BROWN      (local)
  COLOR                WHITE      (dog/override)
  COLOR                BLACK      (dog/override)
  HAS-OBJECT-AS-PART   @ONT.FUR   (dog/inherit) 
  HAS-OBJECT-AS-PART   @ONT.SNOUT (dog/inherit)
  HAS-OBJECT-AS-PART   @ONT.PAW   (dog/inherit)

B. Local Definition

C. Override View (default)

D. Full Inherit View

A. Parent Definition
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Figure 3. A view of connected frames in different spaces. The agent’s ontology (ONT) knows that choco-
late Labradors are types of dogs. Its situation model (ENV) contains an instance of a chocolate Labrador, 
whom the agent recognizes as the agent of a particular running event. The running happened at an earlier 
time and is stored in the agent’s episodic memory (LTE). 

8.  OntoGraph Implementation 

OntoGraph is implemented as an API with a host of functions supporting the above core behaviors.  
While some existing knowledge base systems, e.g., SCONE (Fahlman 2014), share many high-
level functionalities with OntoGraph, we wanted the OntoGraph architecture to both natively sup-
port OntoAgent, and importantly to allow a greater flexibility of data storage: having an API that 
wraps various implementations of industry-standard data storage options does this, while offload-
ing the heavy work of low-level data management to database systems that are better suited to it. 
 An OntoGraph implementation, called a driver, is a wrapper around an existing datastore (such 
as a relation database, graph database, NOSQL database, etc.) that conforms to OntoGraph’s API. 
At the time of writing, such wrappers have been developed for SQLite (https://sqlite.org/in-
dex.html) and PostgreSQL (https://www.postgresql.org), with additional ones to be added on an 
as-needed basis to provide the best fit for a specific application. The API functions in a standard 
manner irrespective of the underlying datastore. This allows developers to effortlessly configure 
different agent system components to use different databases.  
 A critical element addressed in the implementation of OntoGraph was usability.  In contrast to 
other knowledge bases – for example, SCONE, which is written in LISP, or OWL 
(https://www.w3.org/2001/sw/wiki/OWL), a semantic web language – the OntoGraph API is writ-
ten in Python in such a way that using it would feel like using common Python builtins. For exam-
ple, the OntoGraph Frame object has near-identical behavior to Python's default dict object, though 
it adds automatic inheritance, relation crawling, and data persistence, among other operations. This 
emphasis on usability promises faster ramp-up times for both developers and knowledge acquirers. 
Implementation in Python also allowed for a variety of other benefits: property values (frame slot 
fillers) can be nearly any data type handled by any modern programming language, and they can, 
importantly, include executable code as well. With its object-oriented approach, OntoGraph allows 
for individual frames to extend the Frame class, thus giving knowledge elements custom program-
matic capabilities.   
 To enhance the efficiency of domain specialists and knowledge acquirers, OntoGraph has a built-
in extension called OntoLang. OntoLang is a custom language used for acquiring and editing 
knowledge as well as for writing knowledge base queries. OntoLang is essentially a reskinning of 

@ONT.DOG
  …

@ONT.CHOCOLATE-LAB
  …

@ENV.CHOCOLATE-LAB.1
  HAS-NAME    “Buster”
  …

@LTE.RUN.1
  …

IS-A

INSTANCE-OF AGENT

ONT ENV LTE
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OntoGraph’s API functionality, and its expressions are, in fact, parsed into those same API actions. 
What it contributes is a visualization for simplifying the knowledge acquisition task, and is de-
signed for use by knowledge engineers who are not programmers.  
 OntoGraph is an evolving system, with a variety of features planned to improve its functionality, 
including the expansion of contextual markers, the support of additional custom data types, the 
expansion of functional elements beyond procedural attachments, and more.  We plan to release a 
version of OntoGraph for the use by the community in the near future. 

9.  Discussion 

Our work shares goals and issues with many other efforts. Systems and architectures such as DI-
ARC (Scheutz et al., 2007), Icarus (Choi and Langley, 2018), Rosie (Mohan and Laird, 2014), 
Arcadia (Bridewell and Bello, 2016) and many others all offer salient points of comparison and 
have, to greater or smaller degree, addressed integration and infrastructure issues. Fundamental 
comparison of these and other systems is not feasible in this space. We will briefly review several 
concerns relating to integration of perception, reasoning and action functionalities raised in 
Scheutz, Harris, and Schermerhorn’s (SHS, 2013) discussion of integrating cognitive and robotic 
architectures.  
 SHS correctly criticize approaches integrating existing robotic architectures into cognitive archi-
tectures for treating time in abstract agent operation cycles instead of the real-world time intervals 
with which robotic architectures operate. The above example of OntoAgent performance was in-
deed presented without a reference to real time, though it notes the presence of effector availability 
check in Step 10. The integration approach described in this paper facilitates the timing of opera-
tions on the basis of availability of resources (such as effectors). Since the attention service of 
OntoAgent operates over both external (percepts) and internal (thoughts) inputs, it facilitates asyn-
chronous operation of services and overcomes the rigidity of the traditional “sense-think-act” cy-
cles that SHS correctly criticize as stifling for a comprehensive agent system. SHS additionally 
point out that robotic systems may do things of which cognitive systems might not be aware. As 
we already mentioned, the OntoAgent approach to integration licenses a direct connection between 
perception and action (though this will require adding a rule set for connecting raw input signals 
with particular effector signals), which will model the “subconscious” behavior that SHS describe. 
Finally, SHS point out that robotic systems are not well equipped to deal with goals. In the On-
toAgent approach, the perception and action components, indeed, are not expected to relate to “con-
scious” goal-oriented processing, but the latter is connected to the outputs of perception and inputs 
of action components through interpreters and generators, offering a clear division of labor. The 
development of interpreters and generators is a central part of work in OntoAgent. One of the di-
rections of our future work is developing parameter sets for assessing how difficult it would be to 
develop an interpreter for a particular candidate perception system for OntoAgent and a generator 
for a particular action system. 
 To sum up, in Figure 4 we present the content-centric view of the architecture that is “native” to 
OntoAgent. Our intent is to juxtapose it against the process-centric view in Figure 1. Content-cen-
tric modeling concentrates on indexing, integrating and managing knowledge elements that are 
produced by system services; supplying knowledge elements to these services that assure their nor-
mal operation; and generating new knowledge for future use by these services. The organization of 
knowledge in spaces helps with indexing and enhances efficiency. In this paper we discussed only 
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the content-oriented 
spaces in the On-
toAgent environment. 
The latter also uses a 
number of infrastruc-
ture-oriented spaces 
that help with a variety 
of “bookkeeping” tasks 
behind the scenes. On-
toAgent also allows 
system developers to 
define and seamlessly 
incorporate into the in-
frastructure new spaces 
as needed.  
 This paper does not de-
scribe the content of 
OntoAgent’s long-term 
semantic memory in 
any detail. The two 

core static knowledge resources in OntoAgent – the ontology and the ontological semantic lexicon 
– are most comprehensively described in Nirenburg and Raskin (2004), McShane, Nirenburg and 
Beale (2005), and McShane and Nirenburg (in press). The particulars of agent models are described 
in McShane (2014). We will describe the opticon and the management of heuristic rules in future 
reports. 
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