
Advances in Cognitive Systems X (20XX) 1–6 Submitted X/20XX; published X/20XX

© 2020 Cognitive Systems Foundation. All rights reserved.

Recognizing the Goals of Uninspectable Agents

Irina Rabkina IRABKINA@U.NORTHWESTERN.EDU
Northwestern University, Evanston, IL 60208 USA

Pavan Kantharaju PK398@DREXEL.EDU

Drexel University, Philadelphia, PA 19104 USA

Mark Roberts MARK.ROBERTS@NRL.NAVY.MIL

Naval Research Laboratory, Washington, DC 20375 USA

Jason Wilson JRW@NORTHWESTERN.EDU
Kenneth Forbus FORBUS@NORTHWESTERN.EDU

Northwestern University, Evanston, IL 60208 USA

Laura M. Hiatt LAURA.HIATT@NRL.NAVY.MIL

Naval Research Laboratory, Washington, DC 20375 USA

Abstract
Effective interaction between agents requires reasoning about other agents’ internal states. In some
situations, such as in the case of multiagent systems with a shared policy, agents may have full
knowledge of each other’s knowledge, preferences, and goals. When interacting with humans or
independent artificial agents, however, such direct inspection is not available. Instead, agents must
model others’ internal states through observation. In humans, such reasoning is called theory of
mind (ToM). It has been argued that ToM reasoning can improve performance for artificial agents
in team scenarios, as well. Here, we compare the performance of a model of ToM with that of a
state-of-the-art goal recognition system on goal recognition tasks of increasingly uninspectable
agents. We show that ToM reasoning is beneficial for agents when inspection is unavailable.

1. Introduction

Successfully collaborating with other agents requires knowing their objective(s). Sometimes, this
information is readily available, such as when multiagent systems share a policy (e.g., Velagapudi
et al., 2007), or when agents are capable of communication (e.g., Morgan & Pollack, 1990).
However, when communication about internal states is imperfect or unavailable, agents must infer
their compatriots’ objectives by observing external actions. This task is referred to, among other
terms, as goal recognition (E-Martin, R-Moreno & Smith, 2015). The motivation of our work is
creating an online software assistant that recognizes the goal(s) of another agent and recommends
actions or provides information to assist the agent in completing its goals more effectively.

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

2

 While other goal recognition systems exist, state-of-the-art goal recognition systems make strong
assumptions about the kind of information that is available during goal recognition. They typically
receive an observation trace of an agent’s activities as a sequence of action-state pairs, including
the action’s parameters, and reconcile these actions with a set of known or learned possible plans
to infer the plan that the agent is performing, and thereby its top-level goal (Ramírez & Geffner,
2009). Alternatively, hierarchical plan recognition (Geib & Goldman, 2011; Holler et al., 2018)
reconciles the observation trace using decomposition methods that aggregate the primitive actions
into high-level tasks.
 Since these recognition approaches access the same information about the observed agent’s
actions that the agent receives (i.e., the recognition algorithm observes the action-state pairs sent to
the agent, including all parameters), the observation trace actually contains information about the
internal state of the observed agent that cannot be gleaned from external observations alone. This
type of internal information is not available when the agent is, for example, a human. Instead,
observations of humans and other unknown agents consist only of external observation information,
which is both noisy (i.e., imperfect) and incomplete (i.e., lacking internal information, such as
action parameters).
 Although prior research has examined the impact of noisy observations on goal recognition
(Sohrabi et al., 2016; Vattam & Aha, 2015), few have examined the benefit of internal knowledge
for recognition vs. the less informative value provided by external information. We view this as a
major limitation of prior work, given that such tight and synchronous communication cannot always
be assumed for multi-agent teams, especially those involving humans.
 Theory of Mind (ToM) reasoning uses only external information to infer the mental (i.e., internal)
states of another agent, including its goals, and has been studied extensively in humans (e.g.,
Premack & Woodruff, 1978). Computational models of ToM (e.g., Baker et al., 2011; Hiatt &
Trafton, 2010; Rabkina et al., 2017) have shown promise in modeling human judgments, but have
not yet been applied to complex goal recognition tasks.
 To address this gap, we examine the extent to which incorporating internal knowledge, in
addition to external knowledge, impacts goal recognition for two models: (1) a computational ToM
model called Analogical ToM (AToM) by Rabkina et al. (2017) and (2) the state-of-the-art goal
recognition system PANDA-REC by Holler et al. (2018). We demonstrate AToM’s goal
recognition capabilities on a widely accepted ToM task called stag-hunt (Skyrms, 2004). We then
extend to a series of more complex tasks in the open-world domain of Minecraft, at three levels of
information: (1) an observation trace with full internal information, directly from the observed
agent’s planner; (2) an observation trace with partial internal information, from the agent’s
execution of its plans; and (3) an observation trace with external knowledge only, adapted from the
agent’s plan execution. When both systems have perfect internal knowledge, AToM is slightly
worse than PANDA-REC at recognizing an agent’s goals. However, as knowledge is reduced,
PANDA-REC performance drops while AToM maintains accuracy.
 The contributions of this paper include: (1) establishing AToM as a validated model for goal
recognition by demonstrating that it performs comparably to a Bayesian model of ToM when
recognizing goals on a standard AI ToM task (2) developing a new benchmark for goal recognition
tasks based on Minecraft; (3) demonstrating that removing internal knowledge causes challenges

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

for goal recognition approaches that do not have ToM capabilities, but not AToM, which continues
to perform near ceiling.

2. Analogical Theory of Mind

The Analogical Theory of Mind (AToM; Rabkina et al., 2017) is a computational cognitive model
of ToM reasoning and development. Its main claim is that ToM reasoning occurs via analogical
processes, which have been well-established as a central component of human higher order
cognition (see Gentner & Maravilla, 2018). AToM has successfully modeled children’s
improvement on ToM reasoning from hearing structured stories (Rabkina et al., 2017) and from
learning a new grammatical construction (Rabkina et al., 2018). Crucially, the model architecture
was not modified between these experiments—only the training data (i.e., the examples used to
teach the children) differed. Because AToM has shown generality in modeling human ToM, here
we propose using it for reasoning about artificial agents.
 At a high level, AToM learns about mental states, such as goals or beliefs, through observation.
It uses analogical generalization to build models from observed scenarios, which are applied during
reasoning through analogical retrieval and inference. More specifically, during training, AToM
takes in observations in the form of structured predicate calculus cases one at a time and compares
each to its memory contents via analogical retrieval (Forbus et al., 1995). If a substantially similar
case1 is retrieved, a generalization (McLure et al., 2015) is formed. Otherwise, the case is added to
memory as an individual example. During testing, AToM again takes in observations as predicate
calculus cases and retrieves the most structurally similar learned case or generalization. The
retrieved case is used for further reasoning, such as for answering questions or making predictions.
Implementation details can be found in section 5.2 below.
 In the next section, we demonstrate AToM’s performance in the stag-hunt game (Skyrms, 2004),
a ToM task that lies at the intersection of cognitive modeling of ToM reasoning and goal
recognition. Then, we test AToM on a more complex goal recognition task.

3. AToM on Stag-hunt

Stag-hunt (Skyrms, 2004) is a prisoner’s dilemma-style game that has recently been used to test
ToM models’ ability to recognize cooperation between agents (e.g., Shum et al., 2019; Xiong et
al., 2018). During gameplay, players can choose to pursue a high reward (i.e., a stag) cooperatively
or a low reward (i.e., a hare) individually. ToM models are then tasked with recognizing whether
other agents intend to cooperate. Two formulations of this task exist: (1) the ToM model is a player
in the game (e.g., Microsoft’s Malmo Collaborative AI Challenge2) and (2) the ToM model is an
observer, making judgments about other players (e.g., Shum et al., 2019). For direct comparison
with a different computational cognitive model of ToM (i.e., Bayesian ToM, BToM; Shum et al.,
2019), we take the latter formulation.

The stag-hunt task is similar to goal recognition, to the extent that observed agents have an
underlying goal to cooperate (or not). However, the observations typically consist only of
movements on a small grid, rather than more complex actions. Furthermore, the goals in typical
goal recognition tasks are more complex.

1 A combination of analogical similarity and feedback (either from the experimenter or via traditional

supervised learning) is used to determine sufficiency.
2 https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge/

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

4

3.1 Stag-hunt Task Description

We use the stag-hunt dataset described by Shum et al. (2019). Recall that the goal of this task is to
recognize cooperation between observed agents. Agents can cooperate to catch a high-value target
(i.e., a stag) or work individually to catch a low-value target (i.e., a hare).

The dataset from Shum et al. (2019) consists of nine examples of the stag-hunt game, each on a
partially traversable 7x5 grid map (Figure 1). Each example contains three hunters, two stags, and
two hares. Stags can be captured via cooperation by two or three hunters for a high number of
points; hares may be captured by a single hunter for a lower number of points. At each timestep,
each hunter can move one square up, down, left, or right. Stags can also move one square to escape
capture. Three timesteps are simulated per example. Predictions about cooperation goals are made
after each timestep.

3.2 Stag-hunt Experiment and Results

AToM’s accuracy in recognizing intended cooperation between agents in the stag-hunt game is
shown in in Figure 23. Cooperation predictions, for each pair of hunters, were made at the end of
each timestep. We also report the accuracy of BToM and humans (both from Shum et al., 2019) for
comparison. BToM made probabilistic inferences over a model of Composable Team Hierarchies
(see Shum et al., 2019), while AToM learned to identify cooperation from observations (see
Rabkina & Forbus, 2019). Specifically, AToM was trained and tested using structured
representations of the stag-hunt scenes, using leave-one-out cross validation.

Note that at all timesteps, the two models and humans have no statistically significant differences
(all p>0.05). This suggests that both AToM and BToM successfully model human judgments on
this task and are competitive with each other in terms of accuracy. Thus, we have demonstrated
that AToM can perform goal recognition in a ToM-specific domain. Next, we expand to a more
complex goal recognition task.

4. Agent Simulation in Minecraft

In addition to the stag-hunt task, we define a problem space in the open-world computer game
Minecraft4. Minecraft presents a challenge for both AI planning and goal recognition because the

3 Rabkina & Forbus (2019) provide a full discussion of the stag-hunt experiments.
4 See Roberts et al. (2016) for a description of the game and the supporting framework we leverage, and

Johnson et al. (2016) for information on Minecraft’s Malmo platform for AI experimentation.

Figure 1. An example stag-hunt scenario. Agents A and C have cooperated to capture a stag, while

agent B has acted alone to capture a hare. Figure adapted from Shum et al. (2019).

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

set of possible plans to generate or recognize is open ended. In our task, an agent, Alex, is placed
in a flat Minecraft world with a small farm in the middle and items randomly distributed around
the perimeter. These include crop seeds, bone meal, chickens, cows, buckets of milk, eggs, and
sugar. These items can be used to craft (i.e., make or obtain) food items, which provide Alex with
varying numbers of food points. After a period of exploring, Alex chooses a goal to craft one food
item with the highest possible food points, given the items it has observed. The Top-Level Tasks
column of Table 1 is the set of possible goals that Alex can accomplish. Point values from
Minecraft’s internal food points system, which are used to weight goals, are also shown.

Many of Minecraft's crafting tasks have natural hierarchical structures. For example, crafting
bread requires three wheat, and wheat is grown and harvested using wheat seeds. Growth can
additionally be sped up using an item called bone meal. Due to these natural hierarchies, we define
Alex’s planning process using Hierarchical Task Networks.

4.1 Hierarchical Task Networks

Hierarchical Task Networks (HTNs; Erol, Hendler, & Nau, 1994) define a hierarchical planning
framework that describes how to decompose complex tasks into simpler tasks until a sequence of
actions that is executable in a given domain is found. Specifically, HTNs are made up of complex
and primitive tasks. Both types of tasks are defined as first order terms with objects and variables
from the domain as parameters. For example, GrowAndHarvest(potato) in Figure 3 is a task with
parameter potato.

Complex tasks are activities that must be refined in order to be executed, while primitive tasks
are basic objectives. We denote the set of complex tasks as 𝐶 and primitive tasks as 𝐴. Figure 3
provides an example of a decomposition of the complex task (in purple, italicized) ObtainPotato
into primitive tasks (in blue, bold) for Minecraft. ObtainPotato is refined into GrowAndHarvest,
which is further decomposed into GrowWithBoneMeal, Harvest, and Gather. Finally,
GrowWithBoneMeal is decomposed into a sequence of six primitive tasks.

Complex tasks are decomposed with a set of methods 𝑀. A method is defined as (𝑛𝑎𝑚𝑒, 𝑐, prec,
tn), where 𝑛𝑎𝑚𝑒 is the name of the method, 𝑐 ∈ 𝐶 is a complex task, prec is a set of preconditions,
and tn is a task network. Task networks are defined as (𝑇, 𝛼, ≺), where 𝑇 is a set of task identifiers,

Figure 2. A comparison of AToM, BToM, and human accuracy on cooperation recognition in stag-

hunt, per time step. Figure adapted from Rabkina & Forbus (2019).

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

6

𝛼 ∶ 𝑇 → 𝐶 ∪ 𝐴 is a function that converts a task identifier into a task name, and ≺ ⊆ 𝑇 × 𝑇 defines
a partial ordering over tasks in 𝑇. Below are examples of the primitive task Gather and the method
m-GrowAndHarvest that aligns with the decomposition in Figure 3.

Primitive Task Gather(?crop)
 :preconditions ()
 :add ((inInventory ?crop))
 :delete ()

Method m-GrowAndHarvest(?loc)
 :task (GrowAndHarvest)
 :preconditions ()
 :task-network ({t1, t2, t3},
 {t1GrowWithBonemeal,
 t2Harvest,
 t3Gather},
 {t1 > t2 > t3})

 Variables ?crop and ?loc represent some crop to harvest and a location in the Minecraft world.
The method m-GrowAndHarvest decomposes the complex task GrowAndHarvest into the complex
task GrowWithBoneMeal and primitive tasks Harvest and Gather. Once the primitive tasks for
accomplishing GrowWithBoneMeal and Harvest are executed and transition the state of the world,
Gather further transitions the state by adding the crop to inventory.
 Primitive tasks (i.e., actions) effect the state of the world, they are augmented with the tuple
(prec, add, delete). A state is a set of first order predicates (Figure 4, Top). Prec is a set of
preconditions that must be met in the state for the task to be applicable. Add and delete are sets of
predicates that are added and deleted from the state, respectively, during task execution.
 An HTN planning problem is a tuple (𝐷, 𝑠 , 𝑡𝑛), where 𝐷 = (𝐴, 𝐶, 𝑀) is an HTN planning
model, 𝑠0 is an initial state, and 𝑡𝑛 is an initial task network. In this work, we assume that a
single task 𝑋 is being pursued at a given time. Therefore, 𝑡𝑛 = ({𝑡}, {𝑡 → 𝑋}, ∅). A solution to
the HTN planning problem is a plan 𝑡 … 𝑡 extracted from a task network that satisfies 𝑡𝑛 . Figure
4 (top) provides an example of an HTN planning problem and its corresponding solution for the
task ObtainPotato (bottom).

4.2 HTN Planning and Execution in Minecraft

We now describe the Minecraft HTN planning model and the application of HTN planning to
Minecraft. Table 1 summarizes the task categories. Complex tasks are either top-level tasks or

Table 1. Minecraft Model for Planning with SHOP2. In the model definition, Top-Level and
Helper Tasks make up the set of complex tasks 𝐶, while 𝐴 is the set of Primitive Tasks.

Top-Level Tasks
(Food Point Values)

Helper Task
Categories

Primitive Task
Categories

Obtain Chicken (2) Crafting Items Movement

Obtain Beef (3) Gathering Items Look

Obtain Pumpkin Pie (8) Growing Crops Item Selection

Obtain Cake (14) Using Inventory Item Item Crafting

Obtain Carrot (3) Item Gathering

Obtain Potato (1)

Obtain Bread (5)

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

helper tasks. Top-level tasks are objectives that the agent may choose to pursue (such as making
pumpkin pie and cake). Helper tasks complete top-level tasks and include: crafting items, gathering
items, growing crops, and inventory usage. Primitive tasks include: movement, looking, item
selection, item crafting, and item gathering.
 We use the HTN planner JSHOP2 (Nau et al., 2003; Ilghami & Nau, 2003) along with the above
model to generate plans for an agent to execute in the Minecraft environment. The Minecraft states
used by SHOP2 contain information such as the inventory of the agent, the entities and locations it
has observed, and information about the agent itself, such as its current location. As described
above, these facts are modified by the primitive tasks performed by the agent. For example, a
gathering primitive task will add items to the agent’s inventory. However, these tasks only change
the SHOP2 state; they do not directly change the Minecraft game.
 To perform these primitive tasks directly in the Minecraft game, plans generated by the SHOP2
planner are used by an agent to construct executable plans in Minecraft. This executable plan is
then run in the Minecraft environment to completion. If items required for crafting-related tasks are
observed in the environment, but are not in the agent’s inventory, the agent constructs a plan to
retrieve them before attempting the task. Once all items have been retrieved, the agent then replans
to get a new plan for crafting the item. We only replan after all items are retrieved to prevent the
agent from constantly replanning and not completing any objectives. Replanning makes sense here
because the agent may observe items for more important objectives while retrieving items for
crafting. In this case, the agent should execute the more important objective.

Figure 4. Example of Minecraft SHOP2 planning problem (Top) and solution (Bottom).

Figure 3. Decomposition of the ObtainPotato task. Complex tasks are purple, primitive tasks are blue.

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

8

5. Goal Recognition

We next turn to describing how a different agent might recognize Alex’s goal in order to infer
which food item Alex is working to craft. We formally define the goal recognition (GR) problem
as (𝐷 , 𝑠 , �⃗�, 𝐺), where 𝐷 is a model for the GR problem, 𝑠 is some initial state of the world,
�⃗� is a sequence of observed actions, and 𝐺 is a set of goals to recognize. A solution GR is a goal
𝑔 ∈ 𝐺 being pursued via the execution of �⃗�. With respect to our Minecraft domain, 𝐺 is the set of
Top-Level Tasks in Table 1 and 𝑔 is one of those tasks, such as ObtainChicken.

We compare the goal recognition accuracy of a model of human ToM reasoning (AToM; Rabkina
et al., 2017) with the performance of a goal recognition system (Holler et al., 2018) to show the
strengths and weaknesses of each when reasoning about other agents. We describe these two
systems next.

5.1 Goal Recognition as Planning

Several prior approaches have viewed the problem of GR as a planning task, where techniques from
classical planning (Ramirez & Geffner, 2009; Ramirez & Gefner, 2010) and HTN planning (Holler
et al., 2018) have been used to solve GR. At a high level, this is done by converting the GR problem
into a planning problem and solving it with a planner. A solution to the planning problem is a
solution to the GR problem.

Using planning for GR also allows us to leverage state-of-the-art planning techniques. Our study
utilizes the Planning and Acting in a Network Decomposition Architecture (PANDA) planning
algorithm5 for GR. PANDA is a hybrid planning algorithm that combines HTN planning concepts
with partial-order causal link planning. We use PANDA for GR over SHOP2 in Minecraft. PANDA
has been previously used for GR (Holler et al., 2018) and the code for it was readily available. We
refer to goal recognition using PANDA as PANDA-REC.

Figure 5 provides a diagram of PANDA-REC. PANDA-REC takes a GR problem
(D , s , o⃗, G), where 𝐷 is an HTN model and transforms the problem into an HTN planning
problem (𝐷, 𝑠 , 𝑡𝑛). Here, 𝐷 is a modification of the HTN model 𝐷 that contains new methods
and tasks that are pertinent to �⃗� and G, and 𝑡𝑛 is an initial task network. This converted problem
is then passed into PANDA and the recognized goal 𝑔 ∈ G is extracted from its output.

The problem transformation process works as follows. First, a new complex task 𝑡𝐼 is constructed
and added to the initial task network 𝑡𝑛 . This new task is similar to the TopLevelAct in Kautz and
Allen (1986) and represents an abstract task that is more general than any top-level task in
Minecraft. Next, a set of new methods are constructed that decompose 𝑡𝐼 into each of the goals
𝑔 ∈ G .This implies that finding a plan for 𝑡𝑛 would require at least one of the goals in G, therefore

5 https://www.uni-ulm.de/en/in/ki/research/software/panda

Figure 5. Diagram of goal recognition via planning PANDA-REC.

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

providing us the recognized goal(s). Finally, a new set of methods and tasks are added to 𝐷 to
enforce the restriction that any HTN solution found for 𝑡𝑛 must start with �⃗�.

5.2 Goal Recognition as Theory of Mind

We next describe how AToM can be applied to the task of goal recognition. Recall that the central
claim of AToM is that ToM occurs through analogical processes. It is implemented using the
analogy models in the Companion cognitive architecture (Forbus & Hinrichs, 2017). AToM learns
a through experience and does not require an HTN to recognize goals.

We treat goal recognition as a classification problem for AToM. Using the Sequential Analogical
Generalization Engine (SAGE; McLure et al., 2015), a model (called a generalization pool) is
learned for every potential goal type from previously observed traces. A trace can be of arbitrary
form, including the output of the SHOP2 planner, a report of the agent’s actual actions, or sensor-
like observations of those actions. It is passed to AToM as a predicate calculus case.

During training, cases of different goals, 𝑔 ∈ G, are passed to SAGE one at a time. The most
similar previously observed case (if one exists) is retrieved via an analogical retrieval algorithm
(MAC/FAC; Forbus et al., 1995). We refer readers to the original paper for specifics of the retrieval
algorithm. Importantly, the retrieval algorithm computes a structural similarity score between the
original case, 𝑜, and the retrieved case, 𝑟. At a high level, this score represents the amount and
depth of overlapping structure between the two cases (see Forbus et al., 2016 for algorithm and
implementation details). If the structural similarity score is above a preset threshold (the default
value of 0.8 is used in the present work), the two cases are merged into a generalization, which is
added to the model that corresponds to the current case’s goal (see McLure et al., 2015).If the
similarity score between 𝑜 and 𝑟 is not above the threshold needed to form a generalization, 𝑜 is
added to the model as an individual example.

Generalizations contain frequentist probabilities of the facts contained in their underlying cases.
For example, if a generalization derives from a case with the facts {(movesTo cow123),
(swingsAt cow123)} and another with the facts {(movesTo cow456), (throws cow456)}, the
generalization would contain the fact that a cow is being moved to with a probability of 1.0 and
that it is being swung at and thrown each with probability 0.5. As more cases are merged with the
generalization, the probabilities are updated. Eventually, facts with probabilities below a preset
threshold (the default value of 0.2 is used in the present experiments) fall out of the generalization.
Thus, a generalization can be treated as a schema for a given type of case.

The same similarity-based retrieval process is also used during testing. However, retrieval occurs
across all learned models (i.e., all learned goals, 𝐺). The goal, 𝑔, corresponding to the model of the
retrieved case, is returned.

6. Experiments and Results

The objective of our experiments is to compare different ways to infer an agent’s goals given
different types of observed sequences of actions, with varying degree of agent inspectability. To
that end, we compare the performance of AToM with PANDA-REC on the Minecraft GR task with
these different levels data: agent planner outputs (i.e., full internal knowledge), agent execution
traces (i.e., partial internal knowledge), and external observation traces (i.e., external knowledge
only). We also test whether AToM and PANDA-REC can transfer goal recognition from a partial
internal knowledge model to external observations.

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

10

Two random baselines were also considered for each experiment. The first generated its
interpretation of the agent’s goal by sampling uniformly across goals that appear in the dataset. The
second was biased, with each potential goal weighted by its prevalence in the dataset. All results
are reported in Table 2. Where available, standard deviations are reported in parentheses (Note that
because PANDA’s model is pre-determined and deterministic, no standards of deviation are
available. Similarly, AToM learns a single model in the Train Exec/Test Ext. condition, so no
standard of deviation is computed.). The highest accuracy for each test is bolded.

For our experimental data, we constructed a dataset from Minecraft play session logs. A single
play session corresponds to an agent being placed on a map and executing top-level tasks from
Table 1 for a predefined amount of time (in this case, 180 seconds). A log, consisting of all planner
output and executed actions, is generated for each play session. Planning and execution of multiple
top-level tasks are included in each log. For the experiments described in this paper, we extracted
a random subset of 100 plan traces (i.e., planner outputs) and 100 execution traces (i.e., sequences
of executed actions) from 50 play session logs (10 pseudo-randomly generated maps, 5 times
each.). Note that the execution trace dataset had one fewer possible goal, as obtain_carrot did
not appear in the randomly extracted dataset.

6.1 How well do PANDA and AToM perform on plan traces (full internal information)?

The first experiment focuses on recognition of goals when the list of actions slated for execution
by Alex is directly observable. We note that these plans are direct internal information about an
agent, as plans are constructed by the agent internally, converted into actions that can be executed,
and then executed in an environment. In this experiment, PANDA-REC was also provided the HTN
model used by Alex to develop its plan while AToM learned from SHOP2 outputs via 10-fold
cross-validation (i.e., 10 folds, each consisting of 90 plan traces for training and 10 plan traces for
testing).

PANDA-REC was 100% accurate in recognizing goals based on the planned sequence of Alex’s
actions. This fit our intuition, as PANDA-REC is also given Alex’s model of the domain and
actions. AToM performed significantly worse, with 92% accuracy (one sample non-parametric
median test; p<.05). Both systems performed substantially better than the uniform and biased
baselines. These results can be found in Table 2, row 1 (Plan Traces).

6.2 How well do PANDA and AToM perform on execution traces (partial internal
information)?

Planner traces provide perfect information about the plans being executed. However, the execution
of a plan is rarely perfect, and may not correspond exactly to a plan. In this experiment, PANDA-
REC and AToM were tested on goal recognition using the agent’s report of its executed actions.
We note that some of these actions (i.e., move and look at) contain internal information about the
agent, such as the specific object that it is moving toward. PANDA-REC was also provided an
HTN model corresponding to the executed actions, while AToM once again learned the model
through training. As before, AToM was trained via 10-fold cross-validation.

PANDA-REC’s accuracy dropped substantially when working from Alex’s actions but remained
above both alternate baselines. It performed at 63% accuracy. AToM’s performance did not change
significantly from Alex’s planned sequence of action, maintaining 90% accuracy. A one sample
non-parametric median test showed that AToM performed significantly better than PANDA-REC
(p <.05) in this condition. These results can be found in Table 2, row 2 (Execution Traces).

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

6.3 How sensitive are PANDA and AToM to external knowledge traces?

In many multi-agent scenarios, communication is limited or impossible. Instead, agents must reason
based only on their own observations of compatriots’ behavior without internal state. In this
experiment, we removed information about the parameters of actions. Thus, traces consisted only
of what could be observed externally (e.g., that the agent is moving in a certain direction) and
lacked internal state (e.g., where the agent was specifically hoping to go to).
 We tested PANDA-REC and AToM’s sensitivity to external knowledge traces under two
conditions: (1) with a model based on Alex’s actual executed actions and (2) with a model based
only on external observations of those actions. For (1), PANDA-REC was given the HTN model
used in the previous experiment. AToM learned a model using the whole execution trace dataset.
For (2), PANDA was given a modified version of the HTN model, which did not contain internal
information (i.e., information that would not be available to an external observer—such as what
object Alex is moving toward—was removed). As in previous experiments, AToM was trained
using 10-fold cross-validation.
 When tested on the external knowledge-only traces using the full HTN model of the agent’s
executed actions, PANDA-REC’s performance dipped further to 30% accuracy (Table 2, row 3,
Train Exec/Test Ext). This drop in accuracy was a result of recognition failing for several of the
goals, particularly ObtainChicken and ObtainBeef. The methods for ObtainChicken and
ObtainBeef in the HTN model were too specific as they require moving and looking at specific
types of entities (i.e., chicken or cow). However, the move and look actions in the external
knowledge traces were applied to general locations, as an external observer would not know which
entity, if any, the agent was moving toward. Thus, recognition failed because the HTN model was
not general enough to handle less information. However, when tested using the modified model,
which was more general, it performed as well as it had when trained and tested on execution traces
(i.e., 63% accuracy; Table 2, row 3, Train Ext/Test Ext). AToM performed equivalently across
tasks: 90% accuracy when trained on execution traces and 88% accuracy when trained on external
knowledge-only traces. This was significantly better than PANDA-REC (p<0.05; single sample
non-parametric t-test) in both conditions.

Table 2. Results for Goal Recognition Experiments

 PANDA-REC AToM Uniform Baseline Biased Baseline

Plan Traces 1.0 0.92 (0.075) 0.14 0.226

Execution Traces 0.63 0.90 (0.077) 0.167 0.237

Train Exec. / Test
Ext.

0.30 0.90 (---) 0.167 0.237

Train & Test Ext. 0.63 0.88 (0.098) 0.167 0.237

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

12

7. Discussion and Future Work

For these Minecraft recognition tests, AToM outperformed PANDA-REC on goal recognition
conditions when given partial internal information or external information only. This is a hallmark
of human ToM reasoning, which AToM models. Thus, our results suggest that ToM reasoning via
AToM can help agents reason about others.

The chief claim of AToM as a cognitive model is that ToM reasoning and development occur
via analogical processes. Here, those same processes allow AToM to robustly reason about the
internal states of agents, without direct knowledge of those states. Specifically, analogy allows
AToM to make inferences based on its previous observations. For example, if it has learned that
agents walk up to cows before slaughtering them (e.g., from agent action traces), it can infer that
the object the agent was walking toward before slaughtering it (e.g., in an anonymized agent action
trace) was also a cow. Furthermore, analogy’s focus on structure makes retrieval with complete
object uncertainty possible. That is, if all objects were removed from a trace, AToM would guess
that throwing something at the ground and later harvesting something else is a planting task—
perhaps mistaking ObtainPotato for ObtainCarrot, but not ObtainBeef. It remains to be seen
whether other ToM models can do similar reasoning.

From a practical standpoint, one disadvantage of AToM, as compared to PANDA-REC, is its
need to be trained—Recall that AToM was trained via 10-fold cross validation on datasets of 100
total traces in the present experiments. When recognizing from planner output, PANDA-REC was
able to use the planner. While the model did need to be modified further for the other conditions,
training data was never necessary. On the other hand, PANDA-REC has the disadvantage of
requiring a hand-crafted model.

Interestingly, the generalizations learned by AToM were often similar to the individual plans in
PANDA-REC’s model. This suggests that the models used by PANDA-REC, when converted to
cases of a format similar to observation trace outputs, may be sufficient to populate AToM’s case
library. That is, explicit training may not be necessary. Alternatively, the AToM model might
provide insights into learning, rather than hand-crafting, the PANDA model. We will explore these
possibilities in future work.

More generally, we would like to give agents the ability to not only recognize compatriots’ goals,
but also to change their own behavior accordingly. This requires online goal recognition that is
accurate while reasoning from partial data (i.e., before the compatriot finishes its task). PANDA-
REC can be configured to make a recognition decision prior to seeing a complete plan trace (Holler
et al., 2018). However, the computations for this can become too slow for online recognition. On
the other hand, analogical retrieval allows AToM to be relatively fast. It remains to be seen whether
AToM can maintain accuracy with partial traces. It is likely that other components of ToM
reasoning (e.g., about knowledge and desire states) will need to be integrated to increase robustness
of AToM’s predictions from partial traces. We will explore applications of PANDA-REC and
AToM to online goal recognition in future work.

8. Related Work

Goal Recognition is the problem of inferring the top-level goal of a partial plan executed by an
agent (E-Martin, R-Moreno, & Smith, 2015) and has been extensively applied to games. For
example, Gold (2010) uses an Input-Output Hidden Markov Models (Bengio & Fransconi, 1994)
to recognize player goals from low-level actions in a top-down action adventure game. Ha et al.
(2011) uses a Markov Logic Network (Richardson & Domingos, 2006) to recognize goals in the

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

educational game Crystal Island. Min et al. (2014) and Min et al. (2016) use deep learning
techniques (i.e., stacked denoising autoencoders, Vincent et al., 2010; and Long Short-Term
Memory, Hochreiter and Schmidhuber 1997) to also recognize goals in Crystal Island. In contrast,
we apply goal recognition to Minecraft. Goals in Crystal Island are tied to the narrative. However,
Minecraft does not have a narrative and has an undefined number of possible goals.
 Plan recognition (Schmidt, Sridharan, & Goodson, 1978), the sibling problem to goal
recognition, entails finding the set of plans and goals an agent is believed to be pursuing given some
observed sequence of actions. One way to view plan recognition is presented in the seminal
theoretical work by Kautz and Allen (1986). In particular, they viewed plan recognition as a form
of McCarthy’s circumscription (1980) and represented the plan library in the form of a plan
hierarchy/graph. Other work viewed plan recognition as a form of parsing using a formal grammar
that defines a set of possible plans that can be executed by an agent. Such grammars include
Context-Free Grammars (CFGs; Villain, 1990), Probabilistic Context-Free Grammars (Pynadath
& Wellman, 2000), plan tree grammars (Geib & Goldman, 2009), Plan Frontier Fragment
Grammars (Geib, Maraist, & Goldman, 2008; Geib & Goldman, 2010), and Combinatory
Categorial Grammars (Geib, 2009; Geib & Goldman, 2011). There has also been work on using
case-based reasoning for plan recognition, where the plan library is a case base (Cox & Kerkez,
2006; Fagan & Cunningham, 2003).
 Other techniques viewed plan recognition as planning. To the best of our knowledge, the first
work to do this was by Ramirez and Geffner (2009). Specifically, this approach used off-the-shelf
classical planners to solve the plan recognition problem. The main advantage of this approach is
that it only requires a model of the domain’s actions. Other works that follow this view include
Ramirez and Geffner (2010), Ramirez & Geffner (2011), and Sohrabi, Riabov, and Udrea (2016).
 Our work focuses on applying the work by Holler et al., (2018) to goal recognition in Minecraft.
Their work outlines a technique that uses off-the-shelf Hierarchical Task Network (HTN; Erol,
Hendler & Nao, 1994) planning to recognize plans and goals. Unlike prior plan recognition as
planning approaches, this does require a plan library.

9. Conclusion

Our findings suggest that ToM capabilities are key to robust goal recognition as availability of
internal information changes. While there are many different approaches to plan and goal
recognition in the literature, this work aimed to provide an initial study of AToM—a computation
model of ToM reasoning—on goal recognition tasks by comparison to one state-of-the-art system.
We found that, while the state-of-the-art goal recognition system (Holler et al., 2018) performs at
100% accuracy when outputs from the observed agent’s planner (i.e., perfect internal information)
are available, its performance decreases significantly when only agent actions or observations (i.e.,
external information) are available. On the other hand, the system that models human theory of
mind reasoning (Rabkina et al., 2017), maintains accuracy at approximately 90% as availability of
internal information changes. These findings suggest that incorporating theory of mind when
reasoning about other agents’ internal states can lead to better understanding of others’ actions,
which may lead to better interactions between agents.

Acknowledgements

We would like to thank anonymous reviewers of the Plan, Activity, and Intent Recognition
workshop for their feedback on an earlier version of this paper. This work was supported in part by

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

14

the Air Force Office of Scientific Research to KF and IR, and the Office of Naval Research to LH
and MR. The views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed or implied, of
the US Navy.

References

Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian Theory of Mind: Modeling Joint Belief-
desire Attribution. In Proceedings of the Annual Meeting of the Cognitive Science Society.

Bengio, Y., & Frasconi, P. (1995). An input output HMM architecture. In Advances in neural
information processing systems, 427-434.

Bercher, P., Keen, S., & Biundo, S. (2014). Hybrid planning heuristics based on task decomposition
graphs. In Seventh Annual Symposium on Combinatorial Search, 35-43.

Cox, M. T., & Kerkez, B. (2006). Case-based plan recognition with novel input. In International
Journal of Control and Intelligent Systems, 34(2), 96-104.

E-Martin, Y., R-Moreno, M. D., & Smith, D. E. (2015) A fast goal recognition technique based on
interaction estimates. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
761-768.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the 8th AAAI Conference on Artificial Intelligence, 1123-1128.

Fagan, M., & Cunningham, P. (2003). Case-based plan recognition in computer games.
In International Conference on Case-Based Reasoning, 161-170.

Forbus, K. D., Ferguson, R. W., Lovett, A., and Gentner, D. (2016). Extending SME to Handle
Large-scale Cognitive Modeling. Cognitive Science, 1-50.

Forbus, K., Gentner, D., and Law, K. (1995). MAC/FAC: A model of similarity-based retrieval.
Cognitive Science, 19, 141-205.

Forbus, K. D., & Hinrich, T. (2017). Analogy and relational representations in the companion
cognitive architecture. AI Magazine, 38(4), 34-42.

Geib, C. W., & Goldman, R. P. (2005). Partial observability and probabilistic plan/goal recognition.
In Proceedings of the International Workshop on Modeling Other Agents from Observations, 1-
6.

Geib, C. W., & Goldman, R. P. (2009). A probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence, 173(11), 1101-1132.

Geib, C., & Goldman, R. (2010). Handling looping and optional actions in YAPPR. In Workshops
at the Twenty-Fourth AAAI Conference on Artificial Intelligence, 17-22.

Geib, C., & Goldman, R. (2011). Recognizing plans with loops represented in a lexicalized
grammar. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 91-98.

Geib, C. W., Maraist, J., & Goldman, R. P. (2008). A New Probabilistic Plan Recognition
Algorithm Based on String Rewriting. In Proceedings of the 18th International Conference on
Automated Planning and Scheduling, 91–98.

Geib, C. (2009). Delaying commitment in plan recognition using combinatory categorial grammars.
In Twenty-First International Joint Conference on Artificial Intelligence, 1702-1707.

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

Gentner, D. & Maravilla, F. (2018). Analogical reasoning. L. J. Ball & V. A. Thompson (eds.)
International Handbook of Thinking & Reasoning (pp. 186-203). NY, NY: Psychology Press.

Gold, K. (2010). Training goal recognition online from low-level inputs in an action-adventure
game. In Sixth Artificial Intelligence and Interactive Digital Entertainment Conference, 21-26.

Ha, E. Y., Rowe, J. P., Mott, B. W., & Lester, J. C. (2011). Goal recognition with Markov logic
networks for player-adaptive games. In Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 32-39.

Hiatt, L. M., & Trafton, J. G. (2010). A Cognitive Model of Theory of Mind. In Proceedings of the
10th International Conference on Cognitive Modeling, 91-96. Philadelphia, PA: Drexel
University.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735-1780.

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2018). Plan and goal recognition as HTN
planning. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence, 466-
473. IEEE.

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The Malmo Platform for Artificial
Intelligence Experimentation. In Proceedings of the International Joint Conference on Artificial
Intelligence, 4246-4247.

Kandaswamy, S., Forbus, K., & Gentner, D. (2014). Modeling learning via progressive alignment
using interim generalizations. In Proceedings of the Annual Meeting of the Cognitive Science
Society (Vol. 36, No. 36).Kautz, H. A., & Allen, J. F. (1986). Generalized Plan Recognition. In
Proceedings of the 5th AAAI Conference on Artificial Intelligence, 32-37.

McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial intelligence,
13(1-2), 27-39.

McLure, M.D., Friedman S.E. and Forbus, K.D. (2015). Extending Analogical Generalization with
Near-Misses. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, Texas

Min, W., Ha, E. Y., Rowe, J., Mott, B., & Lester, J. (2014). Deep learning-based goal recognition
in open-ended digital games. In Tenth Artificial Intelligence and Interactive Digital
Entertainment Conference, 37-43.

Min, W., Mott, B. W., Rowe, J. P., Liu, B., & Lester, J. C. (2016). Player Goal Recognition in
Open-World Digital Games with Long Short-Term Memory Networks. In Proceedings of the
25th International Joint Conference on Artificial Intelligence, 2590-2596.

Morgan, P. R. C. J. L., & Pollack, M. E. (1990). Intentions in communication. MIT press.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
An HTN planning system. Journal of artificial intelligence research, 20, 379-404.

Ilghami O., & Nau, D. S. (2003). A General Approach to Synthesize Problem-Specific Planners
(Report # CS-TR-4597). Retrieved from University of Maryland website:
https://www.umiacs.umd.edu/publications/general-approach-synthesize-problem-specific-
planners

Premack, D., & Woodruff, G. (1978). Does the Chimpanzee have a Theory of Mind? Behavioral
and Brain Sciences, 1(4), 515-526.

I. RABKINA, P. KANTHARAJU, M. ROBERTS, J. WILSON, K. FORBUS, AND L. M. HIATT.

16

Pynadath, D. V., & Wellman, M. P. (2000). Probabilistic state-dependent grammars for plan
recognition. In Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence,
507-514. Morgan Kaufmann Publishers Inc.

Rabkina, I. & Forbus, K. D. (2019). Analogical Reasoning for Intent Recognition and Action
Prediction in Multi-Agent Systems. In Proceedings of the Seventh Annual Conference on
Advances in Cognitive Systems. Cambridge, MA.

Rabkina, I., McFate, C. J., & Forbus, K. D. (2018). Bootstrapping from language in the Analogical
Theory of Mind model. In Proceedings of the 40th Annual Meeting of the Cognitive Science
Society.

Rabkina, I., McFate, C., Forbus, K. D., & Hoyos, C. (2017). Towards a Computational Analogical
Theory of Mind. In Proceedings of the 39th Annual Conference of the Cognitive Science Society,
2949-2954.

Ramírez, M., & Geffner, H. (2009). Plan recognition as planning. In Twenty-First International
Joint Conference on Artificial Intelligence.

Ramírez, M., & Geffner, H. (2010). Probabilistic plan recognition using off-the-shelf classical
planners. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 1121-1126.

Ramírez, M. and Geffner, H. (2011). Goal recognition over POMDPs: Inferring the intention of a
POMDP agent. In Twenty-Second International Joint Conference on Artificial Intelligence.

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine learning, 62(1-2), 107-
136.

Roberts, M., Shivashankar, V., Alford, R., Leece, M., Gupta, S., & Aha, D. W. (2016). Goal
reasoning, planning, and acting with ActorSim, the actor simulator. In Proceedings of the Fourth
Annual Conference on Advances in Cognitive Systems.

Schmidt, C. F., Sridharan, N. S., & Goodson, J. L. (1978). The plan recognition problem: An
intersection of psychology and artificial intelligence. Artificial Intelligence, 11(1-2), 45-83.

Shum, M., Kleiman-Weiner, M., Littman, M. L., & Tenenbaum, J. B. (2019). Theory of Minds:
Understanding Behavior in Groups Through Inverse Planning. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence.

Skyrms, B. (2004). The Stag Hunt and the Evolution of Social Structure. Cambridge University
Press.

Sohrabi, S., Riabov, A. V., & Udrea, O. (2016). Plan Recognition as Planning Revisited. In
Proceedings of the 25th International Joint Conference on Artificial Intelligence, 3258–3264

Vattam, S. S., & Aha, D. W. (2015). Case-based plan recognition under imperfect observability. In
International Conference on Case-Based Reasoning, 381-395. Springer, Cham.

Velagapudi, P., Prokopyev, O., Sycara, K., & Scerri, P. (2007). Maintaining shared belief in a large
multiagent team. In Proceedings of the 10th International Conference on Information Fusion, 1-
8. IEEE.

Vilain, M. B. (1990). Getting Serious About Parsing Plans: A Grammatical Analysis of Plan
Recognition. In Proceedings of the 8th AAAI Conference on Artificial Intelligence, 190-197.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11, 3371-3408.

 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS

Xiong, Y., Chen, H., Zhao, M., & An, B. (2018). HogRider: Champion Agent of Microsoft Malmo
Collaborative AI Challenge. In Thirty-Second AAAI Conference on Artificial Intelligence.

