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Abstract 
Effective interaction between agents requires reasoning about other agents’ internal states. In some 
situations, such as in the case of multiagent systems with a shared policy, agents may have full 
knowledge of each other’s knowledge, preferences, and goals. When interacting with humans or 
independent artificial agents, however, such direct inspection is not available. Instead, agents must 
model others’ internal states through observation. In humans, such reasoning is called theory of 
mind (ToM). It has been argued that ToM reasoning can improve performance for artificial agents 
in team scenarios, as well. Here, we compare the performance of a model of ToM with that of a 
state-of-the-art goal recognition system on goal recognition tasks of increasingly uninspectable 
agents. We show that ToM reasoning is beneficial for agents when inspection is unavailable. 

1.  Introduction 

Successfully collaborating with other agents requires knowing their objective(s). Sometimes, this 
information is readily available, such as when multiagent systems share a policy (e.g., Velagapudi 
et al., 2007), or when agents are capable of communication (e.g., Morgan & Pollack, 1990). 
However, when communication about internal states is imperfect or unavailable, agents must infer 
their compatriots’ objectives by observing external actions. This task is referred to, among other 
terms, as goal recognition (E-Martin, R-Moreno & Smith, 2015). The motivation of our work is 
creating an online software assistant that recognizes the goal(s) of another agent and recommends 
actions or provides information to assist the agent in completing its goals more effectively.   
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 While other goal recognition systems exist, state-of-the-art goal recognition systems make strong 
assumptions about the kind of information that is available during goal recognition. They typically 
receive an observation trace of an agent’s activities as a sequence of action-state pairs, including 
the action’s parameters, and reconcile these actions with a set of known or learned possible plans 
to infer the plan that the agent is performing, and thereby its top-level goal (Ramírez & Geffner, 
2009). Alternatively, hierarchical plan recognition (Geib & Goldman, 2011; Holler et al., 2018) 
reconciles the observation trace using decomposition methods that aggregate the primitive actions 
into high-level tasks.  
 Since these recognition approaches access the same information about the observed agent’s 
actions that the agent receives (i.e., the recognition algorithm observes the action-state pairs sent to 
the agent, including all parameters), the observation trace actually contains information about the 
internal state of the observed agent that cannot be gleaned from external observations alone. This 
type of internal information is not available when the agent is, for example, a human. Instead, 
observations of humans and other unknown agents consist only of external observation information, 
which is both noisy (i.e., imperfect) and incomplete (i.e., lacking internal information, such as 
action parameters). 
 Although prior research has examined the impact of noisy observations on goal recognition 
(Sohrabi et al., 2016; Vattam & Aha, 2015), few have examined the benefit of internal knowledge 
for recognition vs. the less informative value provided by external information.  We view this as a 
major limitation of prior work, given that such tight and synchronous communication cannot always 
be assumed for multi-agent teams, especially those involving humans.  
 Theory of Mind (ToM) reasoning uses only external information to infer the mental (i.e., internal) 
states of another agent, including its goals, and has been studied extensively in humans (e.g., 
Premack & Woodruff, 1978). Computational models of ToM (e.g., Baker et al., 2011; Hiatt & 
Trafton, 2010; Rabkina et al., 2017) have shown promise in modeling human judgments, but have 
not yet been applied to complex goal recognition tasks.  
 To address this gap, we examine the extent to which incorporating internal knowledge, in 
addition to external knowledge, impacts goal recognition for two models: (1) a computational ToM 
model called Analogical ToM (AToM) by Rabkina et al. (2017) and (2) the state-of-the-art goal 
recognition system PANDA-REC by Holler et al. (2018). We demonstrate AToM’s goal 
recognition capabilities on a widely accepted ToM task called stag-hunt (Skyrms, 2004). We then 
extend to a series of more complex tasks in the open-world domain of Minecraft, at three levels of 
information: (1) an observation trace with full internal information, directly from the observed 
agent’s planner; (2) an observation trace with partial internal information, from the agent’s 
execution of its plans; and (3) an observation trace with external knowledge only, adapted from the 
agent’s plan execution. When both systems have perfect internal knowledge, AToM is slightly 
worse than PANDA-REC at recognizing an agent’s goals.  However, as knowledge is reduced, 
PANDA-REC performance drops while AToM maintains accuracy. 
 The contributions of this paper include: (1) establishing AToM as a validated model for goal 
recognition by demonstrating that it performs comparably to a Bayesian model of ToM when 
recognizing goals on a standard AI ToM task (2) developing a new benchmark for goal recognition 
tasks based on Minecraft; (3) demonstrating that removing internal knowledge causes challenges 
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for goal recognition approaches that do not have ToM capabilities, but not AToM, which continues 
to perform near ceiling. 

2.  Analogical Theory of Mind 

The Analogical Theory of Mind (AToM; Rabkina et al., 2017) is a computational cognitive model 
of ToM reasoning and development. Its main claim is that ToM reasoning occurs via analogical 
processes, which have been well-established as a central component of human higher order 
cognition (see Gentner & Maravilla, 2018). AToM has successfully modeled children’s 
improvement on ToM reasoning from hearing structured stories (Rabkina et al., 2017) and from 
learning a new grammatical construction (Rabkina et al., 2018). Crucially, the model architecture 
was not modified between these experiments—only the training data (i.e., the examples used to 
teach the children) differed. Because AToM has shown generality in modeling human ToM, here 
we propose using it for reasoning about artificial agents.  
 At a high level, AToM learns about mental states, such as goals or beliefs, through observation. 
It uses analogical generalization to build models from observed scenarios, which are applied during 
reasoning through analogical retrieval and inference. More specifically, during training, AToM 
takes in observations in the form of structured predicate calculus cases one at a time and compares 
each to its memory contents via analogical retrieval (Forbus et al., 1995). If a substantially similar 
case1 is retrieved, a generalization (McLure et al., 2015) is formed. Otherwise, the case is added to 
memory as an individual example. During testing, AToM again takes in observations as predicate 
calculus cases and retrieves the most structurally similar learned case or generalization. The 
retrieved case is used for further reasoning, such as for answering questions or making predictions. 
Implementation details can be found in section 5.2 below. 
 In the next section, we demonstrate AToM’s performance in the stag-hunt game (Skyrms, 2004), 
a ToM task that lies at the intersection of cognitive modeling of ToM reasoning and goal 
recognition. Then, we test AToM on a more complex goal recognition task. 

3.  AToM on Stag-hunt 

Stag-hunt (Skyrms, 2004) is a prisoner’s dilemma-style game that has recently been used to test 
ToM models’ ability to recognize cooperation between agents (e.g., Shum et al., 2019; Xiong et 
al., 2018). During gameplay, players can choose to pursue a high reward (i.e., a stag) cooperatively 
or a low reward (i.e., a hare) individually. ToM models are then tasked with recognizing whether 
other agents intend to cooperate. Two formulations of this task exist: (1) the ToM model is a player 
in the game (e.g., Microsoft’s Malmo Collaborative AI Challenge2) and (2) the ToM model is an 
observer, making judgments about other players (e.g., Shum et al., 2019). For direct comparison 
with a different computational cognitive model of ToM (i.e., Bayesian ToM, BToM; Shum et al., 
2019), we take the latter formulation.  

The stag-hunt task is similar to goal recognition, to the extent that observed agents have an 
underlying goal to cooperate (or not). However, the observations typically consist only of 
movements on a small grid, rather than more complex actions. Furthermore, the goals in typical 
goal recognition tasks are more complex.   

 
1 A combination of analogical similarity and feedback (either from the experimenter or via traditional 

supervised learning) is used to determine sufficiency. 
2 https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge/ 
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3.1  Stag-hunt Task Description  

We use the stag-hunt dataset described by Shum et al. (2019). Recall that the goal of this task is to 
recognize cooperation between observed agents. Agents can cooperate to catch a high-value target 
(i.e., a stag) or work individually to catch a low-value target (i.e., a hare).  

The dataset from Shum et al. (2019) consists of nine examples of the stag-hunt game, each on a 
partially traversable 7x5 grid map (Figure 1). Each example contains three hunters, two stags, and 
two hares. Stags can be captured via cooperation by two or three hunters for a high number of 
points; hares may be captured by a single hunter for a lower number of points. At each timestep, 
each hunter can move one square up, down, left, or right. Stags can also move one square to escape 
capture. Three timesteps are simulated per example. Predictions about cooperation goals are made 
after each timestep.  

3.2  Stag-hunt Experiment and Results  

AToM’s accuracy in recognizing intended cooperation between agents in the stag-hunt game is 
shown in in Figure 23. Cooperation predictions, for each pair of hunters, were made at the end of 
each timestep. We also report the accuracy of BToM and humans (both from Shum et al., 2019) for 
comparison. BToM made probabilistic inferences over a model of Composable Team Hierarchies 
(see Shum et al., 2019), while AToM learned to identify cooperation from observations (see 
Rabkina & Forbus, 2019). Specifically, AToM was trained and tested using structured 
representations of the stag-hunt scenes, using leave-one-out cross validation. 

Note that at all timesteps, the two models and humans have no statistically significant differences 
(all p>0.05). This suggests that both AToM and BToM successfully model human judgments on 
this task and are competitive with each other in terms of accuracy. Thus, we have demonstrated 
that AToM can perform goal recognition in a ToM-specific domain. Next, we expand to a more 
complex goal recognition task.  

4.  Agent Simulation in Minecraft 

In addition to the stag-hunt task, we define a problem space in the open-world computer game 
Minecraft4. Minecraft presents a challenge for both AI planning and goal recognition because the 

 
3 Rabkina & Forbus (2019) provide a full discussion of the stag-hunt experiments. 
4 See Roberts et al. (2016) for a description of the game and the supporting framework we leverage, and 

Johnson et al. (2016) for information on Minecraft’s Malmo platform for AI experimentation. 

 
Figure 1. An example stag-hunt scenario. Agents A and C have cooperated to capture a stag, while 

agent B has acted alone to capture a hare. Figure adapted from Shum et al. (2019). 
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set of possible plans to generate or recognize is open ended. In our task, an agent, Alex, is placed 
in a flat Minecraft world with a small farm in the middle and items randomly distributed around 
the perimeter. These include crop seeds, bone meal, chickens, cows, buckets of milk, eggs, and 
sugar. These items can be used to craft (i.e., make or obtain) food items, which provide Alex with 
varying numbers of food points. After a period of exploring, Alex chooses a goal to craft one food 
item with the highest possible food points, given the items it has observed. The Top-Level Tasks 
column of Table 1 is the set of possible goals that Alex can accomplish. Point values from 
Minecraft’s internal food points system, which are used to weight goals, are also shown. 

Many of Minecraft's crafting tasks have natural hierarchical structures. For example, crafting 
bread requires three wheat, and wheat is grown and harvested using wheat seeds. Growth can 
additionally be sped up using an item called bone meal. Due to these natural hierarchies, we define 
Alex’s planning process using Hierarchical Task Networks. 

4.1  Hierarchical Task Networks 

Hierarchical Task Networks (HTNs; Erol, Hendler, & Nau, 1994) define a hierarchical planning 
framework that describes how to decompose complex tasks into simpler tasks until a sequence of 
actions that is executable in a given domain is found. Specifically, HTNs are made up of complex 
and primitive tasks. Both types of tasks are defined as first order terms with objects and variables 
from the domain as parameters. For example, GrowAndHarvest(potato) in Figure 3 is a task with 
parameter potato.  

Complex tasks are activities that must be refined in order to be executed, while primitive tasks 
are basic objectives. We denote the set of complex tasks as 𝐶 and primitive tasks as 𝐴. Figure 3 
provides an example of a decomposition of the complex task (in purple, italicized) ObtainPotato 
into primitive tasks (in blue, bold) for Minecraft. ObtainPotato is refined into GrowAndHarvest, 
which is further decomposed into GrowWithBoneMeal, Harvest, and Gather. Finally, 
GrowWithBoneMeal is decomposed into a sequence of six primitive tasks. 

Complex tasks are decomposed with a set of methods 𝑀. A method is defined as (𝑛𝑎𝑚𝑒, 𝑐, prec, 
tn), where 𝑛𝑎𝑚𝑒 is the name of the method, 𝑐 ∈ 𝐶 is a complex task, prec is a set of preconditions, 
and tn is a task network. Task networks are defined as (𝑇, 𝛼, ≺), where 𝑇 is a set of task identifiers, 

 
Figure 2. A comparison of AToM, BToM, and human accuracy on cooperation recognition in stag-

hunt, per time step. Figure adapted from Rabkina & Forbus (2019). 
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𝛼 ∶ 𝑇 → 𝐶 ∪ 𝐴 is a function that converts a task identifier into a task name, and ≺ ⊆ 𝑇 × 𝑇 defines 
a partial ordering over tasks in 𝑇. Below are examples of the primitive task Gather and the method 
m-GrowAndHarvest that aligns with the decomposition in Figure 3. 

 
Primitive Task Gather(?crop) 
   :preconditions () 
   :add ((inInventory ?crop)) 
   :delete () 

Method m-GrowAndHarvest(?loc) 
   :task (GrowAndHarvest) 
   :preconditions () 
   :task-network ({t1, t2, t3}, 
                                           {t1GrowWithBonemeal, 
                                              t2Harvest, 
                             t3Gather}, 
                           {t1 > t2 > t3}) 
   

 Variables ?crop and ?loc represent some crop to harvest and a location in the Minecraft world. 
The method m-GrowAndHarvest decomposes the complex task GrowAndHarvest into the complex 
task GrowWithBoneMeal and primitive tasks Harvest and Gather. Once the primitive tasks for 
accomplishing GrowWithBoneMeal and Harvest are executed and transition the state of the world, 
Gather further transitions the state by adding the crop to inventory. 
 Primitive tasks (i.e., actions) effect the state of the world, they are augmented with the tuple 
(prec, add, delete). A state is a set of first order predicates (Figure 4, Top). Prec is a set of 
preconditions that must be met in the state for the task to be applicable. Add and delete are sets of 
predicates that are added and deleted from the state, respectively, during task execution. 
 An HTN planning problem is a tuple (𝐷, 𝑠 , 𝑡𝑛 ), where 𝐷 = (𝐴, 𝐶, 𝑀) is an HTN planning 
model, 𝑠0 is an initial state, and 𝑡𝑛  is an initial task network. In this work, we assume that a 
single task 𝑋 is being pursued at a given time. Therefore, 𝑡𝑛 = ({𝑡}, {𝑡 → 𝑋}, ∅). A solution to 
the HTN planning problem is a plan 𝑡 … 𝑡  extracted from a task network that satisfies 𝑡𝑛 . Figure 
4 (top) provides an example of an HTN planning problem and its corresponding solution for the 
task ObtainPotato (bottom). 

4.2  HTN Planning and Execution in Minecraft 

We now describe the Minecraft HTN planning model and the application of HTN planning to 
Minecraft. Table 1 summarizes the task categories. Complex tasks are either top-level tasks or 

Table 1. Minecraft Model for Planning with SHOP2. In the model definition, Top-Level and 
Helper Tasks make up the set of complex tasks 𝐶, while 𝐴 is the set of Primitive Tasks. 

Top-Level Tasks 
(Food Point Values) 

Helper Task 
Categories 

Primitive Task 
Categories 

Obtain Chicken (2) Crafting Items Movement 

Obtain Beef (3) Gathering Items Look 

Obtain Pumpkin Pie (8) Growing Crops Item Selection 

Obtain Cake (14) Using Inventory Item Item Crafting 

Obtain Carrot (3)  Item Gathering 

Obtain Potato (1) 
  

Obtain Bread (5) 
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helper tasks. Top-level tasks are objectives that the agent may choose to pursue (such as making 
pumpkin pie and cake). Helper tasks complete top-level tasks and include:  crafting items, gathering 
items, growing crops, and inventory usage. Primitive tasks include: movement, looking, item 
selection, item crafting, and item gathering.  
 We use the HTN planner JSHOP2 (Nau et al., 2003; Ilghami & Nau, 2003) along with the above 
model to generate plans for an agent to execute in the Minecraft environment. The Minecraft states 
used by SHOP2 contain information such as the inventory of the agent, the entities and locations it 
has observed, and information about the agent itself, such as its current location. As described 
above, these facts are modified by the primitive tasks performed by the agent. For example, a 
gathering primitive task will add items to the agent’s inventory. However, these tasks only change 
the SHOP2 state; they do not directly change the Minecraft game. 
 To perform these primitive tasks directly in the Minecraft game, plans generated by the SHOP2 
planner are used by an agent to construct executable plans in Minecraft. This executable plan is 
then run in the Minecraft environment to completion. If items required for crafting-related tasks are 
observed in the environment, but are not in the agent’s inventory, the agent constructs a plan to 
retrieve them before attempting the task. Once all items have been retrieved, the agent then replans 
to get a new plan for crafting the item. We only replan after all items are retrieved to prevent the 
agent from constantly replanning and not completing any objectives.  Replanning makes sense here 
because the agent may observe items for more important objectives while retrieving items for 
crafting.  In this case, the agent should execute the more important objective. 

  
 

Figure 4. Example of Minecraft SHOP2 planning problem (Top) and solution (Bottom). 

Figure 3. Decomposition of the ObtainPotato task. Complex tasks are purple, primitive tasks are blue. 
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5.  Goal Recognition 

We next turn to describing how a different agent might recognize Alex’s goal in order to infer 
which food item Alex is working to craft. We formally define the goal recognition (GR) problem 
as (𝐷 , 𝑠 , �⃗�, 𝐺), where 𝐷  is a model for the GR problem, 𝑠  is some initial state of the world, 
�⃗� is a sequence of observed actions, and 𝐺 is a set of goals to recognize. A solution GR is a goal  
𝑔 ∈ 𝐺 being pursued via the execution of �⃗�. With respect to our Minecraft domain, 𝐺  is the set of 
Top-Level Tasks in Table 1 and 𝑔 is one of those tasks, such as ObtainChicken. 

We compare the goal recognition accuracy of a model of human ToM reasoning (AToM; Rabkina 
et al., 2017) with the performance of a goal recognition system (Holler et al., 2018) to show the 
strengths and weaknesses of each when reasoning about other agents. We describe these two 
systems next. 

5.1  Goal Recognition as Planning  

Several prior approaches have viewed the problem of GR as a planning task, where techniques from 
classical planning (Ramirez & Geffner, 2009; Ramirez & Gefner, 2010) and HTN planning (Holler 
et al., 2018) have been used to solve GR. At a high level, this is done by converting the GR problem 
into a planning problem and solving it with a planner. A solution to the planning problem is a 
solution to the GR problem.  

Using planning for GR also allows us to leverage state-of-the-art planning techniques. Our study 
utilizes the Planning and Acting in a Network Decomposition Architecture (PANDA) planning 
algorithm5 for GR. PANDA is a hybrid planning algorithm that combines HTN planning concepts 
with partial-order causal link planning. We use PANDA for GR over SHOP2 in Minecraft. PANDA 
has been previously used for GR (Holler et al., 2018) and the code for it was readily available. We 
refer to goal recognition using PANDA as PANDA-REC.  

Figure 5 provides a diagram of PANDA-REC. PANDA-REC takes a GR problem 
(D , s , o⃗, G), where 𝐷  is an HTN model and transforms the problem into an HTN planning 
problem (𝐷, 𝑠 , 𝑡𝑛 ). Here, 𝐷 is a modification of the HTN model 𝐷  that contains new methods 
and tasks that are pertinent to �⃗� and G, and 𝑡𝑛  is an initial task network. This converted problem 
is then passed into PANDA and the recognized goal 𝑔 ∈ G is extracted from its output.  

The problem transformation process works as follows. First, a new complex task 𝑡𝐼 is constructed 
and added to the initial task network 𝑡𝑛 . This new task is similar to the TopLevelAct in Kautz and 
Allen (1986) and represents an abstract task that is more general than any top-level task in 
Minecraft. Next, a set of new methods are constructed that decompose 𝑡𝐼  into each of the goals 
𝑔 ∈ G .This implies that finding a plan for 𝑡𝑛  would require at least one of the goals in G, therefore 

 
5 https://www.uni-ulm.de/en/in/ki/research/software/panda 

 
 

Figure 5. Diagram of goal recognition via planning PANDA-REC. 
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providing us the recognized goal(s). Finally, a new set of methods and tasks are added to 𝐷 to 
enforce the restriction that any HTN solution found for 𝑡𝑛  must start with �⃗�. 

5.2  Goal Recognition as Theory of Mind 

We next describe how AToM can be applied to the task of goal recognition. Recall that the central 
claim of AToM is that ToM occurs through analogical processes. It is implemented using the 
analogy models in the Companion cognitive architecture (Forbus & Hinrichs, 2017). AToM learns 
a through experience and does not require an HTN to recognize goals. 

We treat goal recognition as a classification problem for AToM. Using the Sequential Analogical 
Generalization Engine (SAGE; McLure et al., 2015), a model (called a generalization pool) is 
learned for every potential goal type from previously observed traces. A trace can be of arbitrary 
form, including the output of the SHOP2 planner, a report of the agent’s actual actions, or sensor-
like observations of those actions. It is passed to AToM as a predicate calculus case.   

During training, cases of different goals, 𝑔 ∈ G, are passed to SAGE one at a time. The most 
similar previously observed case (if one exists) is retrieved via an analogical retrieval algorithm 
(MAC/FAC; Forbus et al., 1995). We refer readers to the original paper for specifics of the retrieval 
algorithm. Importantly, the retrieval algorithm computes a structural similarity score between the 
original case, 𝑜, and the retrieved case, 𝑟. At a high level, this score represents the amount and 
depth of overlapping structure between the two cases (see Forbus et al., 2016 for algorithm and 
implementation details). If the structural similarity score is above a preset threshold (the default 
value of 0.8 is used in the present work), the two cases are merged into a generalization, which is 
added to the model that corresponds to the current case’s goal (see McLure et al., 2015).If the 
similarity score between 𝑜 and 𝑟 is not above the threshold needed to form a generalization, 𝑜 is 
added to the model as an individual example. 

Generalizations contain frequentist probabilities of the facts contained in their underlying cases. 
For example, if a generalization derives from a case with the facts {(movesTo cow123), 
(swingsAt cow123)} and another with the facts {(movesTo cow456), (throws cow456)}, the 
generalization would contain the fact that a cow is being moved to with a probability of 1.0 and 
that it is being swung at and thrown each with probability 0.5. As more cases are merged with the 
generalization, the probabilities are updated. Eventually, facts with probabilities below a preset 
threshold (the default value of 0.2 is used in the present experiments) fall out of the generalization. 
Thus, a generalization can be treated as a schema for a given type of case. 

The same similarity-based retrieval process is also used during testing. However, retrieval occurs 
across all learned models (i.e., all learned goals, 𝐺). The goal, 𝑔, corresponding to the model of the 
retrieved case, is returned. 

6.  Experiments and Results 

The objective of our experiments is to compare different ways to infer an agent’s goals given 
different types of observed sequences of actions, with varying degree of agent inspectability. To 
that end, we compare the performance of AToM with PANDA-REC on the Minecraft GR task with 
these different levels data: agent planner outputs (i.e., full internal knowledge), agent execution 
traces (i.e., partial internal knowledge), and external observation traces (i.e., external knowledge 
only). We also test whether AToM and PANDA-REC can transfer goal recognition from a partial 
internal knowledge model to external observations. 
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Two random baselines were also considered for each experiment. The first generated its 
interpretation of the agent’s goal by sampling uniformly across goals that appear in the dataset. The 
second was biased, with each potential goal weighted by its prevalence in the dataset. All results 
are reported in Table 2. Where available, standard deviations are reported in parentheses (Note that 
because PANDA’s model is pre-determined and deterministic, no standards of deviation are 
available. Similarly, AToM learns a single model in the Train Exec/Test Ext. condition, so no 
standard of deviation is computed.). The highest accuracy for each test is bolded. 

For our experimental data, we constructed a dataset from Minecraft play session logs. A single 
play session corresponds to an agent being placed on a map and executing top-level tasks from 
Table 1 for a predefined amount of time (in this case, 180 seconds). A log, consisting of all planner 
output and executed actions, is generated for each play session. Planning and execution of multiple 
top-level tasks are included in each log. For the experiments described in this paper, we extracted 
a random subset of 100 plan traces (i.e., planner outputs) and 100 execution traces (i.e., sequences 
of executed actions) from 50 play session logs (10 pseudo-randomly generated maps, 5 times 
each.). Note that the execution trace dataset had one fewer possible goal, as obtain_carrot did 
not appear in the randomly extracted dataset.  

6.1  How well do PANDA and AToM perform on plan traces (full internal information)? 

The first experiment focuses on recognition of goals when the list of actions slated for execution 
by Alex is directly observable. We note that these plans are direct internal information about an 
agent, as plans are constructed by the agent internally, converted into actions that can be executed, 
and then executed in an environment. In this experiment, PANDA-REC was also provided the HTN 
model used by Alex to develop its plan while AToM learned from SHOP2 outputs via 10-fold 
cross-validation (i.e., 10 folds, each consisting of 90 plan traces for training and 10 plan traces for 
testing).  

PANDA-REC was 100% accurate in recognizing goals based on the planned sequence of Alex’s 
actions. This fit our intuition, as PANDA-REC is also given Alex’s model of the domain and 
actions. AToM performed significantly worse, with 92% accuracy (one sample non-parametric 
median test; p<.05). Both systems performed substantially better than the uniform and biased 
baselines. These results can be found in Table 2, row 1 (Plan Traces). 

6.2  How well do PANDA and AToM perform on execution traces (partial internal 
information)? 

Planner traces provide perfect information about the plans being executed. However, the execution 
of a plan is rarely perfect, and may not correspond exactly to a plan.  In this experiment, PANDA-
REC and AToM were tested on goal recognition using the agent’s report of its executed actions. 
We note that some of these actions (i.e., move and look at) contain internal information about the 
agent, such as the specific object that it is moving toward.  PANDA-REC was also provided an 
HTN model corresponding to the executed actions, while AToM once again learned the model 
through training. As before, AToM was trained via 10-fold cross-validation. 

PANDA-REC’s accuracy dropped substantially when working from Alex’s actions but remained 
above both alternate baselines. It performed at 63% accuracy. AToM’s performance did not change 
significantly from Alex’s planned sequence of action, maintaining 90% accuracy. A one sample 
non-parametric median test showed that AToM performed significantly better than PANDA-REC 
(p <.05) in this condition. These results can be found in Table 2, row 2 (Execution Traces). 



 RECOGNIZING GOALS OF UNINSPECTABLE AGENTS  

6.3  How sensitive are PANDA and AToM to external knowledge traces? 

In many multi-agent scenarios, communication is limited or impossible. Instead, agents must reason 
based only on their own observations of compatriots’ behavior without internal state. In this 
experiment, we removed information about the parameters of actions.   Thus, traces consisted only 
of what could be observed externally (e.g., that the agent is moving in a certain direction) and 
lacked internal state (e.g., where the agent was specifically hoping to go to).  
 We tested PANDA-REC and AToM’s sensitivity to external knowledge traces under two 
conditions: (1) with a model based on Alex’s actual executed actions and (2) with a model based 
only on external observations of those actions. For (1), PANDA-REC was given the HTN model 
used in the previous experiment. AToM learned a model using the whole execution trace dataset. 
For (2), PANDA was given a modified version of the HTN model, which did not contain internal 
information (i.e., information that would not be available to an external observer—such as what 
object Alex is moving toward—was removed). As in previous experiments, AToM was trained 
using 10-fold cross-validation.  
 When tested on the external knowledge-only traces using the full HTN model of the agent’s 
executed actions, PANDA-REC’s performance dipped further to 30% accuracy (Table 2, row 3, 
Train Exec/Test Ext). This drop in accuracy was a result of recognition failing for several of the 
goals, particularly ObtainChicken and ObtainBeef. The methods for ObtainChicken and 
ObtainBeef in the HTN model were too specific as they require moving and looking at specific 
types of entities (i.e., chicken or cow). However, the move and look actions in the external 
knowledge traces were applied to general locations, as an external observer would not know which 
entity, if any, the agent was moving toward. Thus, recognition failed because the HTN model was 
not general enough to handle less information. However, when tested using the modified model, 
which was more general, it performed as well as it had when trained and tested on execution traces 
(i.e., 63% accuracy; Table 2, row 3, Train Ext/Test Ext). AToM performed equivalently across 
tasks: 90% accuracy when trained on execution traces and 88% accuracy when trained on external 
knowledge-only traces. This was significantly better than PANDA-REC (p<0.05; single sample 
non-parametric t-test) in both conditions. 
 

Table 2. Results for Goal Recognition Experiments 

 PANDA-REC AToM Uniform Baseline Biased Baseline 

Plan Traces 1.0 0.92 (0.075) 0.14 0.226 

Execution Traces 0.63 0.90 (0.077) 0.167 0.237 

Train Exec. / Test 
Ext. 

0.30 0.90 ( --- ) 0.167 0.237 

Train & Test Ext. 0.63 0.88 (0.098) 0.167 0.237 
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7.  Discussion and Future Work 

For these Minecraft recognition tests, AToM outperformed PANDA-REC on goal recognition 
conditions when given partial internal information or external information only. This is a hallmark 
of human ToM reasoning, which AToM models. Thus, our results suggest that ToM reasoning via 
AToM can help agents reason about others.  

The chief claim of AToM as a cognitive model is that ToM reasoning and development occur 
via analogical processes. Here, those same processes allow AToM to robustly reason about the 
internal states of agents, without direct knowledge of those states. Specifically, analogy allows 
AToM to make inferences based on its previous observations. For example, if it has learned that 
agents walk up to cows before slaughtering them (e.g., from agent action traces), it can infer that 
the object the agent was walking toward before slaughtering it (e.g., in an anonymized agent action 
trace) was also a cow. Furthermore, analogy’s focus on structure makes retrieval with complete 
object uncertainty possible. That is, if all objects were removed from a trace, AToM would guess 
that throwing something at the ground and later harvesting something else is a planting task—
perhaps mistaking ObtainPotato for ObtainCarrot, but not ObtainBeef. It remains to be seen 
whether other ToM models can do similar reasoning. 

From a practical  standpoint, one disadvantage of AToM, as compared to PANDA-REC, is its 
need to be trained—Recall that AToM was trained via 10-fold cross validation on datasets of 100 
total traces in the present experiments. When recognizing from planner output, PANDA-REC was 
able to use the planner. While the model did need to be modified further for the other conditions, 
training data was never necessary.  On the other hand, PANDA-REC has the disadvantage of 
requiring a hand-crafted model. 

Interestingly, the generalizations learned by AToM were often similar to the individual plans in 
PANDA-REC’s model. This suggests that the models used by PANDA-REC, when converted to 
cases of a format similar to observation trace outputs, may be sufficient to populate AToM’s case 
library. That is, explicit training may not be necessary. Alternatively, the AToM model might 
provide insights into learning, rather than hand-crafting, the PANDA model.  We will explore these 
possibilities in future work.  

More generally, we would like to give agents the ability to not only recognize compatriots’ goals, 
but also to change their own behavior accordingly. This requires online goal recognition that is 
accurate while reasoning from partial data (i.e., before the compatriot finishes its task). PANDA-
REC can be configured to make a recognition decision prior to seeing a complete plan trace (Holler 
et al., 2018). However, the computations for this can become too slow for online recognition. On 
the other hand, analogical retrieval allows AToM to be relatively fast. It remains to be seen whether 
AToM can maintain accuracy with partial traces. It is likely that other components of ToM 
reasoning (e.g., about knowledge and desire states) will need to be integrated to increase robustness 
of AToM’s predictions from partial traces. We will explore applications of PANDA-REC and 
AToM to online goal recognition in future work.  

8.  Related Work 

Goal Recognition is the problem of inferring the top-level goal of a partial plan executed by an 
agent (E-Martin, R-Moreno, & Smith, 2015) and has been extensively applied to games. For 
example, Gold (2010) uses an Input-Output Hidden Markov Models (Bengio & Fransconi, 1994) 
to recognize player goals from low-level actions in a top-down action adventure game. Ha et al. 
(2011) uses a Markov Logic Network (Richardson & Domingos, 2006) to recognize goals in the 
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educational game Crystal Island. Min et al. (2014) and Min et al. (2016) use deep learning 
techniques (i.e., stacked denoising autoencoders, Vincent et al., 2010; and Long Short-Term 
Memory, Hochreiter and Schmidhuber 1997) to also recognize goals in Crystal Island. In contrast, 
we apply goal recognition to Minecraft. Goals in Crystal Island are tied to the narrative. However, 
Minecraft does not have a narrative and has an undefined number of possible goals. 
 Plan recognition (Schmidt, Sridharan, & Goodson, 1978), the sibling problem to goal 
recognition, entails finding the set of plans and goals an agent is believed to be pursuing given some 
observed sequence of actions. One way to view plan recognition is presented in the seminal 
theoretical work by Kautz and Allen (1986). In particular, they viewed plan recognition as a form 
of McCarthy’s circumscription (1980) and represented the plan library in the form of a plan 
hierarchy/graph. Other work viewed plan recognition as a form of parsing using a formal grammar 
that defines a set of possible plans that can be executed by an agent. Such grammars include 
Context-Free Grammars (CFGs; Villain, 1990), Probabilistic Context-Free Grammars (Pynadath 
& Wellman, 2000), plan tree grammars (Geib & Goldman, 2009), Plan Frontier Fragment 
Grammars (Geib, Maraist, & Goldman, 2008; Geib & Goldman,  2010), and Combinatory 
Categorial Grammars (Geib, 2009; Geib & Goldman, 2011). There has also been work on using 
case-based reasoning for plan recognition, where the plan library is a case base (Cox & Kerkez, 
2006; Fagan & Cunningham, 2003). 
 Other techniques viewed plan recognition as planning. To the best of our knowledge, the first 
work to do this was by Ramirez and Geffner (2009). Specifically, this approach used off-the-shelf 
classical planners to solve the plan recognition problem. The main advantage of this approach is 
that it only requires a model of the domain’s actions. Other works that follow this view include 
Ramirez and Geffner (2010), Ramirez & Geffner (2011), and Sohrabi, Riabov, and Udrea (2016). 
 Our work focuses on applying the work by Holler et al., (2018) to goal recognition in Minecraft. 
Their work outlines a technique that uses off-the-shelf Hierarchical Task Network (HTN; Erol, 
Hendler & Nao, 1994) planning to recognize plans and goals. Unlike prior plan recognition as 
planning approaches, this does require a plan library. 

9.  Conclusion 

Our findings suggest that ToM capabilities are key to robust goal recognition as availability of 
internal information changes. While there are many different approaches to plan and goal 
recognition in the literature, this work aimed to provide an initial study of AToM—a computation 
model of ToM reasoning—on goal recognition tasks by comparison to one state-of-the-art system. 
We found that, while the state-of-the-art goal recognition system (Holler et al., 2018) performs at 
100% accuracy when outputs from the observed agent’s planner (i.e., perfect internal information) 
are available, its performance decreases significantly when only agent actions or observations (i.e., 
external information) are available. On the other hand, the system that models human theory of 
mind reasoning (Rabkina et al., 2017), maintains accuracy at approximately 90% as availability of 
internal information changes. These findings suggest that incorporating theory of mind when 
reasoning about other agents’ internal states can lead to better understanding of others’ actions, 
which may lead to better interactions between agents. 
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