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Abstract 

We contend that natural and artificial systems exhibiting “general intelligence” will likely be 

endowed with three properties. First, they must be autonomous; that is, capable of acting in pursuit 

of their own agendas. Second, they must be cognitive; that is, capable of reflecting on, and 

reasoning about, their environments in a manner that is decoupled from their immediate inputs and 

outputs. Third, they must be intentional; that is, capable of connecting the content of their mental 

states to corresponding referents in their environments. We argue that deficits in any one of these 

properties can lead to pathological behavior in humans and other animals, and that the complete 

absence of any of these is incompatible with general intelligence. 

1.  Introduction 

Newell and Simon (1976) characterized “general intelligence” as the ability to perform actions 
that show the same “scope of intelligence” as human actions, are “appropriate to the ends of the 
system,” and are “adaptive to the demands of the environment… within some limits of speed and 
complexity.” Goertzel and Pennachin (2007) stated that “[a] general intelligence must be able to 
carry out a variety of different tasks in a variety of different contexts, generalizing knowledge 
from one context to another, and building up a context and task independent pragmatic 

understanding of itself and the world.” And Voss (2007) stated that “[t]he mark of a generally 
intelligent system is not having a lot of knowledge and skills, but being able to acquire and 
improve them—and to be able to appropriately apply them.” While all of these notions are 
broadly consistent, they focus on different aspects of general intelligence, and say little about the 
characteristics of the “control structures” (Newell, 1973) from which generally intelligent 
behaviors are likely to emerge. 

 Instead of further expanding on, or attempting to standardize, the behavioral markers that are 
believed to be signs of general intelligence, we believe that it may be more fruitful to focus on the 
necessary characteristics of systems that are likely to produce generally intelligent behaviors. 
Towards that end, we introduce three of these properties in this paper. In particular, we claim that 
attempts at engineering generally intelligent systems will likely require the creation of agents that 
are autonomous (capable of acting in pursuit of their own agendas), cognitive (capable of 

reflecting on, and reasoning about their environments in a manner that is decoupled from their 
immediate inputs and outputs), and intentional (capable of connecting the contents of their mental 
states to corresponding referents in their environments). We contend that deficits in any one of 
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these properties can lead to pathological behaviors in humans and other animals, and their 
complete absence is incompatible with general intelligence. To facilitate a discussion on the need 
for these properties in generally intelligent systems, we provide additional background on what 

each of these properties entails. 

2.  Autonomous, Cognitive, and Intentional Agents 

The three-factor agent classification presented in this section is similar in spirit to the taxonomy 
presented by Franklin and Graesser (1997); however, our specific goal is to open a dialog within 
the community about the necessity of these properties for general intelligence, and the 
mechanisms by which they can be realized. Towards this goal, we describe each property in 
detail, along with examples and counter-examples. 

2.1  Autonomous Agents 

Franklin and Graesser (1997) defined an autonomous agent as “a system situated within and a 
part of an environment that senses that environment and acts on it, over time, in pursuit of its own 
agenda and so as to effect what it senses in the future.” To say that an agent has an agenda implies 

that it is capable of appraising environmental states based on its own motivational system, and 
that it prefers some of those states to others. To say that an agent acts “in pursuit of its own 
agenda,” implies that it selects actions purposefully, in accordance with that agenda. In other 
words, autonomous agents must not only have preferences, and the ability to evaluate 
environmental states with respect to those preferences, they must also have an action selection 
mechanism that advances the pursuit of those desirable states (though not necessarily in an 

optimal way). 

Examples and Counter-Examples 

Reinforcement learning (RL) (Sutton & Barto, 2018) is an agent-based machine learning 
paradigm in which agents sense their environments, and, though trial-and-error exploration of 

those environments, learn to choose actions that maximize their “rewards.” Rewards are based on 
an agent’s reward function, which maps environmental states onto scalar values that quantify that 
agent’s immediate hedonic (liking or disliking) responses to those states. Model-free RL 
algorithms, such as temporal-difference (TD) learning (see Sutton & Barto, 2018), learn to 
approximate value functions that quantify the cumulative (long-term) expected reward associated 
with each state (or of each action when taken from those states). These value functions make the 

agent’s agenda explicit, and accessible to the agent, and agents that choose their actions based on 
such value functions are examples of autonomous agents with explicit agendas. Other types of 
model-free RL agents, such as those based on policy-gradient methods (see Sutton & Barto, 
2018), do not learn value functions, but instead learn to directly optimize their “behavioral 
policies” (that is, their selection of actions). These RL agents do not use their subjective 
judgments about the “goodness” of environmental states and actions to guide their action 

selection, but, instead, simply execute actions that they have learned to be generally useful for 
satisfying their goals in a given situation. These agents are examples of autonomous agents with 
implicit agendas. 

Agents that lack an agenda, or choose actions that are inconsistent with their agendas, are 
non-autonomous. The simplest examples are agents that choose their actions indiscriminately (for 
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example, randomly). A more subtle example of non-autonomy occurs when an agent’s agenda, or 
action selection mechanism, has been subverted in some way, such as by parasites and diseases 
(in natural systems), or other source of malfunctions (in artificial systems). 

2.2  Cognitive Agents 

Franklin and Graesser (1997) defined reactive agents as those that respond immediately to 
environmental stimuli without consulting an internal model, or engaging in activities such as 
reasoning, planning, or deliberative thought. By contrast, we refer to agents that are capable of 

utilizing internal models and thought processes that are detached from current sensory stimuli as 
cognitive agents. To make this distinction more precise, it is useful to consider several concepts 
from the embodied cognition literature. “Situated cognition” refers to task-specific, context-
sensitive, modes of acting that are continually influenced by incoming sensory stimuli. In its most 
extreme form, situated cognition leads to reactive agents that act through a process of “online” 
control. “Online” in this sense implies the direct and immediate coupling between an agent’s 

actions and the stimuli that resulted in those actions. “Offline” processes1, on the other hand, are 
decoupled from an agent’s inputs and outputs that are occurring “right now.” These processes 
enable the construction (and manipulation) of imagined realities, as well as forms of “mental 
teleportation” (that is, spatial decoupling) and “mental time travel” (that is, temporal decoupling). 
Planning, reasoning, introspection, and problem-solving, as well as more pedestrian activities, 
like the recall of long-term memories and daydreaming, are all “offline” cognitive processes. 

Having introduced this terminology, we define a cognitive agent as “an agent that makes sense of, 
and acts on, its environment based, in part, on processes that are decoupled (temporally, spatially, 
or otherwise) from its immediate inputs and outputs.” 

Examples and Counter-Examples 

IBM’s Watson (Ferrucci, et al., 2010) is a cognitive software agent that defeated the best human 
contestants of the TV quiz show Jeopardy (back in 2011). It was built using over 100 different 
techniques for “analyzing natural language, identifying sources, finding and generating 
hypotheses, finding and scoring evidence, and merging and ranking hypotheses” (Ferrucci, et al., 
2010). It analyzed “clues” using “shallow parses, deep parses, logical forms, semantic role labels, 
coreference, relations, [and] named entities” (Ferrucci, et al., 2010). It generated candidate 

answers and supporting evidence using multiple text search engines, document and passage-
specific search algorithms, and “knowledge base searches.” And it applied multiple “scoring 
algorithms,” including those based on geospatial and temporal reasoning, to determine its degree 
of certainty in those answers. 

An example of a non-cognitive agent is a simple thermostat, which reactively turns an air 
conditioner (or heater) on or off based on its measurements of the current temperature. Brooks’s 

(1990) robots are more sophisticated examples of non-cognitive agents based on the 
“subsumption architecture.” These software agents produce seemingly goal-directed behavior 
based on the collaboration of many independently operating, reactive “behavior” processes, 
without centralized control or discernable mental representations. 

 
1 See Wilson (2002) for an introduction to the idea of offline cognition, and its relationship to embodied cognition. 
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2.3  Intentional Agents 

A fundamental problem that confronts system designers is how to establish a correspondence 
between internal mental representations and what they represent in the external world. We refer to 
this as the problem of intentionality2 (that is, “aboutness”) (Searle, 1980); however, this issue has 
more commonly been referred to as the symbol grounding problem (Harnad, 1990). The symbol 
grounding problem is best illustrated by considering classical symbolic AI systems, which were 
based primarily on the explicit, rule-based manipulation of symbolic representations. These 

representations are by definition3 arbitrary, as their forms do not depict or resemble their 
referents, and they bear no intrinsic informational content that would suggest a connection 
between them and the concepts to which they refer. Harnad (1990) illustrated the symbol 
grounding problem by offering, as an example, the formidable task of trying to learn Chinese as a 
first language when the only information at your disposal is a Chinese-to-Chinese dictionary: 
“[using] the dictionary would amount to a merry-go-round, passing endlessly from one 

meaningless symbol… to another… never coming to a halt on what anything meant” (Harnad, 
1990). While we may learn an elaborate web of correlations between different words, we will 
never establish the meaning of those words based solely on their associations with other 
unintelligible words. 

The symbol grounding problem is often glossed over in practice because humans are 
generally “in the loop” to interpret (that is, give meaning to) the results of a machine’s 

computational efforts. This effectively connects symbols with their meanings exogenously, and 
after the fact. If all we care about is creating useful software tools, such as a spelling and 
grammar checker, then the fact that the system does not understand what those text strings mean 
is irrelevant. However, we contend that any general intelligence must be able to establish a 
correspondence between its mental representations and their underlying concepts in the world. 
We call agents that can determine such connections between internal mental representations and 

the external world intentional agents. Note that since intentionality refers to the link between an 
agent’s representational mental states and their referents in an environment, agents must have 
representations to be considered intentional. 

Examples and Counter-Examples 

Any agent that is implemented using a purely symbolic approach is non-intentional, and requires 
a human (or other external entity) to connect its symbols to the concepts they signify. Perhaps as 
a result of this issue, and the need for systems to operate in more complex environments, a 
majority of cognitive architectures have adopted a hybrid symbolic/non-symbolic approach 
(Kotseruba & Tsotsos, 2018). What may be less obvious is that many software systems based on 

non-symbolic (for example, connectionist) approaches are also non-intentional.  
BERT (Devlin, Chang, Lee, & Toutanova, 2018), which stands for Bidirectional Encoder 

Representations from Transformers, is an artificial neural network (ANN) architecture that 
achieved state-of-the-art performance (circa 2018) on many “natural language understanding” 
tasks. BERT’s inputs consist of sentences, or pairs of sentences, where “sentence,” in this context, 

 
2 Jacob (2020) defined intentionality as “the power of minds and mental states to be about, to represent, or to stand for, 

things, properties and states of affairs.” It is important to note that this use of the term intentionality is different than 

its colloquial use to denote deliberate or purposeful activities. 
3 This terminology was established by Peirce in the late 19th century as part of his theory on semiotics (Houser & 

Kloesel, 1992). 
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refers to an “arbitrary span of contiguous text.” BERT was pre-trained on over 3 billion words, 
and the resulting model was fine-tuned to solve 11 different natural language tasks. Some of these 
tasks required judgments about the semantic equivalence and similarity of sentences, others about 

author “sentiment” or the correctness of grammar, and still others required choosing the most 
plausible “continuation sentence” for a given example sentence. On some of these tasks BERT 
outperformed human experts. Can we conclude that BERT knows what those sentences “mean”? 
Absolutely not. After being trained on billions of words, the network has learned linguistic 
regularities, such as word correlations and morphology, but it does not understand what those 
words signify in the world. That is not to say BERT is not a useful tool for humans. Far from it! 

But it is not an intentional system capable of endogenous meaning. To be an intentional system, 
BERT would also need to incorporate non-symbolic inputs (that is, worldly experiences such as 
images, sounds, etc.) corresponding to each (or at least some) of its symbols.  

3.  General Intelligence Requires Autonomous, Cognitive, Intentional Agents 

Having established our working definitions of autonomous, cognitive, and intentional agents, we 

now claim that general intelligence likely requires that agents have some degree of all three 

properties.  

The Case for Autonomous Agents. We regard the joint concepts of autonomy and agency, 

as reflected in Franklin and Graesser’s (1997) definition of autonomous agent (presented in 
Section 2.1), as a minimal starting point for intelligence, and contend that minds are best defined 
as “control structures for autonomous agents” (Franklin, 1997). We believe that humans, and 
other animals, with reduced autonomy may suffer from anhedonia (inability to feel pleasure, or a 
loss of interest in engaging in activities), attentional disorders (inability to focus on task-relevant 
stimuli, or to complete activities), or motor disorders (such as Tourette’s syndrome that results in 

unwanted and involuntary actions). Based on this, we contend that the complete absence of 
autonomy is surely inconsistent with general intelligence. 

The Case for Cognitive Agents. Most definitions of general intelligence contain an explicit 
or implicit behavioral requirement that the system be capable of performing a variety of 
demanding tasks in complex environments, and developing innovative, system-appropriate, 
solutions to the needs of those environments. Since non-cognitive agents (see Section 2.2) are 

incapable of projecting their thoughts beyond the immediate present, we argue that it is unlikely 
that attempts to scale up such reactive agents to solve a variety of complex problems in open-
ended, complex environments will be successful. We believe that humans, and other animals, 
with reduced cognitive abilities are often characterized as being short-sighted (fixated on the 
immediate present), impulsive (reckless and unaware of consequences), irrational (unable to 
“consciously” select actions consistent with their desires), or unimaginative (unable to synthesize 

new ideas). Based on this, we contend that the complete absence of “offline” cognitive abilities is 
surely inconsistent with general intelligence. 

The Case for Intentional Agents. We regard an agent’s ability to connect its internal mental 
representations to environmental referents as a fundamental requirement for differentiating 
software tools, which are oblivious to the significance of their labors, from more self-aware and 
comprehending machines. If an agent’s mental representations have no intrinsic meaning, then 

they will always be dependent on exogenous entities (such as humans) to give meaning to their 
outputs. We believe that humans, and other animals, with reduced intentionality may be 
considered disoriented (suffering from a loss of time, place or identity), delusional (maintaining 
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false beliefs or perceptions despite clear evidence to the contrary), psychotic (disconnected from 
reality and unable to distinguish real from unreal), or suffering from agnosia (inability to 
recognize objects, places, or situations from sensory stimuli). Based on this, we contend that the 

complete absence of intentionality is surely inconsistent with general intelligence. 
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