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Abstract
Adapting to and resolving imperfect information is a hallmark of intelligent behavior. Plan, activity,
and intention recognition (PAIR) methods recognize agent goals from ambiguous agent behavior
so they may predict future action. However, despite the inherent social function of goals to co-
ordinate action, there have been no investigations into goal reasoning agents who adopt PAIR-like
methods to resolve and elicit the goals of other agents. Our approach, goal-elicitation planning
(GEP), builds atop the goal recognition design (GRD) framework to provide an online mechanism
for goal-reasoning agents to adopt goals that, in turn, reveal the goals of another agent. To this
end we make three contributions. First, we characterize the properties of a problem that make
it conducive to GEP. Second, we define GEP for revealing the goals of optimal (cost) behaving
target agents. Our third contribution defines GEP for non-optimal target agents who have a cost
budget to deviate from the optimal path towards their goals. Our preliminary results in a modified
easy-grid benchmark show that GEP achieves online results similar to offline GRD.

1. Introduction

Goal reasoning – the formulation, management, and accomplishment or maintenance of goals – is
a hallmark of intelligent behavior (Vattam et al., 2013). In multi-agent contexts, individual agents
must resolve incomplete or imperfect goal information to better strategize about cooperative and
competitive activity (Grosz & Kraus, 1999). Scholars have argued that developing better methods
to resolve such goal information will pave the way toward agents with both greater autonomy (e.g.,
Muñoz-Avila et al., 2019) and higher-order reasoning (e.g., Amos-Binks & Dannenhauer, 2020).

However, despite the inherent social function of goals to coordinate activity (Bratman, 1987;
Cohen & Levesque, 1990; Amos-Binks et al., 2019), state-of-the-art goal reasoning agents remain
individually limited in their ability to formulate the goals of others. While overt communication
facilitates such reasoning (Jokinen, 1996), such communication is not always possible or desirable
(e.g. in adversarial contexts). The goal formulation methods developed within the plan, activity,
and intention recognition (PAIR, Sukthankar et al., 2014) community aim to recognize an observed
actor’s goals from their behavior, in service of predicting the actor’s subsequent behavior. Unfortu-
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nately, these methods predominantly assume disembodied recognition: the observer is never part of
the task environment they are observing. As a consequence, the observer can never actively elicit
(and must therefore passively recognize) the actor’s goal. In other words, goal reasoning agents
interested in formulating the goals of others cannot yet leverage acting within task environments
to improve their predictions about what others’ goals are. In this paper, we present one way to do
precisely that.

Our approach, which we term goal-elicitation planning (GEP), is an online goal formulation
mechanism that enables a goal-reasoning agent to adopt a goal that will in-turn reveal the goal of
another agent. A GEP agent – the elicitor – must find a sequence of actions that coerces an actor –
the target – to act in a way that reveals its goal as early as possible.

Contributions Our contribution is three-fold. First, we formalize the Goal Elicitation Planning
problem, including the necessary conditions of a PAIR task that make it amenable to GEP; we
refer to such tasks as goal elicitation plannable or GEPable. Second, we define the GEP reasoning
process for (cost-)optimal agents. Third, we define GEP for bounded non-optimal agents. We
present preliminary evaluation results for all goal elicitation methods on the easy-grid domain
drawn from the PAIR benchmarking literature; the easy-grid problem was modified slightly to
make it GEPable. Our results indicate that for both optimal and bounded non-optimal agents, the
(online) GEP process provides the capability for a goal reasoning agent to generate and execute
plans that elicit the target actor’s goals as effectively as its (offline) counterpart GRD.

2. Background

Goal Elicitation Planning depends on several goal-reasoning models. In this section we review each,
deferring a more-thorough discussion of related work until we can refer to it more-precisely.

2.1 Classical Planning

Our work is based on classical planning, a problem-solving model wherein agent actions are fully
observable and deterministic. We use the STRIPS representation (Fikes & Nilsson, 1971); a STRIPS

planning problem is a tuple P = 〈L, I, A,G, γ, fcost〉 where L is the set of literals, I ⊆ L is an
initial state, G ⊆ L is a set of goal conditions, and A is a set of actions. Each action is a triple
a = 〈PRE(a), ADD(a), DEL(a)〉, that represents the precondition, add, and delete lists respectively,
all subsets of L. A state is a set of conjuncted literals, and an action a is applicable in a state s if
PRE(a) ⊆ s. Applying said applicable action in the state results in a new state s′ as specified by γ,
a state-transition function over the set of potential states S; γ : S ×A −→ 2S . The set S is implicitly
defined as the powerset of the set of literals 2L. For classical planning, given a state s and appli-
cable action a, the resulting new state s′ is given by γ(s, a) = (s \ DEL(a)) ∪ ADD(a). Applying
the applicable action incurs a cost determined by the function fcost : A −→ R>0; unless otherwise
indicated, we use fcost = 1. The solution to a planning problem P is a plan π = [a1, ..., am], a
sequence of actions ai ∈ A that transforms the problem’s initial state I to a state sm that satis-
fies the goal; i.e. G ⊆ sm. The cost c(π) of a plan π is

∑
ai∈π fcost(ai). The execution trace

trace(π, I) = [I, a1, s1, ..., am, sm] of plan π from initial state I is an alternating sequence of states
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GOAL ELICITATION PLANNING: ACTING TO REVEAL THE GOALS OF OTHERS

(a) Classical planning: an Actor searches for the cost-
optimal plan to achieve g1. In other words, they find the
shortest plan – visualized by the red highlighted path – to
achieve their goal from a given state.

(b) Goal recognition: an external observer must predict
which of the assumed goals g1 or g2 the Actor is pur-
suing, given an unfolding plan. Above, the illustrated plan
is the most ambiguous possible one.

(c) Goal recognition design: modifying the environment
offline to minimize worst-case distinctiveness. By remov-
ing action (move Actor C1 C2) – visualized via a
barrier – a designer forces an Actor to reveal their goal.

(d) Goal elicitation planning: an online variant of GRD.
By planning to clobber precondition (isFree C4) of
action (move Actor C3 C4), the now-embodied ob-
server (i.e. the elicitor) in E4 will thwart the plan in (b).

Figure 1: Goal reasoning methods within the easy-grid task environment, comprised of: a two-
dimensional matrix of locations (A1, . . . , E6), adjacency relations between these locations (e.g. (adj
A1 A2)), and an occupancy attribute over these locations (e.g. (isFree C1)). Our work introduces

goal elicitation planning, an online variant of goal recognition design, in which an elicitor agent – an
embodied goal recognition observer – finds a plan that minimizes the wcd by clobbering the target
agent’s (i.e. goal recognition actor’s) most ambiguous plan at the earliest possible opportunity.

and actions, starting with I , such that si results from applying ai to state si−1. A solution to a plan-
ning problem is found via a search procedure, which must ensure that every action in the plan has its
preconditions satisfied (Bonet & Geffner, 2001). Unless specified otherwise, we assume our search
aims to find the optimal (i.e. lowest cost) plan, which for classical planning is tantamount to the
shortest-length plan when action costs are uniform.

1 (:action move :parameters (?a - agent ?from - loc ?to - loc)
2 :precondition (and (at ?a ?from) (adj ?from ?to) (isFree ?to))
3 :effect (and (not (at ?a ?from)) (not (isFree ?to))
4 (at ?a ?to) (isFree ?from)))

Listing 1: A move operator for an agent in the Planning Domain Definition Language (McDermott
et al., 1998), requiring the target location isFree (unoccupied) and adjacent.

3



Classical planning problems are typically codified in the Planning Domain Definition Lan-
guage (PDDL, McDermott et al., 1998). Listing 1 illustrates a move operator, a template for a
movement action with parameters, (logical) preconditions, and effects (which combine the add and
delete lists for an action). All possible instances of move – e.g.(move Actor C1 C2), (move Actor

C2 C3), etc.– define the setA and are usable to solve a planning problem in the example easy-grid
task environment illustrated in Figure 1; Figure 1a illustrates an example plan, which will accom-
plish an Actor’s goal g1 =(at Actor A6) from their initial state of being (at Actor C1).

2.2 Goal Recognition

Goal recognition is the task of identifying which goal (from a set of assumed possible ones) explain
an observed actor’s behavior from some initial state of a given task environment (Sukthankar et al.,
2014); it is considered a sub-problem of plan recognition (Pattison & Long, 2011). A common
assumption of goal recognition is that the observer only looks at the actor’s (unfolding) plan. An
example goal recognition task within the easy-grid domain is illustrated in Figure 1b. Our for-
mulation follows that by Ramírez & Geffner (2009), which casts the recognition task as a special-
purpose classical planning one: goal recognition is tantamount to computing the plan that accounts
for the input observation sequence at no extra cost to the actor’s optimal plan to an assumed goal
from their initial state (Masters & Sardina, 2019).

Thus, a goal recognition problem is a tuple R = 〈L, I, A,G, γ, fcost, obs〉, where L, I , A,
γ, and fcost are as before, G is a set of goals the actor is assumed to care to achieve satisfying
∀Gi ∈ G, Gi ⊆ L, and obs is the actor’s observed plan (that is unfolding) satisfying ∀ai ∈ obs, ai ∈
A. The solution to this kind of goal recognition problem R is the (so-called) optimal goal set
G∗ satisfying ∀Gi ∈ G∗: (a) Gi ∈ G, (b) there is an optimal plan π∗i , s.t. the final state sf ∈
trace(π∗i , I) satisfies Gi; i.e. Gi ⊆ sf , and (c) the plan π∗i observationally satisfies obs. A plan
π = [a1, ..., ai, ..., am] observationally satisfies an action sequence obs = [o1, ..., oj , ..., on], if there
exists a strictly monotonic function F that maps the observation indices j = 0, ..., n into action
indices i = 0, ...,m, such that ai=F(j) = oj ; monotonicity guarantees π will contain the actions
in obs in the order they were observed. Informally, a goal is deemed recognized if we can find a
plan that can account for the observations at a cost equal to the cost of the optimal plan for the
given goal. Formally, a solution to R is found via a compilation-planning procedure (Ramírez &
Geffner, 2009), which we do not detail here.

The smaller the size of the optimal goal set |G∗|, the better the solution is (i.e. the greater the
solution’s recall is). A key factor that contributes to the difficulty of a particular goal recognition
problem – i.e. the difficulty in minimizing G∗ – is ambiguous behavior: activity that plausibly con-
tributes to the actor’s pursuit of more than one goal. For example, in Figure 1b, the illustrated actor
is pursuing the most ambiguous plan: it is not until the actor is at location C6 that the actor must act
in a way that betrays its intended goal; i.e. that collapses the size of G∗ from 2 to 1. This is because
the optimal plans toward achieving g1 and g2 individually share the prefix πmost-ambiguous = [(
move Actor C1 C2), (move Actor C2 C3), (move Actor C3 C4), (move Actor C4 C5), (move
Actor C5 C6)]. In this case, the task environment’s worst-case distinctiveness (Keren et al.,

2019) is 5; i.e. the length of the longest non-distinctive (most ambiguous) plan is 5.
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2.3 Goal Recognition Design

Goal recognition design (GRD) is precisely the problem of minimizing a goal recognition prob-
lem’s worst-case distinctiveness (wcd) via modifications to the problem’s domain model, defined
with respect to a problem R as the tuple RM = 〈L, I, A,G, γ, fcost〉. Importantly, in the formulation
of the goal recognition design problem, the modifications to the model are done offline. That is, a
goal recognition domain model RM is systematically modified to a new model R′M, with minimum
possible wcd (which is subsequently used to solve goal recognition problems).

Conceptually, the transformation seeks to minimize the longest possible non-distinctive plan,
itself defined formally with respect to the domain model. A plan π is non-distinctive if it is a prefix
to at least 2 plans, each one to a distinct goal in G ∈ RM. Formally, (similar to the definition of the
optimal goal set G∗) let Π∗(Gi) be the set of optimal plans for goal Gi ∈ G ∈ RM. Then, a plan π
is non-distinctive in RM iff: (a) ∃Gi, Gj ∈ G : Gi 6= Gj (there are two distinct assumed goals), and
(b) ∃πi ∈ Π∗(Gi), πj ∈ Π∗(Gj) : π is a prefix of πi and πj (there is an optimal plan to each distinct
goal and π is a prefix to both of them).

Of course, there may be multiple non-distinctive plans for a given goal recognition domain
model. The non-distinctive plan we care about in GRD is the one that gives us the wcd: the longest
(greatest cost) non-distinctive plan. If we let Πnd denote the set of all non-distinctive plans, then,

wcd(RM) = max
π∈Πnd

fcost(π) (1)

A GRD problem is defined by specifying an initial goal recognition model R0
M whose wcd should

be minimized and a (so-called) design model: an encoding of the legal modifications to a given
recognition problem Ri that result in a new problem Rj . The modifications should reduce the
wcd of the input model. In other words, ideally, for all modifications that transform a model RiM
into a new model RjM, wcd(RjM) < wcd(RiM). While Keren et al. (2019) propose four types
of modifications, here we focus on one type – action-removal – deferring others to future work.
Action-removal transformations center on modifying the set A ∈ RM to a set A′ ⊂ A.

Definition 1 (Action-Removal Transformation) A tuple α = 〈RM, a, R
′
M,∆wcd〉, where RM is a

goal recognition model, a is the action to remove fromA ∈ RM,R′M is the goal recognition problem
that results by removing a from RM, and ∆wcd is the change in wcd that results by transforming
RM into R′M. An action-removal transformation α is proper iff ∆wcd > 0.

We define a classical GRD problem as a GRD problem whose design model only contains action-
removal transformations, per the initial formulation of GRD (Keren et al., 2014).

Definition 2 (Classical GRD Problem) A tuple D =
〈
R0

M,D
〉
. R0

M is the initial goal recognition
domain model whose wcd should be minimized. D is a design model; i.e. a set of action-removal
transformations as in Definition 1.

In practice, a classical GRD problem is not stated and solved explicitly. Instead, it is (also)
solved via a compilation-planning procedure (Keren et al., 2019), which we do not detail here. The
procedure effectively calculates the value ∆wcd for all the actions in the domain, which is a key
feature we rely on for goal elicitation planning: the technique we introduce next.
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3. Goal Elicitation Planning: Eliciting Actor Goals via Embodied Observer Activity

Whereas goal recognition design asks “what domain model modifications must we introduce to
minimize the wcd?”, goal elicitation planning asks “what must an elicitor (née observer) agent do
within the domain model to minimize the wcd?” Simply put, GEP is the online analogue of GRD.

We are motivated by goal reasoning within real-world contexts: while it is possible to design
task environments that coerce actors to act in ways that reveal their intent (the motivation behind
GRD), often the design of task environments is fixed a priori. For example, if we were attempt-
ing to predict the goals of a driver (or autonomous vehicle) who is navigating on the United States
Interstate highway system, it is unreasonable to assume we will always be able to modify the high-
way circuit to elicit the goals of drivers. It is more reasonable to assume that we will be able to
orchestrate the activity of other agents (e.g. law enforcement officers) to achieve states within the
dynamics of the task environment that accomplish the same thing (e.g. setting up road-blocks).

Goal elicitation planning is conceptually simple and builds on planning, goal recognition, and
(classical) goal recognition design formalisms: given a set of assumed target goals, minimize the
task environment’s wcd, by planning to achieve a state of the world that effectively performs an
action-removal transformation. This is illustrated in Figure 1d: the elicitor in E4 has planned to
occupy C4 (highlighted in blue), which will clobber (Boutilier & Brafman, 2001) the precondition
(isFree C4) that is needed in order to execute the action (move Actor C3 C4) in the target’s
most ambiguous plan πmost-ambiguous (illustrated in Figure 1b). This potentially reduces the wcd of
the goal recognition problem from 5 to 2; in the scenario where the elicitor occupies C4, the target
must abandon πmost-ambiguous and from C3 move to B3 or D3, revealing their intended goal as being
(at A6) or (at E6), respectively (again, under the assumption of target optimality).

3.1 Goal Elicitation Plannability and Procedure

Goal elicitation plannability is a property of goal recognition domain models as defined in §2.3. We
make the simplifying assumption that both the target and the elicitor are constrained to act in the
same way. That is, both the target and the elicitor may act as given by the same set A ∈ RM.

For a goal recognition domain model RM to be goal elicitation plannable (GEPable), it must
contain at least one action that can be threatened (Weld, 1994) by another. An action athreat ∈
A threatens another action atarget ∈ A just when athreat has an effect ¬p ∈ EFF(athreat) whose
dual p appears in the preconditions of atarget, i.e. p ∈ PRE(atarget); the action atarget is said to be
threatenable. We denote the set of all such actions in a model as Athreatenable ⊆ A ∈ RM.

To anticipate: in GEP, the target’s most ambiguous plan should contain atarget, which the elicitor
will aim to effectively remove by finding a plan whose last action is athreat.

For convenience, we define a recognition model RM’s GEP number as the number of threaten-
able actions: |Athreatenable|. Stated crisply, RM is GEPable iff |Athreatenable| > 0. The GEP number
informs a human operator whether GEP has the potential to be an effective method for reducing
WCD. In the easy-grid task environment, the move operator from Listing 1 defines the template
for the 98 actions available. Since every action instance has a ground version of the precondition
literal (isFree ?to), all actions are threatenable: they are threatened by any other action that has
a matching (not (isFree ?to)) in the effects. Thus, easy-grid is GEPable.
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A threatenable action atarget’s target precondition p ∈ PRE(atarget) is what conceptually defines
a GEP Problem in the context of a model RM. Thus, a goal recognition domain model implicitly
codifies several goal elicitation problems, one for each clobberable precondition of every threaten-
able action within RM. A single GEP problem is defined by one such precondition, which we call
the elicitation condition.

Definition 3 (GEP Problem) A tuple E = 〈RM, p〉, where RM = 〈L, I, A,G, γ, fcost〉 is a goal
recognition domain model, and p ∈ L is the elicitation condition satisfying ∃atarget, athreat ∈ A : p ∈
PRE(atarget) ∧ ¬p ∈ EFF(athreat).

While our easy-grid environment contains many GEP Problems, the one illustrated in Figure 1d
is E1d = 〈easy-grid, (isFree C4)〉. As illustrated, the elicitor in E4 finds a plan – visualized
by the blue highlighted path – to clobber (isFree C4) by occupying C4 in advance of the target
arriving. The elicitor’s plan effectively performs a GRD-like action-removal. The removal is of the
form α = 〈easy-grid, (move Actor C3 C4), easy-grid′,−3〉.1

The elicitor’s goal elicitation procedure – written precisely in Procedure 1 – searches for all
the ways in which the elicitor can clobber the target’s most ambiguous plan afforded by the goal
recognition model. Thus, the elicitor does not search for a single plan, but rather for a set of plans.
As we discuss later, an elicitor may need to be strategic about how it clobbers the target’s plan.

The procedure first checks the model RM’s GEP number to determine if it is GEPable (line 4).
Importantly, we make no claims as to the relationship between the GEP number and the overall
performance of the GEP procedure. We simply note that |Athreatenable| > 0 for GEP to be possible
and envision future work of a problem formulation methodology that establishes a relationship
between GEP performance and problem structure. If GEPable, the procedure proceeds to check the
wcd reduction2 obtained via the removal of each action in the model (lines 5-6). The procedure then
creates several GEP problems for each action ai whose removal is proper – i.e. whose ∆i

wcd > 0:
one problem is created for each of ai’s preconditions (lines 7-8). Each GEP problem encapsulates
a corresponding planning problem: the problem the elicitor must solve to clobber the target’s most
ambiguous plan. The procedure then finds a plan that solves that problem (line 9). If a plan is found,
the procedure checks the last constraint the plan must satisfy (line 10): the clobbering plan must be
cheaper than the most ambiguous plan that the target will have executed up until that point. For
this, we need to be more precise about the task environment’s dynamics and how the elicitor goes
about choosing and executing their plan.

3.1.1 The Success of Goal Eliciting Plans

Whether or not the elicitor’s goal eliciting plan is successful depends on the task environment’s
dynamics. From the perspective of the elicitor, the environment has an internal dynamic beyond its
direct control that evolves per the target’s activity. Thus, if the elicitor and the target can act in a
state, what is the state that results when they both act?

1. In fact, occupying C4 performs multiple action-removals within the easy-grid environment: namely, every ground
instance of (move ?actor ?from C4) is removed.

2. While left implicit in the procedure, this involves using the GRD formulation to identify the potential reduction.
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Procedure 1 A goal elicitation planning procedure, which allows an elicitor agent to actively for-
mulate the goal of a target agent by acting to coerce the target to betray its goal.

Given: a goal recognition model RM = 〈L, I, A,G, γ, fcost〉.
Find: a set of clobbering plans Π satisfying ∀πp ∈ Π: fcost(πp) ≤ fcost(plan-until(πwcd, I, p)).

1: procedure GOAL-ELICITATION-PLAN-SEARCH(RM)
2: Let πwcd ← the plan whose length is wcd(RM) . The most ambiguous plan afforded by RM.
3: Let Π← ∅ . Start with an initially empty solution set.
4: if |Athreatenable| > 0 then . If the model RM is goal elicitation plannable,
5: for each action ai ∈ A ∈ RM do . then for each action ai in the model,
6: if ∆i

wcd > 0 then . check if removing ai reduces the wcd (the action-removal is proper).
7: for each precondition pj ∈ PRE(ai) do . If so, then for each elicitation condition in ai,
8: Let Eij ← 〈RM, pj〉 . generate a GEP problem for the elicitation condition pj .
9: Let πij ← a solution to the planning problem 〈L, I, A, {¬pj}, γ, fcost〉 . Try clobbering pj .

10: if fcost(πij) ≤ fcost(plan-until(πwcd, I, pj)) then . If it can clobber pj before it is needed,
11: Π← Π ∪ πij . then the clobbering plan πij is a potential solution.

12: return Π

In this work, we assume a game-theoretic planning multi-agent model (e.g. Brafman et al.,
2009). This model fully partitions the states of the task environment into two sets: elicitor states
and target states. In the former, only the elicitor may act and in the latter only the target may act.
In game-theoretic terms, the task environment is symmetric (agents have the same moves available),
and sequential (agents take turns).

For an elicitor’s plan to succeed – and thus for a such a plan to be a solution to a GEP problem
– their clobbering plan must be cheaper than the most ambiguous plan that the target will have
executed up until that point. Given the turn-taking model, we now precisely state what that means.
For convenience, we define a function plan-until(π, I, p), which denotes a subsequence πsub of π –
thus, plan-until(π, I,G) = πsub ⊆ π is itself a plan – for which the last state sm in trace(πsub, I)
is the state in which p is used as a precondition for the remaining plan (π \ πsub).

We assume the target goes first. Let πwcd denote the target’s longest non-distinctive plan in RM
and suppose we have an elicitor’s plan πp that clobbers p for the GEP problem E = 〈RM, p〉. In
essence, πp is a GEP solution if its last step executes prior to when p is first needed in the πwcd plan.

Definition 4 (GEP Solution) A plan πp = [a1, ..., athreat] is a solution to a GEP problem E =
〈RM, p〉with modelRM = 〈L, I, A,G, γ, fcost〉 just when: (a) ¬p ∈ EFF(athreat), and (b) fcost(πp) ≤
fcost(plan-until(πwcd, I, p)).

The function plan-until(πwcd, I, p) denotes a subsequence πsub-wcd ⊆ πwcd for which the last
state in trace(πsub-wcd, I) is the first one in which p is subsequently needed. In other words, it returns
the target’s plan up until p is first needed by the target’s remaining plan. Thus, if the elicitor’s plan
πp is cheaper to execute than that subsequence, the elicitor will force the target to abandon the
remaining (unexecuted) portion of πwcd, making πp a solution.

In our example, the target’s plan πwcd (which starts executing first) first needs (isFree C4) after
the first two actions (move Actor C1 C2) and (move Actor C2 C3); the subsequent action (move
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Actor C3 C4) has (isFree C4) as a precondition. Thus, plan-until(πwcd, I, (isFree C4)) =
πsub-wcd = [(move Actor C1 C2), (move Actor C2 C3)]. Further, fcost(πsub-wcd) = 2.

The elicitor’s plan in Figure 1d is [(move Elicitor E4 D4), (move Elicitor D4 C4)]; this
plan accomplishes (not (isFree C4)) via the last action athreat =(move Elicitor D4 C4) (first
GEP solution condition), and has a cost fcost(π(isFree C4)) = 2 ≤ fcost(πsub-wcd) (second
GEP solution condition). Thus π(isFree C4) is a solution plan to the GEP problem E1d =
〈easy-grid, (isFree C4)〉.

3.1.2 The Choice of Which Goal Eliciting Plan to Execute

Procedure 1 determines a set of plans that the elicitor may carry out to elicit the goals of a target.
We assume that the elicitor is acting lazily: that is, the elicitor picks a plan that works “just-in-time”
to clobber the target’s most ambiguous plan. Thus, the elicitor’s plan πp will align with the target’s
plan such that athreat executes immediately before condition p is needed. We therefore assume
that whenever the elicitor may act, the elicitor may opt to not act; for this, the task environment
must support some dummy (no-op ?agent) action with no preconditions or effects that simply
consumes the elicitor’s turn to enable such an alignment. Equivalently, the elicitor may act eagerly
and execute the plan up until πp is clobbered and then perform a (no-op ?agent) action until the
target’s plan is derailed. This assumption, coupled with the turn-taking assumption, lets us treat GEP
solutions as ones of achievement (Vattam et al., 2013): achieving goals with no temporal duration,
satisfied by the instantaneous satisfaction of some goal condition. Future work might expand our
model to consider maintenance goals, where the GEP problem’s clobbering condition ought be
maintained for some temporal extent (possibly forever).

There is some flexibility between the extremes of acting lazily and acting eagerly. To anticipate
our later discussion: if there is any need for a (no-op) action, the elicitor’s choice of which plan
to execute becomes strategic. The elicitor may choose to act cost-sub-optimally for as many moves
as there are (no-op)’s, and what the elicitor does could be guided by (for instance), the elicitor’s
anticipation of the target’s observation of the elicitor. We return to this theory-of-mind reasoning –
which we posit may have material consequence for the elicitor – after we discuss what it means for
conducting GEP in non-cost optimal contexts.

3.2 From Cost-Optimal to Bounded Non-Optimal Agents

To account for non-cost-optimal (i.e. non-optimal) agents, we follow the strategy by Keren et al.
(2015), and define non-optimality as a bounded rationality measure. Thus, a non-optimal target
agent has a budget, b ∈ R>0, enabling them to pursue non-optimal plans up to fcost(π

∗) + b to their
goals. The budget b is added as a dimension to the GEP problem, yielding a bounded non-optimal
GEP problem.

Definition 5 (Bounded Non-optimal GEP Problem) A tuple Eb = 〈RM, p, b〉, where RM =
〈L, I, A,G, γ, fcost〉 is a goal recognition domain model, p ∈ L is the elicitation condition as in
Definition 3, and b ∈ R>0 is the target’s non-optimal behavior budget.

GRD accounts for non-optimal agents when calculatingwcd by showing that paths only increase
in cost from the optimal plan and therefore the same wcd reductions apply. For GEP, the increase
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(a) The elicitor cannot find a plan πp

to threaten the target’s plan πwcd.
(b) The elicitor can find πp for a
non-optimal target with b = 2.

(c) The elicitor has greater flexibility
for a non-optimal target with b = 4.

Figure 2: An elicitor is able to achieve increasingly flexible GEP solutions as the non-optimal budget
of the target increases. In (b) and (c), the elicitor targets the removal of action (move Agent C3 C4)

to reduce the wcd, whereas the target goes as far toward row A as the budget allows.

in plan cost affords an elicitor more leeway in GEP solution cost. The elicitor can therefore achieve
a wcd reduction for more actions. We account for the greater number of wcd reductions due to
non-optimality by defining more GEP solution types.

Figure 2 illustrates the effect of permitting the target to exhibit bounded non-optimal behavior
in our original easy-grid environment. Here, the elicitor starts in a new location E1. In Figure 2a,
the budget b = 0, making it impossible to arrive at C4 in time to force the target to reveal their goal.
In this case, our GEP agent would fail to achieve the same wcd reduction as GRD.

When the target’s budget is 2, however, they are allowed to deviate from the optimal path (Figure
2b). In turn, the elicitor can now potentially solve the GEP problem: a wcd reduction by removing
(move Agent C3 C4) is minimally possible if the target uses their entire budget. The corresponding
clobbering plan is considered a minimal GEP solution, because the elicitor will have just enough
time to clobber (isFree C4). For clarity, let πuntil-p

wcd = plan-until(πwcd, I, p). Then:

Definition 6 (Minimal GEP Solution) A plan
⌊
πbp
⌋

= [a1, ..., athreat] is a minimal solution to a
bounded non-optimal GEP problem Eb = 〈RM, p, b〉 with model RM = 〈L, I, A,G, γ, fcost〉 just
when: (a) ¬p ∈ EFF(athreat), and (b) fcost(

⌊
πbp
⌋
) = fcost(π

until-p
wcd ) + b.

If we increase the target’s budget to 4 (Figure 2c), the elicitor is afforded even more opportunity
to prevent movement. If the target uses their entire budget, the elicitor will arrive at C4 with several
moves to spare. The elicitor’s clobbering plan is considered a partial GEP solution; in effect
it provides a “(cost) window of opportunity” for the elicitor, which may or may not materialize
given the target’s actions. The cost window’s lower bound is fcost(π

until-p
wcd ), and its upper bound is

fcost(π
until-p
wcd ) + b.

Definition 7 (Partial GEP Solution) A plan [πbp] = [a1, ..., athreat] is a partial solution to a bounded
non-optimal GEP problem Eb = 〈RM, p, b〉 with model RM = 〈L, I, A,G, γ, fcost〉 just when:
(a) ¬p ∈ EFF(athreat), and (b) fcost(π

until-p
wcd ) < fcost([π

b
p]) < fcost(π

until-p
wcd ) + b.
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Table 1: The GEP Number for each problem in the easy-grid and modified easy-grid′ domains.

Domain GEP Number
p01 (Problem-01) p02 p03 p04 p05

easy-grid 0 0 0 0 0
easy-grid′ 160 76 108 102 102

4. Evaluation

Our evaluation has two aims. The first aim is to show that domains have inherent properties that
make them conducive to GEP as we described in Section 3.1. The modifications we made to the
benchmark easy-grid to increase its GEP number are summarized in Table 1; these modifications
result in the actual domain used for evaluation, which we refer to as easy-grid′. Our second aim
is to demonstrate that achieving a minimum wcd at run time is possible using the GEP constructs
presented in Section 3. We provide preliminary results forwcd reduction using optimal and bounded
non-optimal agents, using the easy-grid′ domain and problems.

Domains We use a modified benchmark domain from those used by Ramírez & Geffner (2009) for
goal recognition as classical planning. Specifically, we use the five problems from the easy-grid

domain; while simple, the domain supports our evaluation goals. Recall that for GEP to be possible,
the problem’s GEP number must be greater than 1. We therefore modified the original easy-grid
domain by modifying its move operator in two ways; the net result is the operator that appears

in Listing 1. First, we added an ?agent parameter to afford multiple distinct agents to take the
same action. Second, we added the predicate (isFree ?loc) to its preconditions as well as (not
(isFree ?loc)) to the effects. These changes ensure that two agents cannot co-occupy the same
place and increases the GEP number as indicated in Table 1.

Procedure and Results We implemented Procedure 1 and applied it to the easy-grid′ bench-
mark problems. We focus on action removals as it is the foundation from which we can build GEP
versions of the remaining three GRD domain modifications (action conditioning, single-action sen-
sor refinement and sensor placement) Our software uses the public software repositories for both
GRD and the Fast Downward (FD) planner (Helmert, 2006). We use the GRD software to calculate
the wcd for each problem. Our implementation is publicly available at https://anonymous.4open.
science/r/c8e1b370-9657-4001-8cac-a734230f6581/.

Optimal Agents Figure 3 contains the minimum wcd when applying GEP for optimal agents in
the easy-grid′ domain. We compare GEP results to the initial wcd (with no GEP or GRD) and
the minimum wcd achieved using GRD action removals. In problems p02 and p03, neither GEP or
GRD improves the initial wcd. This lack of wcd improvement is a function of the problem design
where goal achievement pathways are very ambiguous and do not include any actions that improve
goal elicitation. Conversely, in p01 and p05 both GEP and GRD improve the minimum wcd by 1.
While only a smallwcd improvement, it does demonstrate that GEP can achieve online performance
equivalent to the offline GRD. Lastly, in p04 we observe a case when GEP does not achieve the same
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Figure 3: wcd for easy-grid′ obtainable via GEP (online, via an elicitor agent), GRD (offline), and
baseline (no reduction), for an optimal target agent.

Figure 4: Number of actions that achieve the minimum wcd using GRD/GEP for optimal targets.

minimum wcd as GRD. This discrepancy emerges because the elicitor cannot generate a plan (via
FD) with a cost less than 4. Thus, the elicitor arrives “too late” to block the target and is not able to
reveal their goal as early as GRD does.

Figure 4 contains the number of actions that achieve the minimum wcd in each problem. In
p01, GRD and GEP both achieve the minimum wcd but GRD has more actions that do so (10
v. 7, respectively). This is because the elicitor is unable to find plans with a cost less than 9 for
some of the actions. In problems p02 and p03, neither GRD nor GEP achieved the minimum wcd
and therefore no actions achieve minimum wcd. In p04, GRD achieves the min wcd but only with a
single action compared to GEP that does not achieve the min wcd at all. Lastly, in p05 both methods
achieve the min wcd with a single action.

Bounded Non-Optimal Agents As before, bounded non-optimal agents have a budget allowing
them to deviate from optimal plans toward their goals. Figure 6 contains the results of applying
GEP to the easy-grid′ domain for non-optimal agents with a budget of 2. Here, GEP now achieves
the same wcd as GRD in p04. This improvement is due to the non-optimality of the target, which
increases the window for a (minimum) GEP solution to threaten an action and obtain a maximal
wcd reduction. Results for p01 and p05 remain equivalent for GEP and GRD. Like the optimal
target agent results, neither GEP nor GRD improves upon the minimum wcd in p02 and p03.

Like before, we investigated the number of actions that achieve the minimum wcd. Figure 5
contains the number of actions that achieve the minimum wcd in each problem for non-optimal
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Figure 5: wcd for easy-grid′ obtainable via GEP (online, via an elicitor agent), GRD (offline), and
baseline (no reduction), for a bounded non-optimal target agent with (budget) b = 2.

Figure 6: Number of actions that achieve the minimum wcd using GRD/GEP for bounded non-
optimal targets with (budget) b = 2.

agents. We note that in p01, GRD and GEP both achieve the minimum wcd but GRD has more
actions that do so (10 v. 9, respectively). This is due to the elicitor being unable to find plans with
a cost less than 9 for some of the actions. This has increased in comparison to the optimal agent, as
the bounded non-optimal agent provides the GEP agent an extra plan cost buffer needed to threaten
a move action. In problems p02 and p03, neither GRD nor GEP achieved the minimum wcd and
therefore there are no actions. In p04 and p05, both GRD and GEP achieve the min wcd with a
single action. Again, due the non-optimal agent, the elicitor can now arrive in time to achieve the
min wcd with a single action whereas they did not in the optimal case.

Discussion Our results provide evidence that GEP can achieve minimum wcd reductions equiv-
alent to GRD for both optimal and bound non-optimal target agents in the easy-grid′ benchmark
problems. In p04, we identified a case where the target agent type (i.e. optimal v. bounded non-
optimal) affects whether GEP achieves the minimum wcd reduction. Further, in p01 we show that
while GEP achieves the same wcd reduction, it has fewer options (actions) to choose from. This
is due to plan cost being greater than the minimum wcd and the elicitor being unable to arrive “in
time” to prevent the key action from being executed. Once again, the target agent type affects the
number of actions a GEP agent can threaten. A non-optimal agent provides a greater window of
opportunity for the elicitor to threaten key actions.
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We also found that domains have an inherent property, their GEP number, that makes them
amenable to favorable GEP results, such as easy-grid. GEP is more effective in domains with
actions whose preconditions are threatened by other actions. Negating preconditions of other actions
gives an elicitor greater coverage of removed actions and more options to generate a GEP solution.
While we made a reasonable modification to the easy-grid domain to demonstrate these results,
we expect to formalize this handcrafted approach with an automated problem formulation method
in future work.

5. Related Work

GEP is a technique that allows an agent to actively formulate the goals of another. Extant research
within the goal reasoning community has primarily focused on self -goal formulation (e.g. Wilson
et al., 2013) or on the passive formulation of another’s goals (discussed below).

As discussed, an agent’s formulation of the goals of another is one of the central concerns of the
PAIR community. However, most methods assume that the observer is external to the environment
being analyzed. Thus, GEP differs from extant research in PAIR in a significant way: in a PAIR-
sense, GEP enables an observer to proactively take actions in their environment to recognize the
actor’s goal, as opposed to passively observing their actions.

Two nascent bodies of work have departed from the trend of disembodied PAIR, both (con-
fusingly) referred to by the same name: active goal recognition. The first, by Amato & Baisero
(2019), interleaves goal recognition and planning: an embodied PAIR agent must balance comple-
tion of their own tasks with information gathering about the behavior of some other agent. In GEP,
however, the PAIR agent (elicitor) is planning for the express purpose of information gathering
about the behavior of some other agent (the target). The second, by Shvo & McIlraith (2019) is
closer to our work but still distinct. Their PAIR agent can perform two kinds of sensing actions:
those that sense actions (the standard approach in PAIR) and those that sense actions (a novel kind
of sensing). By sensing states and relying on task environment landmarks – states that must ap-
pear in every solution of a planning problem – their PAIR agent can better eliminate and confirm
goal-hypotheses. However, they defer actively impeding or aiding the target to future work, which
is precisely the work we do here.

The goal reasoning community uses PAIR methods to inform action. Pozanco’s 2018 work on
counterplanning –passively identifying goals then actively blocking them– is related in that elicits
goals but in a passive manner using landmarks. GEP differs by actively eliciting goals without using
landmarks and is currently socially agnostic, neither blocking or aiding the target, as opposed to
blocking the target’s goals as in counterplanning. Active behavior recognition (Alford et al., 2018)
reduces the ambiguity of another agent’s goal by taking actions. Actions are determined through a
case-based reasoning method and reduce the ambiguity of a target’s goal in a probabilistic manner.
Active behavior recognition differs from GEP in its probabilistic assessments of target goals and
reliance on historical behaviors in a case library.

Finally, GEP generalizes the (turn-taking) adversarial game-theoretic planning model (e.g. Braf-
man et al., 2009), and at the same time constrains it: in GEP, the game-theoretic utility of the elic-
itor is always couched with respect to successfully eliciting the target’s goal. While we have not
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explored a reified notion of utility in this paper, we note that a non-cost-optimal elicitor agent must
carefully balance the utilities of acting or not toward clobbering a GEP problem’s elicitation condi-
tion. While eliciting the target’s goal is (arguably) of highest utility to an elicitor, the elicitor may
want to account for the target observing the elicitor themself; the elicitor may want to avoid acting
in a manner that betrays which clobbering condition they are pursuing, or may want to act to suggest
the wrong clobbering condition in the mind of the target thereby “throwing the target off.”

6. Conclusion

Discovery within and adapting to dynamic environments is a key feature of goal reasoning agents.
As such, recognizing another agent’s goals is an essential social function necessary for coordinat-
ing and managing goals. While passively observing and inferring a target agent’s goal has been
the modus operandus of PAIR methods, a goal reasoning agent has the ability to act within their
environment, shaping it to reveal another agent’s goal and manage it with other priorities. We have
leveraged a goal-reasoning agent’s ability to act in their environment along with GRD’s PAIR frame-
work to create a new capability called GEP. Goal reasoning agents now have the the capability to
take actions, instead of only observing, that reveal a target agent’s goals at the earliest possible time.

Our GEP formalization extends the existing GRD framework by making wcd reductions online
and includes three contributions. First, we show that GEP is domain-problem independent. A
problem’s GEP number represents the number of actions that can be threatened. This is an essential
property of a problem as it provides a GEP-enabled agent the options to prevent actions being
executed by the target agent, coercing the target to reveal their goals. For a problem to be GEP-able,
its GEP number needs to be greater than zero. Second, GEP achieves similar performance to its
offline counterpart, GRD. We show that for GEP to achieve a wcd reduction for a given action, GEP
must threaten the action with a GEP solution plan with a plan cost less than the wcd that would
result from removing the action entirely. Results from the easy-grid′ benchmark problems show
that GEP achieves an online wcd reduction equivalent to it’s offline counterpart, GRD, in four of the
five problems when the target agent behaves cost-optimally. Our third contribution shows that GEP
extends beyond identifying cost-optimal agent goals. Non-optimal agents have a cost budget which
they can use to deviate from the optimal path towards their goals. This extra window of time, when
used by the target agent, affords GEP the opportunity to execute plans that did not successfully
threaten the action in time under the optimal agent assumption. We define partial-achievement
and minimal-achievement GEP solution plans to refine under what assumptions GEP can achieve
different wcd reductions. Our easy-grid′ benchmark results show that when the non-optimal agent
uses a budget of 2, GEP achieves the same wcd reductions as GRD across the benchmark problems.

There are several avenues for immediate investigation. Foremost is to integrate the capabil-
ity into existing goal reasoning agent frameworks. Both the ActorSim framework (Roberts, 2016)
and the MIDCA meta-cognitive architecture (Cox et al., 2016) are intriguing candidates. Another
key investigation is to automate a problem formulation methodology that contains the GEP domain
performance criteria. Automating the criteria will enable GEP performance estimates and provide
insights into domain modifications so GEP can be applied to additional benchmarks and more prac-
tical applications such as games.
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