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Abstract
In psychology, it is largely agreed that declarative memory includes two components: episodic
and semantic memory. Episodic memory is a collection of an agent’s experienced events that have
temporally and spatially related information associated with them. Semantic memory is a collection
of facts and concepts that may not depend on a particular time and place. Being able to retrieve an
episode given a new observation can help an agent reason about its current situation. Thus, finding
the best match between the current state and an episode in memory is a necessary function of an
episodic memory system. We present a novel approach, based on Ripple-Down Rules (RDR), for
matching and retrieving events stored in episodic memory. We evaluate our approach on a set of
unique simulated events that may be experienced by a domestic robot on a daily basis. Our results
show that on average, with only two observations of a given event, the system can learn a set of
matching rules to accurately recall events of that type at a later point in time.

1. Introduction

The concept of episodic memory was first presented by Tulving (1972) when he distinguished be-
tween episodic and semantic memories. He conjectured that episodic memories are time lagged and
have a context associated with them. All episodic memories have three fundamental components
that they share. They all have a time, a location and for them to be created, something had to happen.
For the purpose of this paper we will refer to that something as an action. To use the information
in episodic memory it is essential to be able to retrieve episodes that match new observations. We
use cue to refer to a stimulus that invokes a memory. Previous work on episodic memory in cog-
nitive architectures include SOAR (Laird et al. (1987); Derbinsky & Laird (2009); Nuxoll & Laird
(2012)), EPIROME (Jockel et al. (2007)) and work by Chang and Tan (2017).

All of these systems use a uniform procedure to match a retrieval cue to stored events. This
can lead to incorrect retrievals because each type of event is unique and information that is rele-
vant to one event may not be relevant to another. Relying on a single matching procedure for all
types of events means either constraining events to ensure that each type contains the same kind of
information or sacrificing accuracy in the retrieval of an event.

We address these issues by introducing a novel approach for retrieving past events, or episodes.
The system incrementally learns matching rules that are customised for each type of episode, using
Ripple Down Rules (RDR) (Compton & Jansen (1990); Compton et al. (1992); Gaines & Comp-
ton (1995)). An RDR is a rule structure that can be updated incrementally as new information is
presented. RDRs enable the system to learn different matching conditions for different event types,
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Figure 1: A person sees rain which correctly recalls an experience of getting caught outside.

depending on what is relevant to that event. For example, in one event, a glass falls off a table and
breaks and a robot must clean it up. In another event, a friend comes to visit on a Monday evening
and the robot makes a cup of tea. Both are events that are likely to occur in a typical home and
both events have mostly the same types of information present, a time, a location, an action, etc.
However, as should become clear on a second observation of a glass falling, the time and location
of that event is irrelevant. A glass can fall off any table, anywhere, at anytime and the consequences
are the same, whereas a friend coming to visit on a Monday evening may be a ritual and the time
and location of that event are relevant to the recall. If a friend were to visit on a Friday evening, it
may trigger a different memory, as the context is different and you no longer wish for the robot to
make a cup of tea, but get a beer from the fridge.

Case Based Reasoning (CBR) research has explored the issue of episodic recall extensively.
However, there are several problems that previous approaches fail to address. CBR methods, such
as Homem et al. (2020) usually rely on a qualitative similarity measure, which is often a simple
calculation based on the quantity of common information between two cases. Smyth & Keane
(1994) note that instead of simply retrieving the most similar cases a system should retrieve the case
that is most easily adaptable to achieve the goal of the current task. They use a look ahead method
that models the cost of adapting a particular case to solve the goal before retrieving it. Modelling the
cost of adapting a case in memory to the current observation is important, and in a domain where
the actions that an agent needs to execute are finite and known, such as a warehouse, this works
well. However, in a domestic environment, a robot may have to perform the same kinds of tasks in a
variety of contexts for different reasons. Therefore, modelling the cost of adaptation is very difficult
and often impossible. This is largely due to the fact that different kinds of events have different
information that is relevant. Therefore, an adaptive recall policy is needed. Learning such a policy
using an RDR provides this capability and because RDRs are trained incrementally, we do not need
to collect a large data set before being able to use the policy.

An RDR update occurs when a new case is not correctly classified by the existing set of rules.
This new case becomes a “cornerstone case”, which can be used to explain why a new rule was

2



created. People often find an explanation clearer when presented with examples. In this case, the
explanation describes the differences between cases that caused the system to produce different
conclusions. Explanation is important in a domestic robot as people tend to trust a system more if it
can explain its decisions (Korpan & Epstein (2018)).

We show that an adaptive matching procedure achieves highly accurate recollection of relevant
episodes, with minimal training. We also show how RDRs address many of the issues that we have
identified with current episodic recall techniques, such as noisy retrieval cues or nearest neighbour
techniques matching incorrect events. We evaluate our approach on ten different types of simulated
events.

2. Related Work

Episodic memory in AI often takes its inspiration from cognitive psychology. Episodic memory
was first described by Tulving (1972) when he distinguished between episodic and semantic mem-
ory. This definition was further extended, in 1983 (Tulving (1983)), when Tulving conjectured that
declarative memory was composed of both episodic and semantic memories. Episodic memories
are collections of events experienced by a person and are highly contextualised. This means that
each memory has a time, a location and an action associated with it.

Wheeler & Ploran (2009) propose a similar definition, however they provide more scientific
evidence for the theory by presenting studies showing how people can be episodically, but not
semantically impaired and how people who are episodically impaired are significantly less capable
at performing cognitive functions.

In AI, much of the work to date using episodic memory has focused on improving an agent’s
performance on a given task. Liu et al. (2017a,b) propose using episodic memory to improve robot
planning under uncertainty. The idea is that the use of previously observed events can reduce alias-
ing in perceptual data. Botvinick et al. (2019) look at how episodic memory can be used to improve
traditional reinforcement learning techniques by showing how it can be used for more efficient sam-
pling. Lin et al. (2018) also address the issue of sample inefficiency in reinforcement learning using
episodic memory. Here they use episodic memory to supervise an agent during training, the idea
being that episodic control can remember experiences during training that returned a high reward
and then replay these experiences during evaluation.

The use of episodic memory has been quite prevalent in dynamic memory networks for question
answering, as addressed by Xiong et al. (2016) and Kumar et al. (2016). The episodic memory
module passes a memory from one hidden state of a network to the next. The episodic memory
system can make multiple passes over the input, gaining a better understanding of the question.

Much of the above work focuses on using episodic memory for neural networks or reinforcement
learning and is used in a very different context to how we are using episodic memory in this paper.

In cognitive robotics, Derbinsky & Laird (2009) describe an episodic memory system in the
SOAR cognitive architecture (Laird et al. (1987)) and discuss how it can be efficiently implemented.
To retrieve events, SOAR finds the nearest neighbour to a retrieval stimulus, referred to as a cue.
Nearest neighbour methods are vulnerable to retrieving incorrect episodes, especially when two
episodes are semantically similar. While SOAR addresses many of the problems that are associated
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with nearest neighbour techniques, for example by providing agents with meta-data to detect sub-
perfect matches, it is still not guaranteed to retrieve the correct match. The use of RDRs ensures
that if the correct event is in the collection of episodic memories, it will be retrieved and nothing
will be retrieved if that event is not present. In the latter case, a new episode is created and stored.

In SOAR, an event is created every time an agent performs an action. While this is a valid
approach, events may occur independently of the agent’s actions and may occur even when the
agent is not present.

Nuxoll & Laird (2012) show how episodic memory can enhance an agent’s cognitive capabil-
ities. They use an activation function to determine whether or not an episode should be kept or
thrown away. This is an essential functionality, as it prevents an episodic database from getting too
large. While we do not address this issue in this paper we do acknowledge the extent to which is
can improve performance in retrieving episodic memories and we note that lacking it is a limitation
of this work.

Similar to Derbinksy and Laird, they store an episode every time the agent performs an action
in the world. This approach is applicable when the world that the agent inhabits is a game and its
only job is to play the game. Our agent is a domestic robot, operating in a home environment, with
other human and robotic agents. The robot’s world model consists of a database of predicates, and
events are detected as a change of state, i.e. a change in the database. Thus, a new episode may be
recorded independently of an agent’s actions, even if the agent did not explicitly observe the event
at the time that it occurred, but detected a change later. This could occur if, say the robot left a room
and returned to find it different to when it left, inferring that some exogenous action occurred to
cause the change. Like SOAR, we store all events generated by an action, but this need not always
be necessary. For example, as people we rarely remember subconscious actions that have become
automatised through practice.

EPIROME (Jockel et al. (2007)) is a framework for investigating high-level episodic robot mem-
ory, in which episodes are divided into perceptual, command and intentional types. While these
apply to robots operating in a real world environment, they are “hardcoded” into their framework,
whereas our system can handle new event types, because we learn the matching procedures.

Rosenthal & Veloso (2012) describes a system that incorporates something similar to episodic
memory. Their robot requests people to help it around an office in a way that limits interruptions.
For this, they need a knowledge base of who will be in a particular office at a particular time and
who is willing to help. The knowledge base is very episodic in its structure, even though the paper
does not explicitly mention episodic memory.

Case Based Reasoning (CBR) attempts to solve problems based on solutions to similar problems
that have been previously seen. Kolodner (2014) and Sharma & Sharma (2020) review recent work
on CBR. In retrieving cases, many CBR methods use a two-phased approach. This typically involves
a simple, inexpensive retrieval to select some candidate matches, followed by a more fine-grained
method for ranking the matches. Kendall-Morwick & Leake (2014) compare popular two-phased
retrieval methods and note the design considerations necessary for efficient and effective recall. For
example, one of the common methods for efficient recall is to have a fixed retrieval window in the
phase-1 retrieval so that the phase-2 retrieval time is capped. They conclude that different domains
have different demands for retrieval strategies as would be expected.
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This paper mainly focuses on accurate event retrieval. Aside from SOAR, or its variants, this
has received limited attention in the context of cognitive robots. Lim et al. (2011) use a compound
cue to retrieve events, which is problematic because it relies on several matches of attributes of two
events. In a large enough collection of events, this will almost certainly lead to multiple matches.
Shen et al. (2013) propose a method that can retrieve events even with partial or noisy matching
cues. This method has been subsequently out performed by Chang & Tan (2017), who propose a
method that is based on a generalised self organising neural network known as Adaptive Resonance
Theory. The problem however, is that while it performs well on noisy or partial matching cues,
there will still be incorrect retrievals.

The use of RDRs removes the problem of noisy or partially matched cues, as will become
clear later. We argue that information contained in an event is context dependent and that one type
of information that is relevant to one kind of event is irrelevant to another. To attempt to fit one
retrieval method to all types of events does not work in a complex environment, such as that of a
domestic robot. Therefore, we present this novel approach for retrieving events stored in episodic
memory using ripple down rules. We also present our method for representing events. After training
a ripple down rule on a given event type just once, we can achieve highly accurate recall.

3. Event Representation

Many of the above mentioned systems represent events as actions of an agent in a particular sit-
uation. However, events may also be due to exogenous actions and, may not be observed by the
agent at the time that the event occurred. Therefore, our representation of an event is based on a
qualitative state change in the world model.

Actions are defined using the PDDL task planning language. The current state of the world is
represented by a set of predicates organised within a topological map. Recall that our application
domain is that of a domestic robot. A map of the environment is a fundamental component in its
planning, reasoning and communication with other agents. An initial geometric map is generated
by the robot’s simultaneous localisation and mapping (SLAM) system. This is converted into a
topological map that includes labels of regions, e.g. the rooms of a house and objects in them. Pred-
icates in the world model include spatial relations between those objects and regions. For example,
the agent’s position may be represented by an (agent at ?wp) predicate where wp represents the
current way point such as kitchen or dining room. All actions have preconditions and effects. If, at
one point in time, the preconditions of an action are satisfied and if at some point in the future the
effects of an action have been achieved, then it is assumed that that action must have occurred.

Let a predicate, P , represent a belief in the world. Let, A, be an action and let the world at time,
t, be represented by Γt, where

Γt =< P1∧, . . . ,∧Pn >

The following is the PDDL representation of a robot moving from one location to another.
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(: action goto waypoint

: parameters(?r − robot ?from ?to− waypoint)
: precondition((robot at(?r, ?from)))

: effect(and

(not(robot at(?r, ?from)))

(robot at(?r, ?to))

)

)

An alternative way of describing any action uses Allen’s temporal logic ( 1990). Let, X , be a
state that occurs at time t. Y , is a successor state at time t+1 and, A, is the associated action:

∀X,Y : X 6= Y ∧ {X � Y } =⇒ A

Or in terms of the world model:

(Γt 6= Γt∗) ∧ (Γt � Γt∗) =⇒ A

This tells us that action A can be deduced if we see state X , followed by state Y provided states
X and Y are not equal. Making the closed world assumption, the world model tells us everything
that is currently believed to be true in the robot’s environment. If one of those beliefs changes, then
something must have happened. In addition to the action definition, the episodic memory also stores
the matching rules, so we need a more complex structure than just the PDDL action model. This
will be described in more detail below, where we explain how episodes are represented as frames
(Minsky (1975); McGill et al. (2008)), in a graph database.

Before we go into these in detail, we address some concerns regarding when we choose to
remember an episode. As noted above, the system creates an event when there is a change in the
world model. However, this can lead to every change triggering a new episode regardless of how
inconsequential that change is. There are several ways that this can be dealt with. We briefly
describe these methods below, but a detailed discussion is outside the scope of this paper.

The first method is to have a pre-defined domain where all actions that could possibly happen
are already defined. This is how the world must be defined for most planners (e.g. Fast Forward
(FF) Hoffmann (2001)). This can work, however, it also means that new actions cannot be learnt and
must be explicitly added to the domain. The other method is to ignore some events as remembering
them has typically proven not to be useful. This involves using some form of attention mechanism
and a threshold value, as described by Nuxoll & Laird (2012). If an event does not excite the
attention mechanism above the threshold value, then it is not stored.

The latter method is the most practical for a domestic robot. For example, in the case of a robot
getting a person a glass of water, the goal is for the person to have the water. However, in executing
the task, several other actions may also be performed, such as going to the tap, picking up a glass,
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filling the glass etc. To prevent biasing the robot with domain specific knowledge, the robot would
need to initially consider each of these actions as a separate event. However, over time, the robot
should learn that these additional actions are only intermediate to achieving the final goal and are,
in themselves, not episodes.

As a consequence, we define an action hierarchy in which a compound action may consist of
a sequence of intermediate, lower level actions. We represent the compound action as A and the
intermediate actions as αn, where n ∈ [0, . . . , t], assuming there are t intermediate actions in the
sequence:

A ← αt � αt−1 � · · · � α1 � α0

For ease of explanation we will only use the term action to refer to the action that led directly to
the goal of the episode and not any of the intermediate actions, if any. Thus, an action in an episode
is treated as a single action. As in our previous example of getting a drink for a person, this action
can still be described by a PDDL action model, the precondition of which is that the person does
not have a drink and the effect is that the person does. It is remembered because it has achieved a
goal that was given to it by the human.

Each episode is represented as an instance of a generic frame called episode which has slots
that contain data that are relevant to the episode. Previous systems, such as Tecuci & Porter (2007),
represent generic events as a triple, consisting of a context, contents and outcome, where context
is the setting that an episode took place in, contents are the set of events that make up an episode
and the outcome is the episode’s effect.

Our representation is similar, except that the contents are replaced by the compound action,
mentioned above. Thus, each episode must have an action slot. Each episode also has a time and a
location slot. Episodes can be linked to other episodes through a connected event slot. A connected
event is another event or episode with a temporal relation to the event that it is connected to. These
temporal relations are expressed as one of Allen’s temporal intervals (Allen (1990)).

To summarise a generic episode has the following slots:

• action - an instance of generic frame action.

• time - an instance of the generic frame, time.

• location - an instance of the generic frame location.

• connected events - other events that are connected to this event.

• other information - any other data that are present at the time of the event

The main difference between our generic episode representation and that of Tecuci and Porter
is that we refer to the contents as being a single action rather than a sequence of actions. Initially,
each action is treated as a separate event, and that is how we describe events below. To construct a
compound action, the system needs a method of identifying commonly occurring action sequences,
but that is outside the scope of this paper.
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An action frame consists of a name, parameters, preconditions and effects. Preconditions and
effects are predicates that are also frames and contain a name, attributes, arity and whether or not
the predicate is negated. Much of this stems from the PDDL representation language. A connected
event contains another episode and the temporal relation to the connected event. The temporal
relation is one of Allen’s temporal intervals. If event B were to happen after event A and the two
were connected then event B would be the connected event with temporal relation succeeds. That
is:

connected(A,B) ∧ succeeds(B,A)

The other information slot is unspecified. It contains whatever data presents to the agent at the
time the episode was created.

Every generic frame has its own ripple down rule (RDR). The RDR defines what constitutes a
valid match for that type of frame. In the following section, we explain the operation of RDRs and
why they are well-suited to learning matching procedures. We then explain how they are used in
our system.

3.1 Ripple Down Rules

Ripple Down Rules were introduced by Compton & Jansen (1990) as a knowledge acquisition
method for knowledge-based systems. RDRs are learned incrementally, guided by a trainer. An
initial rule serves as the default:

if true then no match

If a new case causes a rule to fire when it should not, a new exception rule is added with the correct
conclusion. That is, the initial rule is specialised. Suppose we are training the RDR to learn to
recognise fruit. The default is no match. If the next training example is a banana, we may add an
exception rule:

if true then no match except
if colour = yellow then banana

Now suppose, an apple is presented. The ‘banana’ rule fails, so the RDR must be generalised by
adding an alternative rule:

if true then no match except
if colour = yellow then banana

else if colour = red then apple

The new condition for the new rule is obtained from the differences between an old case for
which the rule was correct and the new case that failed. The trainer, which is a person that indicates
when a rule has fired incorrectly, has the option of discarding conditions if they are judged to be
irrelevant. For example, if the banana is large and the apple small, the system may include size as an
attribute to test. Without trainer supervision, further examples will be needed to eliminate size from
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consideration. Thus, the trainer’s knowledge can help to reduce the number of training examples
needed and, consequently, reduce the complexity of the RDR.

Because RDRs store the “cornerstone cases” that caused a new rule to be added, they can provide
explanations for their decisions in the form of the conditions satisfied to reach a conclusion and also
by presenting example cases.

RDR learning is incremental, which suits our application well. The setting for our experiments
is a domestic robot that interacts with the human occupants of a home. We want the robot to be able
to retrieve relevant past episodes to assist it in its reasoning about a current situation. If an irrelevant
episode is retrieved, RDRs provide a simple method of correcting the matching procedure so that a
better match is done in a similar, future, situation.

We already noted that each generic frame has its own unique RDR defining the conditions
under which instances of that generic frame match other frames. We also noted that each episode
has attributes that are, themselves represented by generic frames: action, time, location, predicate,
connected event and episode. They too have RDRs that are trained to match them, as explained in
Section 3.2.

When comparing an observation of an episode to a previously stored episode, as an example, a
rule might state that, if the data in the action slots are the same in both instances then the episodes
match. The data in the action slots are themselves instances of generic action frames which have
their own RDRs expressing the conditions under which the actions match. We determine if the ac-
tion slots match by evaluating the action frame RDR, which checks, for example, if the precondition
and the effects are the same. This will be explained in more detail in Section 4.

Earlier, we gave two examples events: a glass breaking and a friend visiting. For the glass
breaking, the simple rule of checking if the actions match is sufficient. However, that is not the case
for when a friend comes to visit as there is other information that is relevant to the event such as
what the time is and where it is. As will be explained below, this is where the ability for generic
frames to inherit from other generic frames comes in and it is why RDRs are so powerful for event
recollection in the context of episodic memory.

3.2 Creating Events

Suppose a new event occurs as the result of some action. The action is represented by an instance of
the generic action frame, the time of the event is an instance of the generic time frame etc. Each of
these generic frames contains a default RDR that may not be applicable to every event. The reason
for defining generic rules that apply to all episode frames, time frames, etc, is so that there is some
policy by which we can recall event types that have not had a sufficient number of observations for
a unique policy to be trained for that event type. So the first step in constructing a new event frame
is to identify the type of generic frame that all of the relevant observed data belong to so that an
initial episode instance can be created. As noted, this is an instance of an episode in its most generic
sense. We then create a new event type so that an individual retrieval policy can be defined for that
event type. This is done for every embedded frame in the episode.

For example, in picking up a cup, there are several individual pieces of information that con-
struct the event, including the action (picking it up), the time, the location, etc. Looking just at the
action frame, it inherits from the generic action frame. The generic action frame contains the default
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Figure 2: Creating a new event type. Ini-
tially frame A is an instance frame of
type episode. After creating a sub-class
of this event however, frame A is instead
an instance of generic frame episode 1
which inherits from generic frame episode.
This process is executed for every instance
frame in the episode

RDR for all actions, but it may not be applicable to the current action. Empirically we deduced that
the best default RDR for the generic action is as follows:

if true then no match except
if precondition = 1 ∧ effect = 1 then match

As noted this may not be applicable to all actions and so the system creates a new subclass
of the original action frame that initially inherits the default RDR, but then is overridden as the
matching procedure for this new type of event is refined. One can think of this process as learning
to refine a general concept of an action by constructing specialisations of it that are customised for
subsets of different types of events. This process is executed for every data frame that is used in
the representation of an episode including the episode frame itself. See figure 2 which shows the
process for creating a new event type. The process can be better summarised in algorithm 1. Let the
predicate in(X, Y) to mean that some frame Y inherits from some generic frame X.

The mechanism by which the RDRs for new generic frames are trained is detailed in Section 4.
When a new frame has been fully constructed, it is then written to a database. We use the Mongo
NoSQL database to provide a persistent store for the robot.

Algorithm 1 Creating a New Event Type
Ie = Instance frame of episode
Ge = Generic frame of episode

1: in(Ge, Ie)← in(Ge, Gnew) ∧ in(Gnew, Ie)
2: for instance Ii in Ie do
3: in(Gi, Ii)← in(Gi, Gnewi) ∧ in(Gnewi , Ii)
4: end for
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Figure 3: The frame on the left is the ob-
servation. The frame on the right is a
candidate match. The frame on the right
is an instance of a generic episode type
that has at least a partially trained RDR.
The shadow box represents that generic
episode with the RDR in red. The RDR
in this case states that if the value of the
action of an event that has been observed
matches the value of the action in this par-
ticular frame then the events do match. In
this case that would be true and so the can-
didate event would be returned as a valid
match to the observation

4. Event Retrieval

The database of episodes is split into two separate collections. The first is the episodic collection
and the second is the semantic collection. The semantic collection stores non-episodic declarative
concepts.

Recalling events is a two phase process and if necessary may be performed on both the semantic
and episodic collections. We first perform a shallow query where we return events that have at least
one or more slot values that match the observation. These events are called candidate matches. The
second phase is to evaluate the RDRs for each of the candidate matches to establish if there is an
actual match.

When a new event is observed, we first query the semantic collection. The purpose of querying
the semantic collection initially is to see if it is possible to establish the event type that the observa-
tion is an instance of. The semantic collection stores generalised representations of event types that
have been observed more than once. For example, a robot may have observed multiple instances
of a person sitting down and turning on the television. So on a subsequent observation of seeing a
person sit down the robot queries the semantic collection to see if the observation matches to any of
the previously observed events and when a positive match is returned then the objective would be
that it anticipates the persons behaviour and turns the television on.

On querying the semantic collection, each candidate match is an instance of a generic event
frame that has at least a partially trained RDR specifying the conditions under which that event
type matches to an observation. We iterate over each event in the list and evaluate the RDR for the
current event.

To evaluate an RDR we compare the values in the slots that are common to the observation and
the event we are currently analysing. Events typically have several slots such as time, location, etc.
that can have quite complex structures. Therefore to clarify the process we look at the very simple
event of breaking a glass, where we are concerned only with the action, see figure 3.

In the example of figure 3 it is clear that the two events do match as the values of the action
slots match and are therefore instances of the same event type. However, it is initially not known
if the observation is an instance of that event type, and evaluating the RDRs establishes to which
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subclass of event the observation belongs. This example simplifies the representation of an episode.
In practice, we would determine if the action slots matched by evaluating the RDR for the action
frame.

If evaluating the rules for a particular event returns that the observation and the current event
do not match, we move to the next candidate match and repeat. If none of the events in the se-
mantic collection are valid matches to the observation, we repeat the entire process on the episodic
collection.

If, at this stage we still have no matches then it is assumed that it is a new event that we have
observed and the process to create a new event type, as outlined in section 3.2, is executed.

If there is a valid match with one of the event instances in the episodic collection then we are
asked if we would like to train the RDR for this new generic event type. Recall that the episodes
in the episodic collection are using, as a recall policy, the default RDRs inherited from the generic
episode frame, action frame etc. These were deduced empirically and guarantee that a valid obser-
vation to an episode will match. However, as the rules are not yet specialised, it is also likely that
several invalid observations will also match. Therefore, when we do have a valid match we must
specialise the RDR.

Training the RDR involves iterating over each slot in the event instance and comparing the
value of this slot to the value of the same slot in the observation. Depending on whether the two slot
values match or not we ask if this is relevant to the events matching. If the value of a slot is itself
an instance frame then the process is repeated for this instance frame and this is subsequently done
recursively for every embedded instance frame within the event. The process is shown in algorithm
2.

On each training iteration performed we are adding at most one new rule to the RDR. The new
rule is itself an RDR as RDRs are recursive structures. When adding a rule, we are adding either an
exception to a rule already in the RDR or an alternative to a rule in the RDR. Training an RDR is
required when a rule incorrectly fired. Either a rule that fired when it should not have, in which case
we add an exception to that rule or a rule did not fire when it should have in which case we add an
alternative.
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Algorithm 2 trainRDR
Input: InstanceFrames = (I, J)

GI = Generic from which I inherits
RDR r new
RDR r last→Last fired rule in RDR for GI

whyFired→ true if r last fired when shouldn’t
VSx → value of slot S in instance x
ask→ do instances I and J match?
response = wait for response
updateConclusion(r new, response)
for Slot S in I do

ask ← is this slot relevant to whether the events
match?
if no then

continue
end if
if VSI = type(I) then

I ← VSI

J ← VSJ

trainRDR(I, J)
else

updateConditions(r new, VSI , VSJ )
end if

end for
updateRule(r new, r last, whyFired)

Algorithm 3 updateConclusion
Input: RDR rule, String response

if response = yes then
rule.conclusion← match

else
rule.conclusion← no match

end if

Algorithm 4 updateConditions
Input: RDR rule, Slots = (S1, S2)

Condition c = {slot name, comparison value}
if VS1 = VS2 then

c.comparison value = true
else

c.comparison value = false
end if
c.slot name = name of S1

rule.add(c)

Algorithm 5 updateRule
Input:

RDR = (new rule, last rule), bool whyFired

if whyFired then
last rule.exception.add(new rule)

else
last rule.alternative.add(new rule)

end if

As noted by Kendall-Morwick & Leake (2014) one of the main factors that needs to be taken
into consideration in event retrieval is the efficiency of the retrieval process. One of the more
common approaches taken is to limit the number of candidate cases returned in the phase-1 query.
We chose not to constrain the number of candidate matches in the first phase as we do not want
to risk filtering out a potentially valid match. Our phase one query is performed on a NoSQL
database which is capable of retrieval in logarithmic time and so is very efficient. Our second phase
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is evaluated in linear time O(n). RDRs themselves are evaluated in constant time O(1) and we
perform this evaluation n times depending on the number of candidate matches.

The matching algorithm could be improved by compiling the RDRs into a matching network,
similar to a Rete network (Forgy (1982)). The network would allow the system to fire an RDR when
certain data are present. This means that our retrieval algorithm could be much improved in time
complexity as we would not need a linear traversal of each event, evaluating the RDRs one at a time.
On a small database this would be acceptable however, as the database of episodes grows, a more
efficient retrieval will be essential.

5. Evaluation and Results

Our evaluation tests two things: how quickly can an RDR be trained for each event type; and how
successfully can instances of that event type be recalled. When referring to how quickly an RDR can
be trained we are referring to the number of observations of an event required to train the RDR. We
created ten types of events that may be experienced by a domestic robot. Some of the event types,
while unique, are connected. For example, cleaning a broken glass is connected to and succeeds
the event of the glass falling and breaking. To test how many observations of an event we need
to create an RDR that is able to retrieve correct observations, we create a synthetic data set. We
manually create events that already have correct RDRs defined for them and use these RDRs to
generate new training events. The evaluation then requires the learning system to recreate the RDRs
that generated the data.

For each type of event, we synthesise fifty random observations or instances of that event type
that we know match the event, i.e. positive examples, and fifty random observations that we know do
not match to the event, i.e. negative examples. We refer to the event from which we are synthesising
data as the base event.

Figure 4 shows an example of how an instance frame is synthesised. An RDR is associated
with each generic frame, specifying the matching rule for instances of that generic frame. Slots
in a generic frame contain the range of allowable values in the corresponding slot of an instance
frame. So if a rule specifies a particular value, a positive example must contain that value. The slot
values for negative examples are randomly chosen from the other alternatives. If a slot value is not
specified by a rule, that slot may randomly take any allowable value.

The structure of one of the base events is shown in figure 5. In this example, the event is that of
a robot getting a beer. For the evaluation, we synthesis 50 positive and 50 negative examples of ten
different types of events:

1. A glass falling and breaking;

2. Cleaning a broken glass;

3. Turning on the television;

4. A person sitting on the couch;

5. Getting a beer;

14



Figure 4: A generic frame for rep-
resenting the time of an event. Each
slot contains a list of possible val-
ues that a slot in a time frame in-
stance can have. For example, if the
month of the event is June and the
RDR for this type of event requires
that the month of two events must
match, then to create a positive ex-
ample, the month slot of the time
frame is assigned the value, June.
To create a negative example, the
system randomly chooses any other
value.

Figure 5: An episode where a robot
gets a beer. Slots that refer to other
frames are indicated by blue arrows.
The RDR matching rules (in red)
for each frame are stored in the
corresponding generic frame. UID
stands for Unique ID. Note that the
diagram only shows the compound
action that achieves the goal. We
omit all the sub-actions need to im-
plement this high-level behaviour.
A frame like this would usually be
preceded by an event such as, for
example, sitting down and switch-
ing on the television, which then
triggers this behaviour.
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6. A person coming home;

7. A person waking up;

8. A person taking a shower;

9. A person entering the kitchen;

10. Making breakfast.

Although getting a beer seems like a very specific type of event, the examples are varied because
the times and locations and preceding and succeeding events are generated randomly. So the RDR
acquisition must learn which properties are essential and which are not.

RDR training is incremental, which is appropriate for teaching a robot in a home setting, as new
training examples occur one at a time. On average, only a few training examples, often just two, are
needed to create an RDR that successfully matches new events. If the system creates a rule that is
too general or too specific, it is easily corrected when a new case is encountered.

To measure how many training examples are required for an RDR to converge, we randomly
choose a positive example and construct the initial RDR. If the RDR correctly classifies all the
remaining examples, we stop. If not, like a covering algorithm, we successively choose new random
positive and negative examples to extend the RDR. This process is detailed in algorithm 2.

Of the events types that we tested, it was found that only two observations were required to train
an RDR that was then able to successfully recall instances of that event type at a later stage. The
system successfully matched all events that were expected to match the current event and did not
incorrectly recall any of the events that we were not expecting to match.

Many of the methods for event retrieval that we reviewed rely on trying to fit a single match
cue to every possible eventuality. Lim et al. (2011) use a method called a compound cue to retrieve
events that, on a small collection of episodes will work very effectively, but as the sample size
grows, it leads to multiple, undesirable matches of events. As each of our event types has its own
matching rule, this will not occur, unless the rule requires further training. Another approach by
Chang & Tan (2017) uses adaptive resonance theory to handle partial or noisy matching cues. As
already explained this is not a problem that RDRs suffer from. The other benefit of using RDRs
is that if an event RDR was not trained correctly and an incorrect event was retrieved or a correct
event was not retrieved, we are able to dynamically update the rule without the need to rebuild the
system.

6. Conclusion and Future Work

We have presented a novel method for event retrieval using ripple down rules for episodic memory.
On ten simulated types of events, we are able to achieve perfect recall after a single training instance
per event type. There are several extensions that we plan. One is to determine when an observation
can be filtered out as an event. Most changes to the state of the world have inconsequential effects.
For example, moving a plate from one side of the table to the other. However, with the current
model, all changes are considered equal. There are other problems related to connected events. The
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first is, at what point do we decide if two events are connected and at what point do we stop? This
is not trivial as it means deciding on a metric by which we can decide that two events are relevant
to one another aside from just being temporally close to each other.

The efficiency of the matching procedure could be significantly improved if the RDRs can be
compiled into something similar to a RETE network (Forgy (1982)). We also do not address the
issue of forgetting episodes in this paper. Forgetting certain episodic memories is essential to per-
formance because as the database of episodes increases, a greater demand is placed on the retrieval
algorithm. Nuxoll et al. (2010) compare the most common algorithms used for forgetting episodes
and conclude that an activation based approach, whereby episodes are selected for removal from
memory based on certain criteria relating to the frequency and recency of a particular episode’s
recall has the best performance.
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