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Abstract
A key challenge for human performance optimization designers is cost effectively evaluating differ-
ent interventions. Typically, A/B experiments are used to evaluate interventions, but running these
experiments is costly. We explore how computational models of learning can support designers
in causally reasoning about alternative interventions for a fractions tutor. We present an approach
for automatically tuning models to specific individuals and show that these individualized models
make better predictions than generic models. Next, we apply these individualized models to gen-
erate counterfactual predictions for how two students (a high and a low-performing student) will
respond to three different fractions training interventions. Our model makes predictions that align
with previous human findings as well as testable predictions that might be evaluated with future
human experiments.

1. Introduction

The goal of human performance optimization interventions is to improve the performance of an in-
dividual or team along some desirable dimension. Interventions might target performance on a wide
range of tasks, including those that present across the physical, cognitive, or social domains. For
example, soldiers might undergo specialized fitness training to improve their physical performance,
K12 students might practice solving problems to improve their cognitive performance, and astro-
nauts might get grouped into complementary teams to improve their group performance. Further,
interventions can target performance on a wide range of time scales, from seconds and minutes to
weeks and months.

Regardless of the task, domain, or timescale, identifying the interventions that best achieve the
desired performance goals and evaluating their effectiveness in a cost effective way is a central
challenge to human performance optimization decision making. Koedinger et al. (2013) sketch out
the design space for educational interventions and claim that those picking an intervention must
choose from over 200 trillion possible unique options, even when considering just a small design
space with 15 possible instructional techniques, 3 dosage levels, and the possibility of different
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dosage choices for early and late instruction. How then does one go about evaluating alternative
interventions and selecting from this enormous set of possible options in an informed way?

The gold standard in human performance optimization utilizes randomized A/B experiments
to evaluate the causal impact of different interventions and to quantify their effectiveness over a
baseline (“control”) group. Unfortunately, running controlled experiments is a costly endeavour;
getting approval for human experimentation and organizing and running experiments is no small
task. There are also many limitations of A/B experiments. Experiments often only compare a small
number of interventions (typically 2-3) and it is very difficult to generalize from these interven-
tions to other alternatives. The end result is that A/B experimentation reduces human performance
optimization to a game of twenty questions with nature (Newell, 1973), where each question is ex-
pensive to answer and only provides a single bit of information regarding which intervention is best.
Further, A/B experiments often treat interventions as one-size-fits-all solutions, when in reality dif-
ferent interventions often have different effects for different people; e.g., it is a well-known finding
that novices learn more from studying worked examples than from engaging in problem solving,
but this relationship reverses as students gain more expertise (Kalyuga et al., 2003). Accounting for
individual differences typically requires more experimental conditions and an increased cost, but
not properly accounting for individual differences when applying interventions hinders potential
performance gains.

Given the costs and limitations of A/B experiments, we need computational tools to support
teachers, personal trainers, managers, researchers, and other intervention designers in cost effec-
tively picking the best options from the range of possible alternatives. To address this need for those
considering cognitive training interventions, we propose the use of computational models of human
learning. Similar to how bridge designers use parametric analysis to computationally simulate and
test bridges prior to deploying them in the real world, we propose using computational models to
simulate and test cognitive training interventions prior to running more costly human experiments.
Whereas purely statistical models of human learning (e.g., MacLellan et al., 2015) are very limited
in their ability to generalize to interventions without existing human performance data, computa-
tional models of learning mechanistically model how a student’s knowledge changes in response
to an intervention and how their performance changes as a result. By leveraging cognitive learn-
ing theories within a unified computational model of learning (Newell, 1994), our previous work
suggests that it is possible to make purely theory-driven predictions about human performance for
alternative interventions, even when no existing human data are available (Maclellan et al., 2016;
MacLellan, 2017).

In addition to providing a means of evaluating counterfactual interventions, computational mod-
els of learning also provide a means of addressing the one-size-fits-all problem faced by A/B ex-
periments. Models can be customized to better approximate specific individuals and their unique
characteristics (e.g., novices or experts) and predict how these individuals will be uniquely affected
by different interventions. Previous work has explored how models can be customized in this way
(Jones & VanLehn, 1992; Zhang & Hornof, 2014). To build on these ideas, we explore a novel
approach for leveraging performance data when it is available (e.g., from a previous experiment
evaluating one possible intervention) to automatically individualize a cognitive model, so it better
predicts the performance for the target individual given different possible interventions.
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Figure 1. Three types of problems presented in the fractions tutoring system.

In this paper, we explore the use of computational models of learning for supporting human per-
formance optimization intervention design and provide evidence to support three high-level claims:

• Computational models of learning can support causal predictions of human performance and
learning for possible interventions, even when prior human data for those interventions is not
available;

• These models can be individualized by adjusting their parameters and prior knowledge to better
model and predict the performance of specific individuals; and

• Once individualized, they can generate plausible counterfactual predictions for how specific
individuals will uniquely respond to different human performance optimization interventions.

To support these claims, we first describe the fraction arithmetic learning environment we used in
our modeling effort. We then describe our computational model of human performance and learning
on this task. Next, we describe our approach for automatically individualizing cognitive models and
present evidence that individualized models better predict human performance than generic, non-
individualized models. Finally, we construct individualized models of two students (a high and
low-performing student) and use these models to generate plausible counterfactual learning curve
predictions for each student across three different human performance optimization interventions.
Given that these predictions are counterfactual (Pearl, 2000)—that is, we are making predictions
for interventions that were not evaluated in the human data—no ground truth data exists to evaluate
them. However, we qualitatively assess their plausibility and show these models generate reasonable
predictions that agree with previous findings from human studies.

2. Fraction Arithmetic Tutor

To investigate the use of computational models to support human performance optimization, we
chose to model human decision making and learning within a fraction arithmetic tutoring system.
Patel et al. (2016) created this tutor to teach students how to solve three types of fraction arithmetic
problems: fraction addition with same denominators, fraction addition with different denominators,
and fraction multiplication. Figure 1 shows the tutoring system interface for each of these problem
types. Following the standard intelligent tutoring system design (Vanlehn, 2006), this tutor provides
immediate correctness feedback on each step and students can only proceed once all of the steps
have been performed correctly. Additionally, if a student gets stuck, then they can request a “hint”
and the tutor provides them with a worked example of how to perform the next step.
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The tutor scaffolds students in solving these problems in a particular fashion. For all three
problem types, students must decide whether they need to convert the fractions before solving. If
they elect to convert and the tutoring system determines that it is appropriate to do so, then they
are presented with additional input fields to support conversion (see the middle image of Figure 1).
When solving addition with same denominator and multiplication problems, students can input the
numerators and denominators in any order and can only mark the problem as done once both fields
have correct inputs. When a student is solving an addition problem with different denominators,
they must convert the fraction to common denominators before proceeding. In this case, the tutor
requires students to use the butterfly method to find common denominators–the two denominators
are multiplied to get a common denominator and the opposing numerators and denominators are
multiplied to get new numerators. Additionally, students are required to input the converted fraction
values in a particular order. First, they must input the lower left denominator, and then they can input
either the right denominator or the left numerator, in either order. Finally, the student is can enter
the right numerator. Once the fraction has been converted, the answer numerator and denominator
can be input in any order. The student can proceed once both the answer fields have correct inputs.1

For our analysis we used the “Study 2” data from the publicly available “Fraction Addition and
Multiplication” dataset accessed via DataShop (Koedinger et al., 2010). This dataset comes from an
experiment conducted by Patel et al. (2016) to investigate whether it is better to block or interleave
students’ fractions practice. For this experiment, 118 sixth graders were randomly assigned to
receive 48 practice problems in either a blocked or interleaved order. Half of the students in the
blocked condition received all the addition with same denominators problems, then all the addition
with different denominators problems, then all the multiplication problems. The other half received
all the multiplication problems, then all the addition with same denominators problems, then all
the addition with different denominators problems. For each block, problems were presented in
a random order. The students in the interleaved condition received a randomized ordering of all
the problems. The main finding of this study was that students have lower error during practice in
the blocked condition, but better posttest performance in the interleaved condition, suggesting that
interleaving fraction arithmetic practice yields better learning than blocking.

3. Apprentice Learner Architecture

To model human learning in the fractions tutor, we constructed a computational model using the
the Apprentice Learner Architecture (Maclellan et al., 2016; MacLellan, 2017), which provides a
framework for modeling human learning and decision making from tutoring system interactions.
For this work, we created a novel Apprentice Learner model. This model, which is conceptually de-
picted in Figure 2, has two memories: a long-term memory that contains skills (both hand authored
or learned) and a short-term memory that maintains a set of working memory elements that can be
manipulated through skill execution. The model uses the Rete algorithm (Forgy, 1989) to efficiently
organize skills and to match them against active working memory elements. Skills have a structure

1. We are not theoretically committed to requiring students to use the butterfly strategy or to entering steps in this fixed
order, but Patel et al. (2016)’s original human tutor had these requirements and we mirror them in our simulations.
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Figure 2. A conceptual depiction of the memories (blue boxes), performance components (yellow diamonds),
and learning components (green circles) for our Apprentice Learner model.

common to most production systems: they contain conditions that constrain when the skill applies
and effects that update the working memory when executed.

The model has two performance components that it uses to interact with and learn from tutoring
system interactions. First, the skill matching / execution component matches skills from long-term
memory against the current working memory elements. When multiple skills match, it utilizes a
reinforcement learned approximator to estimate which skills will yield the highest future reward
and executes those skills first. When the system executes skills that generate external actions, the
system attempts a step within the tutoring system. If the system has no actions that produce positive
expected reward, then the system requests a hint from the tutor.

When the system receives feedback on its actions or a worked example, it employs its example
explanation component. This component applies skills from long-term memory to try and gener-
ate the worked example or the last action that triggered feedback. When receiving feedback, the
system already has a trace in its working memory to explain the last action (from generating the
step initially). When explaining examples, the component uses the same approach as skill match-
ing/execution, but fires skills even if they do not generate a positive expected reward. Once the
system has constructed an explanation, it applies explanation-based learning (DeJong & Mooney,
1986) to compile its explanation trace into a new skill, which can then be used in subsequent prob-
lem solving and learning. While both performance components are active, the reinforcement learn-
ing system uses Deep Q-Learning (Mnih et al., 2015) to continually update the reward approximator
after each skill execution. For more details on the Apprentice Learner Architecture and its rationale
see (MacLellan, 2017).
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Figure 3. The iterative process used to individualize Apprentice agents.

4. Model Individualization

In our prior work (Maclellan et al., 2016; MacLellan, 2017), we explored the use of Apprentice
Learner models for predicting which fractions interventions yield the best learning. Our previous
results demonstrated that Apprentice Learner models successfully predict that students will have
lower error during tutoring in the blocked condition and lower error on a posttest in the interleaved
condition. However, when we compared the learning curves generated by the humans and the mod-
els, we found a large discrepancy. Our models assume that all students are identical learners and
that they come to the fraction arithmetic task without any prior fraction arithmetic knowledge, so
they have 100% error on every first opportunity to apply a skill (the model always requests a hint
on each first opportunity, which gets counted as an error). In contrast, the data shows that human
students make a mistake on their first skill opportunities less than half the time, suggesting that stu-
dents come into the tutoring system already knowing how to do most of the fraction steps. Beyond
prior knowledge differences, we also anticipate that students might have cognitive differences that
impact their learning. For example, different students might have varying thresholds for their will-
ingness to guess an answer, which may affect how quickly they learn. Our previous models have
not accounted for these individual-level differences.

4.1 Our Individualization Approach

To address this gap, we have created an approach for automatically tailoring Apprentice Learner
models to specific students to better account for their differences. Our approach frames model in-
dividualization as a hyperparameter optimization problem and uses the HyperOpt tookit (Bergstra
et al., 2013) to automate the process of individualizing our models, see Figure 3. Each Apprentice
Learner model accepts a set of hyperparameters that define the skills a model starts with as well as
some additional cognitive parameters that are used by the reinforcement learning system. To utilize
HyperOpt, we provide it with a specification of the space of model prior knowledge and cognitive
parameters. To individualize a model to a specific student, HyperOpt iteratively samples a set of
hyperparameters from the provided hyperparameter space. For each set of hyperparameters, it cre-
ates an Apprentice Learner model that utilizes these parameters, simulates the target student and the
intervention that they received using the model, and evaluates how accurately the model emulates
to the target student’s behavior on each step. The error between the model and the human is fed
back to the HyperOpt toolkit, which uses Bayesian inference to update its hyperparameter sampling
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(a) (b)

Figure 4. (a) Prediction Error for Apprentice Learner Models that are trained and tested on the same data. (b)
Prediction Error for Apprentice Learner Models that are trained on earlier data and tested on later unseen data
(within individuals). In both cases, the error bars represent the 95% confidence intervals.

distribution. With each iteration, HyperOpt converges to the hyperparameters that minimize the
error between the model and the target student.

To apply this approach to individualizing our models for the fraction arithmetic tutor, we created
a set of prior knowledge that our models could potentially start with. In our previous work all
models had prior knowledge for whole number arithmetic (adding, subtracting, multiplying, and
dividing two numbers). For this work, our prior knowledge space includes these skills as well as
all the correct fraction arithmetic skills for: adding fractions with same denominators, converting
fractions to common denominators with the butterfly method, and multiplying fractions. If an agent
starts with only the correct fraction arithmetic skills it will get every step correct, even without any
practice. However, if it has only a subset of these skills, then it will get some steps correct and have
to learn other steps through worked examples and practice. Our models also have hyperparameters
for the reinforcement learning system that include how often it guesses random actions (epsilon),
how much of a reward penalty the agent gets for taking an action (action_penalty, to minimize
unnecessary actions), and how much reward is decayed when propagating it back over each step
(gamma).

4.2 Individualization Evaluation

We conducted two evaluations of our approach. First, we evaluated whether HyperOpt is able to
successfully identify hyperparameters that improve the alignment between an Apprentice Learner
model and a target human. We individualized 24 Apprentice Learner models to 24 students using
20 iterations of HyperOpt optimization in each case. For the performance evaluation step of our in-
dividualization process, see Figure 3, we simulated each student’s behavior on the first ten problems
that they received in the tutor and computed the model error as the difference between first attempt
correctness of the models and humans on each step. After fitting a model to each student, we com-
pared the individualized models to a baseline model that had only whole number arithmetic prior
knowledge (no prior fraction arithmetic knowledge) and default cognitive parameters (epsilon= 0.3,
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gamma= 0.7, action_penalty= 0.05). This baseline model corresponds to the configuration used in
our previous work (Maclellan et al., 2016; MacLellan, 2017). To evaluate each model, we computed
the first attempt correctness prediction error between each model and their respective student on the
first 10 problems they received in the tutor. Figure 4(a) shows the results of this evaluation. Our
main finding is that the individualized models have lower error than the baseline models and better
approximate the human learning trajectories.

This first evaluation demonstrates that our individualization approach reduces the error between
the models and the specific students. However, it evaluates the model on the same tutor problems
that were used to perform the model individualization–effectively training and testing on the same
data. To evaluate how well the individualized models are able to make improved predictions for
the target students on unseen data, we utilized a form of temporal cross validation. We constructed
individualized models for 15 students by using HyperOpt to reduce the error between the models and
humans on the first 5 problems they practiced in the tutor. We then compared these individualized
models to our baseline model on the next 15 problems that they received within the tutor (problems
6 through 20), which were not used as part of the model individualization process. Figure 4(b)
shows the results of this evaluation. The main conclusion we can draw from this second evaluation
is that the individualized models better approximate the human behavior even on unseen data that
was not used as part of the model individualization process. It is worth noting that the error of the
models in this second evaluation are lower than the first because students’ error tends towards 0% as
they receive more fractions practice, so predicting the human performance becomes easier at later
opportunities.

5. Individualized Counterfactual Prediction

Although Patel et al. (2016) argue for a one-size-fits all approach to problem ordering–that in-
terleaved practice yields better learning than blocked practice–we take a more nuanced view that
different kinds of practice might be better for different individuals, depending on their prior knowl-
edge as well as other individual cognitive differences. Unfortunately, this view complicates the
human performance optimization design problem because it means that not only does a designer
need to find the single best intervention, but is instead faced with finding the best intervention for
each individual. Having demonstrated that our model individualization approach can successfully
tailor models to make improved predictions for specific students, we next explored how these indi-
vidualized models might be leveraged to inform the selection of which tutoring interventions might
be best for each student, providing a solution to this more complicated intervention design problem.

To support designers, our models can generate counterfactual predictions of students’ perfor-
mance. If a designer has access to previously collected intervention data for a student, then they
can individualize Apprentice Learner models to that student using this data. They can then use this
individualized model to counterfactually predict what the student’s performance would have been
had they received a different condition than the one they actually received. It is also possible for de-
signers to individualize a model using other kinds of performance data, such as pretest performance
data. By leveraging these other kinds of data, a designer can generate counterfactual predictions
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Figure 5. Conceptual depiction of the three fraction arithmetic problem ordering interventions. Different
shadings of cells represent the three different types of problems: fraction addition with same denominators,
fraction arithmetic with different denominators, and fraction multiplication.

about how a particular student would respond to an intervention prior to actually administering any
interventions to them.

For this work, we explore the use of our models for supporting counterfactual predictions. In
particular, we explore how our Apprentice Learner models can be applied to answer four counter-
factual questions regarding the students that used the fraction arithmetic tutor:

• Q1: What would the learning curves look like if a participant in the interleaved condition had
received the blocked condition instead, and vice versa?

• Q2: What would have happened if a participant received a novel intervention where the prob-
lems were presented in a fashion that started as blocked but faded to interleaved over the course
of the instruction?

• Q3: What would a low-performing student’s learning curves look like for each intervention?
• Q4: What would a high-performing student’s learning curves look like for each intervention?

The first of these questions explores what would have happened if a student received a different
condition from the one they were randomly assigned to. The second question investigates how the
interventions evaluated in the human study might compare to a novel faded intervention for which
no data are currently available. This novel intervention starts out like the blocked instruction, but
then fades into interleaved instruction over the course of instruction. Figure 5 provides a conceptual
depiction of the three different instructional interventions. We chose to explore this faded blocked
to interleaved intervention because previous work (Carvalho & Goldstone, 2015) shows that block-
ing and interleaving support different kinds of learning—blocking helps students learn which task
features are relevant but interleaving helps student learn to discriminate among competing skills.
Finally, the third and fourth questions explore how the alternative interventions might deferentially
affect high vs. low-performing students. In general, we feel these counterfactual questions are
representative of the kinds of questions a designer might have.

5.1 Our Counterfactual Prediction Approach

Our counterfactual approach consists of four steps. First, we individualize our models by tuning
them to each target individual using their performance data from the intervention they received.
Next, we simulate the counterfactual interventions to determine what the respective student might
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have done had they received an alternative intervention. Finally, we analyze the simulated perfor-
mance data to determine what the model predicts would happen in the counterfactual interventions.

5.2 Counterfactual Prediction Evaluation

To evaluate our approach, we applied it to answering our four counterfactual questions. We focused
our simulation efforts on two students from human data: a high-performing and a low-performing
student. The high-performing student had the highest tutor performance of any student in the
blocked condition and the low-performing student had the lowest tutor performance of any stu-
dent in the interleaved condition. For each student, we constructed an individualized Apprentice
Learner model using their available performance data. We chose to evaluate our model on two spe-
cific students rather than all of the students because we wanted to understand how well the model
predicts specific individuals rather than aggregate performance as well as how model predictions
differ after individualizing to different kinds of students.

After constructing individualized models, we applied them to simulate three different counter-
factual interventions for each student. First, we simulated the students in different variations of
the condition they actually received (blocked or interleaved, where each variation has a different
randomized problem ordering within the target ordering schema). By comparing the simulated be-
havior on these different variations to the actual student performance, we can get a sense of how well
our model predicts the student’s learning trajectory for the observed condition. Next, we simulated
student performance on the opposite condition from the one they received. Finally, we simulated
their behavior on the novel faded blocked to interleaved condition. For each counterfactual simu-
lation, we simulated the student behavior within that condition 20 times. For each iteration in the
blocked and interleaved conditions, we randomly selected a problem ordering from the set of se-
quences that were actually administered to people in that condition from the larger dataset. In the
case of the faded condition, we randomly generated faded sequences where students received prob-
lems in blocks of three (three addition with same denominators, then three addition with different
denominators, then three multiplication), then blocks of two, and eventually blocks of one. Across
these three evaluations, our models generated predictions for interventions that differed from those
actually experienced by the humans, so no ground truth was available (i.e., they are counterfactual
predictions).

5.2.1 High-Performing Student Predictions

Figure 6 shows the observed and simulated learning curves for the high-performing student as they
interact with the fraction arithmetic tutor in each of the three interventions (blocked, interleaved,
and faded). The learning curves show the average performance across all fraction arithmetic skills.
The opportunity count represents how many prior opportunities the student has had to exercise each
fraction arithmetic skill. Thus, the error at opportunity zero corresponds to the average performance
the first time all fraction arithmetic skills are applied within the tutor. For these plots, we used a skill
model that maps each input field for each problem type to a unique skill (e.g., inputting the answer
numerator for an addition with same denominators problem uses a different skill than inputting the
answer numerator for a multiplication problem). Additionally, each plot includes an estimate from
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(a) (b)

(c) (d)

Figure 6. (a) The high-performing student’s actual performance in the blocked condition. The predicted per-
formance for the high-performing student across variations of the (b) blocked condition, (c) interleaved condi-
tion, and (d) faded blocked to interleaved condition. The shaded regions denote the 95% confidence intervals
for predicted error at each opportunity and the blue lines represent the estimates from an additive factors
model (AFM) fit to the data in each case.

the best fitting additive factors model (Cen et al., 2006), which represents a constrained logistic
regression curve that accounts for how performance improves with practice.

If we compare the actual human performance, Figure 6(a), and our model prediction for how
the student would perform in variations of that condition, Figure 6(b), we find that the model does a
reasonable job of emulating the observed human performance. In particular, there is not a large dis-
crepancy between error rates on the first opportunity, which has been observed in prior Apprentice
Learner work. Previous models had 100% error rate on the first opportunity because they always
started without any fraction arithmetic knowledge and were not individualized to specific students
(Maclellan et al., 2016; MacLellan, 2017; Weitekamp III et al., 2019). Our results suggest we can
overcome for the disagreement between our prior models and humans by taking into account indi-
vidual student’s prior knowledge.
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Additionally, we see that our model correctly predicts a spike in error rate around opportunity
15, likely due to a transition between problem blocks around this opportunity.2 If we look at the
predicted performance in the interleaved condition, Figure 6(c), we see an interesting spiky pattern
in error in the tail of the learning curve as students alternate between problems of different types.
Our model also predicts that on average the error in the interleaved condition will be higher than in
the blocked condition. This prediction agrees with Patel et al. (2016)’s finding the human students
make more errors within the tutor in the interleaved condition than the blocked condition. When
looking at the predicted performance in the faded condition, Figure 6(d), we find that performance
looks almost identical to the blocked condition, even though the problems are essentially interleaved
at the higher opportunity counts. Interestingly, our model does not predict spikes in error like it did
for the interleaved condition. This suggests that perhaps the faded condition successfully combines
the benefits of both blocking and interleaving, achieving better learning and perhaps better transfer
to a posttest, which we did not evaluate.

5.2.2 Low-Performing Student Predictions

Similar to the high-performing student results, Figure 7 shows the observed and simulated learning
curves for the low-performing student as they interact with the fraction arithmetic tutor in each of
the three possible interventions (blocked, interleaved, and faded). Our first general observation is
that the low-performing student makes many more errors than the high-performing student. Still,
the student gets approximately half of their first steps correct, suggesting that they already have a
fair amount of fractions knowledge prior to using the tutor.

If we compare the observed performance for the interleaved condition, 7(a), to the predicted
performance for variations of the interleaved condition, Figure 7(b), we find that the model does
a reasonable job of predicting the human performance. There is only a minor difference in first
opportunity error, with the model predicting a slightly higher first opportunity error. As mentioned
previously, this discrepancy is not as large as has been observed in previous Apprentice Learner
work, where the model always predicts 100% error on the first step. Additionally, the observed
human performance is generally within the predicted confidence intervals generated by the model.
If we compare, the predicted interleaved performance, Figure 7(b), to the predicted blocked per-
formance, Figure 7(c), we see that the model predicts that the tutored problem error rates in the
blocked condition will be lower than the interleaved condition, which agrees with the predictions
for the high-performing student as well as the general finding from the human data (Patel et al.,
2016). Lastly, the predicted performance for the faded condition, Figure 7(d), shows lower overall
error and a faster decrease in error than either the interleaved or blocked conditions. In particular,
the error in the faded condition decreased to approximately 20% by opportunity 3, where this level
of error is not achieved in the interleaved condition until opportunity 15 or the blocked condition
until opportunity 5. We did not find the same improvement for the high-performing student in the
faded condition, but they had less range to improve. This finding further suggests that the faded
condition successfully combines the benefits of both blocking and interleaving.

2. Figure 6(a) shows data from just a single human student on a single sequence whereas the simulated data were
computed over 20 students on 20 sequences; this is why it has no error bars and the error rate on opportunity 15
appears to be much higher.
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(a) (b)

(c) (d)

Figure 7. (a) The low-performing student’s actual performance in the interleaved condition. The predicted
performance for the low-performing student across variations of the (b) interleaved condition, (c) blocked
condition, and (d) faded blocked to interleaved condition. The shaded regions denote the 95% confidence
intervals for predicted error at each opportunity and the blue lines represent the estimates from an additive
factors model (AFM) fit to the data in each case.

5.3 Discussion

These results demonstrate how our Apprentice Learner models can be used by intervention design-
ers to make individualized counterfactual predictions about how a specific student will respond to
possible interventions. This capability is powerful because it will enable designers to conduct low
cost simulations to evaluate many alternative interventions. They can then run human studies to
evaluate the interventions that the simulations suggest will be the most promising. However, be-
fore designers can trust Apprentice Learner model predictions, they need some evidence that the
counterfactual predictions reasonably approximate human performance. Unfortunately, evaluating
counterfactual predictions is difficult because, by definition, no ground truth data are available to
compare against.

We claim that our findings provide preliminary evidence to suggest that our models can make
reasonable counterfactual predictions about how different individuals will respond to alternative in-
terventions. Across both the high and low-performing students, we found that our model predictions
seemed reasonable. When we compare the observed human performance to the model’s predictions

13



C. J. MACLELLAN, K. STOWERS, AND L. BRADY

for variations of the observed condition, we see a close agreement between model and humans. Fur-
ther, across both students our model predicts that tutored problem error will be lower in the blocked
condition than in the interleaved condition, which has been observed to be true in the human data
(Patel et al., 2016).

It is harder to evaluate the model’s predictions regarding the faded condition because no human
performance data are available to validate our model’s predictions. However, our model makes a
reasonable, but not entirely obvious, prediction that students in the faded condition will have lower
overall error and that their error will decrease more quickly than either the blocked or interleaved
conditions. Additionally, the model predicts that in the tail of the learning curve the error will
look more like the blocked condition (less spiky) than the interleaved condition (more spiky), even
though practice at higher opportunities in the faded condition is essentially interleaved. Despite
being unable to currently validate these predictions with human data, we argue that they constitute
reasonable counterfactual predictions that do not disagree with prior research on blocking vs inter-
leaving (Carvalho & Goldstone, 2015). A good future test of the Apprentice Learner models would
be to run a human study comparing this faded problem ordering to the blocked and interleaved
conditions to see if our model predictions are substantiated.

Finally, these simulated counterfactual data provide some answers to our four counterfactual
questions. They give us a picture of how students’ learning curves might differ if they were in
the blocked vs. interleaved condition (Q1). They show us how the students’ learning curve might
differ if they were in a novel faded condition (Q2). Finally, they provide us with a picture of how
low-performing and high-performing students would respond differently to these three interventions
(Q3 and Q4). In general, our models seem to suggest that which intervention the high-performing
student receives almost does not matter because they already have a very good knowledge of how
to solve fraction arithmetic problems prior to using the tutor. However, the low-performing student
improves in all three conditions, but seems to improve the most in the faded condition.

6. Related Work

Our work is not the first to explore the application of computational models to guiding the design of
interactive systems. For example, the early work of Card et al. (1986) proposed the use of a Model
Human Processor that encapsulates cognitive theory into a computational model for evaluating the
usability of interface designs in lieu of more costly human A/B experiments. More recently John
et al. (2004) have worked to realize this vision through the development of the CogTool system that
supports designers in building usable interfaces. We view our work as building on these past efforts
and extending them in at least two respects. Our work explores how computational models can
support the design of human performance optimization interventions rather than interface designs.
Additionally, our work centers around modeling learning and how human performance changes as
they use the system, whereas these related efforts focuses primarily on modeling decision making
and how usable an interface will be after a person has been already been trained in how to use it.

There are also many related efforts that investigate how to individualize cognitive models to
specific people. For example, early work by Jones & VanLehn (1992) explored how researchers
can hand tune the prior knowledge and parameters of cognitive models to align them with protocols
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from specific students. A more recent effort by Zhang & Hornof (2014) uses large-scale simulation
of all the possible prior knowledge and parameter models to identify those configurations that most
closely approximate (and explain) specific individuals behaviors and strategies. Weitekamp III et al.
(2019) tune Apprentice Learner models to specific students using a more implicit approach. Rather
than searching over the space of prior knowledge directly, they statistically estimate how much
previous practice each student has had with each type of problem and pretrain Apprentice Learner
models on an equivalent number of comparable problems. Our work builds on these prior efforts
to tune our models’ prior knowledge and parameters to the target student learning protocols. We
chose to take an explicit approach and estimate prior knowledge directly rather than the amount of
previous practice. We also chose to use an automated tuning approach rather than tuning the models
by hand. However, rather than simulating all possible configurations we leveraged recent develop-
ments in hyperparameter optimization (Bergstra et al., 2013) to more efficiently search the space of
prior knowledge and parameters. More work is needed to compare how an explicit approaches to
tuning models compare to the implicit approach suggested by Weitekamp III et al. (2019). A nice
feature of our explicit approach is that it generates a human interpretable set of prior knowledge (the
designer can see what prior knowledge our system estimates that a student starts with). However,
our approach requires designers to hand construct the set of prior knowledge to search over, whereas
the implicit approach does not have this requirement.

7. Conclusions and Future Work

This paper presents evidence to support three high-level claims: (1) that computational models of
learning can support causal prediction of human performance and learning in possible interven-
tions even when human data for those interventions is not available, (2) that these models can be
individualized by adjusting their model parameters and prior knowledge to better predict perfor-
mance for specific individuals, and (3) that individualized cognitive models can generate plausible
counterfactual predictions for their target individuals. To support these claims, we built a model
using the Apprentice Learner Architecture and demonstrated its use for causally reasoning about
which fraction arithmetic tutoring interventions will produce better learning in specific students.
We described how to individualize these models using available performance data and showed that
individualized models better predict performance than generic models. Finally, we constructed indi-
vidualized models for one high-performing and one low-performing student and used these models
to counterfactually predict their learning curves for three different fraction arithmetic interventions.
Our results show that the individualized models make reasonable predictions that agree with the
available human data. They also generate plausible predictions regarding a novel intervention for
which no human data are available that might be tested with future human experiments.

To build on this work, there are many possible directions for future work. We are particularly
interested in preregistering our model’s predictions regarding our proposed faded blocked to in-
terleaved intervention and running a human experiment to see if the predictions are substantiated.
Additionally, our current and past modeling efforts have centered primarily around predicting per-
formance and learning in tutors, but future work should explore how our approach can be applied
to other learning environments, such as educational games. We are interested in expanding our
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models to account for additional learning phenomena, such as the testing effect, where students’
performance improves after taking tests even though they do not get any feedback or instruction
during test taking. With the ability to evaluate the effectiveness of different interventions using Ap-
prentice Learner models, we would also like to explore approaches for automatically searching the
space of training interventions; e.g., searching over the space of alternative problem orderings to
find those that yield the best learning. Finally, future work should explore how to make these mod-
els more accessible to human performance optimization intervention designers, such as teachers or
instructional designers.
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