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Abstract
Natural language instructions often leave a speaker’s intent under specified or unclear. We propose
a goal inference procedure that extracts user intent using natural language processing techniques.
This procedure uses semantic role labeling and synonym generation to extract utterance semantics,
and then analyzes a task domain to infer the user’s underlying goal. This procedure is designed
as an extension to the MIDCA cognitive architecture that enables human-robot collaboration. In
this work, we describe a conceptual model of this procedure, lay out the steps a robot follows to
make a goal inference, give an example use case, and describe the procedure’s implementation in a
simulated environment. We close with a discussion of the benefits and limitations of this approach.
We expect this procedure to improve user satisfaction with agent behavior when compared to plan-
based dialogue systems.

1. Introduction

Human-robot collaborations often involve communication directed toward completion of an action
or a goal. While such communication can include both verbal and non-verbal aspects, we focus on
the verbal aspects of human robot interactions. Verbal communications can be carried out either
through voice or text commands; in this work, we mainly consider text commands. To be able
to maintain fluid communication, self-regulated autonomous agents should be able to understand,
process, and generate natural language to understand user intent. Unfortunately, natural language
often leaves user intent unspecified. In this work, we perform an initial exploration of a novel goal
inference-based model for understanding user intent. While many interactive systems developed
over the years are engineered specific to a domain and/or task (e.g., Mavridis, 2015; Tellex et al.,
2020), this model is intended to handle unique, freeform utterances in a domain-general way, while
inferring operationalizable instruction from a user’s communication.

We present a novel approach for understanding the intent of the user during human-robot collab-
orations using natural language. Our goal inference procedure utilizes natural language processing
techniques including synonym generation and semantic role labeling to extract domain-specific op-
erators and its arguments from the instructions. This extracted information is used to generate
domain-specific mappings/groundings of words to physical objects in the world. Our procedure has
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been integrated with an existing cognitive architecture and can infer a goal/action by performing
condition checks. This was our attempt at incorporating language understanding and goal infer-
ence within the context of Goal Reasoning architectures. The novelty is in situation-independent
flexibility and adaptability through the goal inference model.

In this paper, we discuss related work in Section 2. We review background information about
our cognitive architecture and natural language processing methods in Section 3. In Section 4, we
describe our method and implementation. We lay out the steps performed by our model in Section
5. We discuss limitations of our procedure in Section 6. Section 7 is discussion and future work.

2. Related Work

In our procedure, the robot will receive voice guided interactions from a human. For each instruc-
tion, we use goal inference to draw conclusions about the user intent. In this section, we present the
most closely related research on voice guided interaction systems and goal inference.

2.1 Human-Robot Collaborations using Natural Language

For human-robot interaction through natural language, the robot not only requires an understanding
of natural language instructions but also needs to extract a semantic representation of instructions,
and then derive grounding (physical world) representations. These help a robot decide what action
to perform (Tellex et al., 2020; Mavridis, 2015; Alomari, 2017). Voice guided interactions are
considered the most intuitive form of communication in a human-robot collaboration environment
(Akan, 2012; Bugmann & Pires, 2005; Holada & Pelc , 2008). Different approaches have been taken
to understand the motives and intent of user utterances in spoken dialogue systems (Spiliotopoulos,
2013), learning based systems (Laird, 2017; Scheutz, 2018) and systems that deal with indirect
speech acts (Wilske & Kruijff, 2006; Briggs & Scheutz, 2017).

Spoken dialogue systems take a user utterance and generate an appropriate response using dia-
logue management techniques and logical/linguistic mappings. State-based dialogue management
techniques (Aust & Oerder, 1995; McTear, 1997; McTear, 1998) depend on asking a series of ques-
tions to achieve the task. However, depending on the task, the state-based dialogue graphs can get
extremely large and often leave an unpleasant experience for the user as the number of questions
increases. By contrast, frame-based dialogues are not as restrictive as state-based dialogue; user
utterances are constrained by the task domain but not by answering the questions the system con-
siders important. However, the accuracy of prediction of what the user wants decreases as the user
utterances are less restrictive. Plan-based dialogue (Allen, Dzikovska, Manshadi, & Swift, 2007;
Ferguson & Allen, 1993; Allen et al., 1996) techniques try to understand/infer the user’s plan and
work towards achieving it. However, their implementation and maintenance can get complicated
depending on which plan recognition mechanism was used. There is a trade off in such systems
between quality of user experience and simplicity of engineering. More complex dialogue manage-
ment systems are generally faster to interpret instructions, resulting in a better user experience.

Another class of collaborative systems focuses on understanding user motives that may be ex-
pressed through indirect speech acts (ISAs). ISAs are expressed when the user says one thing but
means a different thing (Searle, 1969). There are two different perspectives to understand ISAs,
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namely: inferential and idiomatic. Systems based on the inferential perspective use the complex
idea of self (beliefs, intentions and desires) to infer the intent behind an action. This becomes
a plan recognition/inference problem thus increasing its complexity. Whereas, the idiomatic per-
spective systems exploit the conventional structures in ISAs to get to the intention. Thus giving
them situation-dependent flexibility. Wilske and Kruijff (2006) developed an idiomatic approach
that uses linguistic analysis, classification, online adaptivity, and situation context to understand a
request-ISAs. A hybrid approach that combines both idiomatic and inferential perspectives for so-
cially appropriate understanding and generation of language, was developed by Briggs and Scheutz
(2017). In their approach, the pragmatic reasoner (idiomatic) utilizes an natural language processing
unit and the plan reasoner (inferential) infers why an action has been performed.

Another class of approaches to building interactive systems is based on machine learning. One
such approach is Interactive Task Learning (ITL) where the agent keeps learning tasks that are
beyond its limits through interaction with humans and online adaptation. Laird et al (2017) laid
out the characteristics of ITL as general, effective and efficient. However, the complexity lies in
how the agent forms an internal semantic representation of the instructions. Mininger and Laird
(2018) proposed a hybrid approach that can learn from both goal oriented and procedural tasks.
Their work focuses on internal semantic representation and what to do when knowledge is limited
within the Soar cognitive architecture (Laird, 2012). A different approach named One-Shot Object
and Action learning was proposed by Scheutz et al (2018). Their approach tries to conceptualize
the instructions using an object-action representation, forming a Combinatory Categorial Grammar
(CCG) for every unknown aspect of the language.

2.2 Goal Inference

Goal Inference is a non-trivial task, especially in dynamic environments where an agent must update
its plans in response to an anomaly/exception or user instruction. Baker, Tenenbaum, and Saxe
(2007) demonstrated goal inference using an Inverse Planning Framework (IPF). IPF infers the
agent’s intent based on a set of observations of the agent’s behaviors. In their multi-agent model,
agents are assumed to be finding an optimal solution to a Markov Decision Problem (MDP). MDP
is a standard formalism for planning in dynamic environments. Their model is an inversion of
probabilistic planning in MDP through which the user derives the agent’s inferred goal based on
the series of actions committed by the agents. For their experiment, human subjects were asked
to watch 2D intelligent agents and predict the most likely action/goal that the agent would choose
based on the current stimulus. Although there was no collaboration between human and robotic
agents, their work lays out the first quantitative tests on the aspect of goal inference.

Another approach to goal inference was demonstrated by Bordallo, Previtali, Nardelli, and Ra-
mamoorthy (2016). Their model achieves goal inference through counterfactual reasoning in a
dynamic environment with multiple agents moving at different velocities. They incorporated sim-
ulated prior probabilities of agents traveling at a certain velocity with the classical goal planning
(solving MDP) using Bayesian inference. In other words, their model uses Bayesian recursive es-
timation to create a goal space containing all possible goals/actions based on a set of observations.
However, for this procedure we would require prior knowledge of likely goals which may not be
a trivial calculation depending on the domain. Their results indicate their efficiency in predicting
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the trajectory of an agent. However, their experiments included human subjects walking to avoid
clashing with agents; furthermore, the agents don’t interact with humans through spoken natural
language or text.

A similar Bayesian inference based goal inference model to improve both objective and per-
ceived performance of agents in human-robot collaborations was put forth by Liu, et al., (2018).
Tasks can be given to an individual or collaborative and are spread across the environment where
the agents move. This model has three kinds of artificial agents: fixed, reactive and Bayesian-
predictive. The fixed agent doesn’t have any idea of the human agent’s goal. The reactive agent
quickly moves to a (pre-arranged) collaborative task point if the human agent reaches it before the
artificial agent. The Bayesian-predictive agent is able to predict the future position of the human
agent using Bayesian inference and thereby heading to the position of a collaborative task before
the human reaches it. Similar to the above models, this also does not collaborate with human agents
on a natural language level.

3. Background

Our procedure has been integrated with a cognitive architecture (described below). Once an in-
struction is received by a robot, it goes through its cognitive phases to infer a goal. This procedure
heavily relies on natural language processing techniques and checking preconditions on operators.
We use semantic role labeling to extract the semantic meaning of the instructions and Wordnet for
synonym generation. In this section, we present background information on the MIDCA, operators
in a domain, Wordnet, and SRL. Our approach focuses on understanding natural language and in-
ferring goals/actions rather than generating answers. It doesn’t worry about types of speech acts the
sentence expresses. It doesn’t have learning capabilities or depend on any probabilistic inferential
models.

3.1 The Metacognitive Integrated Dual Cycle Architecture

The Metacognitive Integrated Dual Cycle Architecture (MIDCA) is a cognitive architecture incor-
porating both cognition and metacognition cycles (Cox et al., 2016). One function of MIDCA’s
cycles is to allow an autonomous agent to respond robustly to unforeseen events in a dynamic en-
vironment. To do so, MIDCA agents use a note-assess-guide procedure (Anderson & Perlis, 2005;
Cox, Oates, Paisner, & Perlis, 2012) that monitors for conflicts and assess the noted conflicts to
generate responses that are carried out by the agent. The metacognition cycle’s monitor-control
loop notes decisions made at the cognitive level and responds to them; the cognitive loop notes
conflicts between environment expectations and observations and responds to them. We will not
be discussing the metacognition cycle any further, as it is beyond the scope of this paper. At the
Cognitive Level or the Object level, the action-perception loop observes the world in the “perceive”
phase and comprehends it in the “interpret” and “evaluate” phases. During evaluation, a MIDCA
agent formulates new goals and updates existing goals. In the problem-solving phases “intend” and
“plan”, a MIDCA agent selects one or more goals to achieve immediately, then generates a feasible
plan of actions or tasks to accomplish those goals. These actions are carried out in the “act”phase
of the action-perception loop.
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3.2 Domain Operators

In automated planning domain models (Ghallab, Nau, and Traverso 2004), the state (s) of the world
is represented by literals that describe relationships between objects in the world. Given a goal(g),
a planner generates a plan (π), which is a series of actions to be carried out in order to achieve
the goal. A planning operator (o) describes legal actions (α) in that domain. Every operator has
a head (head(o)) consisting of its name and arguments, a set of preconditions (pre(o)) and a set of
postconditions (post(o)). If the preconditions of the associated operator are met in the current state
(s |= pre(α)), an action is executable in the state (s).

For example, consider stacking two blocks in the construction domain. Operator “stack” has
two arguments: top-block and bottom-block. The preconditions of “stack” are that the agent must
be holding the top block; the bottom block must not have anything on it already. The postconditions
are that the top block is on the bottom block. Once we define these conditions, an operator is
formalized as follows:

Operator: stack(top-block, bottom-block)
Preconditions: holding(top-block) ∧ clear(bottom-block)
Postconditions: on(top-block, bottom− block)

3.3 Wordnet

Wordnet (Miller, 1995) is an Online Lexical Database for English. It represents each word using
syntactic contexts and semantic relations. Syntactic contexts capture the word in one of four forms:
noun; verb; adjective; and adverb. Semantic relations link words together by using the sense or
meaning of the word and depend on the syntactic context. Types of semantic relations include Syn-
onymy (similar), Antonymy (opposite), Hyponymy (subordinate), Meronymy (part), Troponymy
(manner), and Entailment (consequential). Synsets are sets of synonymous words, as determined by
Wordnet’s Synonymy relation.

3.4 Semantic Role Labeling

A semantic role (i.e., conceptual relation) describes a relationship between a non-verb word or
phrase to an action verb in the same sentence. A few examples of common semantic roles are
Agent, which describes the initiator of an action; Patient, which describes an object affected by the
action; and Location, which describes where an action takes place. In semantic role labeling (SRL)
(Kogan et al., 2009), a sentence is mapped to underlying predicate argument structures (PAS) that
match each clause. A PAS contains two parts: a predicate which describes the action of a clause
and semantic arguments which are mappings of the roles to words in the clause.

In this work, we chose to use a deep convolutional neural network-based approach for SRL
named SENNA (Barnickel et al., 2009). While we expect that other SRL implementations would
also work, SENNA doesn’t depend on syntax trees and is trained on PropBank (Palmer, Gildea &
Kingsbury, 2005), a database of sentences from The Wall Street Journal that are manually annotated
with their typical semantic roles. Alternatively, Fundel (2019) developed the RelEx approach using
dependency parse trees to extract relations from sentences. These are typically used to extract
semantic roles.
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Figure 1. A conceptual model of the Goal Inference Model integrated with Cognitive Cycle of MIDCA. .

4. The Goal Inference Procedure

We now describe our goal inference procedure which integrates natural language processing tech-
niques, including synonym generation and SRL, into the comprehension phases of MIDCA’s action-
perception loop. To better explain the novelty of our model, we consider an environment where a
human gives voice instructions which are rendered as text using an error-free process, and a self-
regulated autonomous agent analyzes those instructions to infer a requested action or implied goal.
To understand the intent of an instruction, the agent performs a simple test. In order for an instruc-
tion to be interpreted as an executable action, all preconditions on that action must be satisfied. If
the test is passed, we infer that that action is the correct interpretation of the user’s intent. Other-
wise, the agent assumes that the user intent must have been an end-state they desire. The end-state,
when achieved, satisfies the postconditions of the operator. In this case, the agent infers that the
user intends to specify a goal and constructs a plan to achieve it.

4.1 Conceptual Model with MIDCA

We describe a conceptual model for goal inference in MIDCA in Figure 1. In “perceive” phase,
the agent notes the initial state (s) of the world (Ψ) and listens for a voice instruction. This voice
instruction is rendered to text format. In the “interpret” phase, SRL extracts the verb of the sentence
and its semantic arguments. Using Wordnet and operators in the domain, the model identifies the
operator associated with the extracted verb. The agent checks the preconditions on the operator and
infers an action or a goal. An appropriate action or goal is added into the set of Goals (G) or Actions
(A) during the “evaluate” phase. The “intend” phase selects a goal or action. The agent will skip
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the "plan" phase if the selected item is an action. Otherwise, the agent plans on achieving the goals
by creating a series of sub-actions. In the "act” phase the actions are performed by the agent.

4.2 Generate and Filter Synonyms

We use the Natural Language ToolKit interface (Loper & Bird, 2002) to Wordnet to generate Synsets
for a set of domain-specific keywords. For our current examples, we manually selected synonyms
of operator and relation names given by WordNet. In the construction domain, some action verbs
for operator “stack” and predicate “on” are stack, on, put, and place.

In current work, the domain of discourse is limited, and few synonyms must be filtered out.
Since the operators describe actions, only synonyms in their noun and verb forms are used. Some
manual work is required to filter out words specific to other domains. For example, some of the
Wordnet synonyms of “put” are put, put_option, place, and invest. However, in the blocks world
domain, invest and put_option are not viable candidates. In future studies, we hope to gauge the
complexity of generating and filtering domain knowledge of operators and synonyms in other do-
mains.

This refined domain-specific keyword list, which includes the synonyms, is included in the
initial knowledge of the agent. They are stored as a list of dictionaries with operators as keys and
the refined synonym lists as values. Given instruction, the agent searches the instruction for the
keywords. If the search fails, the instruction is not within the agent’s capabilities. If the search
yields a match, the agent infers the instruction as an action or a goal after an associated operator is
picked.

4.3 Semantic Arguments to Domain Objects Mapping

We used the Practical Natural Language Processing Tools (practNLPTools) (Barnickel, 2009) li-
brary implementation of SENNA for SRL. As SENNA is trained on PropBank, it may not be able to
extract semantic roles from domain-specific instruction (if any). Sentences that cannot be annotated
are considered as failed responses, because the agent cannot infer the user’s intent. While SENNA’s
performance can be improved with domain-specific training, we consider its performance without
such training, to lower the knowledge engineering burden. If a sentence contains more than one
verb, the SRL annotator generates two PAS’s, one for each verb. This serves to standardize ex-
pressions, extracting the semantic content and removing all syntactic structure. However, all PAS’s
whose predicates do not fit in the domain are filtered out. Once the PAS is generated, the semantic
arguments are mapped to objects in a simulation by looking at descriptors in the arguments. Some
examples of descriptors are the location of the objects like on-table, in hand, and the color of the
objects like red block, yellow triangle. The agent looks for descriptors and maps them based on
state representation. If the descriptors are missing, there is ambiguity about what object the user is
referring to. Our model doesn’t solve this ambiguity yet.

In the following example, “put” is one of the domain-specific keywords and the associated
operator is stack. The SRL annotator generates PAS, with a verb (V) of “put” and two semantic
arguments A1 and A2 refer to the roles of the phrases with respect to the verb.

Example: put the red block on the green block
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PAS: V: “put” A1: “the red block” A2: “on the green block”
The descriptors in A1 and A2 are “red” and “green” colors. If the state representation contains

any objects with these attributes, they are mapped to domain objects. Currently, the procedure
cannot disambiguate between two same color blocks.

Domain-Specific Mapping: operator “stack” objects: [(block, red), (block, green)]

4.4 Semantic Arguments to Operator Arguments Mapping

We used a dictionary to map the colors to the operator arguments. Their domain-specific mapping is
converted to operator argument mapping to create an instantiated action which will be used to infer
the user intent. In the example, the red block is mapped to the operator argument A and the green
block is mapped to the operator argument B. We assume that the domain doesn’t have blocks of the
same color and the order of the arguments given is the order of the operator arguments. So, the top
block is A and the bottom block is B

instantiated-action: stack(A,B)

4.5 Inference through Precondition Checks

The user instruction either describes an action to be performed or describes an end state of the world
which is interpreted as a goal. Making the distinction on whether the instruction is an action or a
goal is difficult. So, we rely upon checking the conditions of the action associated with the operator
in domain-specific mapping

4.5.1 Action Creation

Our approach assumes that if a user intends to specify an action to perform, the current state of the
world should already satisfy the preconditions of that action. An executable action doesn’t require
planning. Based on this fact, we run a simple test to see if the preconditions of the extracted operator
are met. If they are met, the agents infer that the user intends to request an action. Therefore,
MIDCA does not insert any new goals during the “intend” phase of the cognitive cycle and in
the “plan” phase, inserts the requested action as a trivial plan. In the Example from section 4.3,
the domain-specific mapping extracted from the instruction shows the operator “stack”, its domain
object arguments, and operator arguments.. Once this is obtained, we check for all the preconditions
associated with a instantiated action over the operator “stack” is stack(A,B), that is we check
whether the statement holding(red block/A) ∧ clear(green block/B) is true. So, if it is true, the
agent infers the instruction as an executable action.

4.5.2 Goal Creation

Consequently, if the preconditions are not met, the instruction cannot be an action. The agent
assumes that the human must have been describing a desired end state of the world instead of an
action. To achieve this end state, the agent first infers its description based on the postconditions of
the operator. These postconditions are treated as a goal, which the agent creates and adopts. Then,
during the plan phase the agent generates a feasible series of actions to fulfill the goal.
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For the example from section 4.3, the preconditions on the instantiated action stack(A,B)
are holding(red block/A) ∧ clear(green block/B). Let’s say the agent is not holding the red
block. So, the agent knows that it is not an immediate/executable action. Then the agent assumes
that “put the red block on the green block” describes an end state which is obtained by looking
at postconditions. In this case, the desired end state is that the red block must be on the green
block. So, the agent infers that the human wants to create a goal of stacking two blocks which is
the operator identified from the instruction. The MIDCA planner will generate a viable plan for that
goal.

Note that the goal inferred from the postconditions may not always match the user’s intent. For
example, the goal behind “pickup the yellow triangle”can mean any of the following: the desired
end state is that you want the yellow triangle in hand (this is to be the postcondition of pickup
operator), or you didn’t want the yellow triangle to be on the table anymore, or it is an action in
achieving the goal of clearing some other block (assuming yellow triangle is on top of it). Our
procedure doesn’t compare alternative goals at this point, but we think we are headed in the right
direction for inferring a goal or an action from a given instruction.

4.6 Pseudocode

The goal-inference process shown in Algorithm 1 gets the initial state (s) as the input. The robot has
the prior information of synsets of domain keywords (K) through Wordnet. The algorithm checks
if the operator (o) is in the keywords (K). If it is not, then it is not a valid instruction. If not,
the algorithm runs a simple test on the preconditions of the instantiated action associated with the
operator. The arguments are mapped to domain objects and operators arguments. If the current state
of the world entails the preconditions then an executable action is inferred. Otherwise, the algorithm
assumes that the user is describing a desired state and infers a goal from the postconditions of the
instantiated action. The pseudocode for the algorithm is described below.
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Algorithm 1: Goal Inference through condition check
input: State of the world, s
Data: Synsets of domain-specific keywords K
Result: ACTION or GOAL g or INVALID instruction

1 Get Instruction I← Speech in text form
2 Initialize semantic role labeler SRL
3 Get predicate argument structures PAS← SRL(I)
4 Initialize operator o←pAS.get_verb()
5 Get arguments args← get_arguments(PAS)
6 Get Color-Object Argument Map map // from memory // for args→ operator args/variables
7 Initialize Mapping map θ = map_syntactic_arguments(o, args) // operator variables→

domain objs

8 if o ∈ K then
// Test for goal inference (SRL + Wordnet)

9 if s |= preconditions(instantiated-action(o, map, args)) then
/* since preconditions are met, add the action to be performed

based on operator. */

10 return α← subst ( head(o), θ)
11 end
12 else

// assumes that the instruction is describing the end state

// create goal based on postconditions (instantiated-action)

13 return g← subst ( postconditions(instantiated-action(o, map, args), θ))
14 end

// In the "plan" phase, MIDCA Agent will plan for this goal.

15 end
16 else
17 return INVALID
18 end

5. Usage Examples

The instructions used to evaluate our procedure are tabulated in Table 1. These examples are for the
purpose of demonstrating that our procedure allows for flexibility in the sentences, thus increasing
human satisfiability. To illustrate the usage examples, we consider the construction domain which
supports the following operators: “stack”; “unstack”; “pickup”; and “putdown”. The domain
consists of several blocks. Each block is described by its color, and identified by a symbol, by
convention a capital letter. The same initial environment state (s) is used in all examples below and
is depicted in Figure 2 (a).

1. V: refers to the verb of the sentence
2. A: refers to the semantic arguments related to the verb
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Table 1. Instructions used to evaluate the Goal-Inference Model.

SNo. Sentence SRL-PAS

1 "Let the blue block be placed on the green block” V1: placed, A2: Blue and Green Blocks
2 “the red block is uncluttered from the yellow triangle” V: uncluttered, A: Red Block and Yellow triangle.
3 “Grab the yellow triangle” V: Grab, A: Yellow triangle
4 “Please stack the yellow triangle on the blue block” V: please, A: stack the yellow triangle on the blue block

V: stack, A: yellow triangle and blue block
5 “You need to grab the yellow triangle” V: need, A: grab the yellow triangle
6 “Put down the red block” N/A
7 “I want the red block in your hand” V: want, A: red block and hand
8 “Hold the purple triangle” N/A
9 “The yellow triangle is uncluttered from the red block” V: uncluttered, A: yellow triangle

We elaborate the goal-inference procedure followed by the agent with a few of these sentences.
When sentence 1: “please put the blue block on the green block” is received in the “perceive”
phase, the SRL annotator identifies the main verb as “put” with “blue block” and “green block”
as semantic arguments. The map is used to map the arguments to the operator arguments. The blue
block” and “green block” are mapped as B and C and the assumed order as top and bottom block
respectively. The domain specific operator for the verb is identified as “stack”. The preconditions
for instantiated action stack(B,C) are clear(C)∧holding(B). Observing the initial state, we can
conclude that C is clear; however, the MIDCA agent is not holding B. Since all the preconditions
are not met, the agent concludes that the instruction is not an executable action. This process of
reaching the instantiated action is carried out in the “interpret” phase. The precondition entailment
leads to the inference which is added to the goals or actions in the “evaluate” phase. The agent then
assumes that the user is describing a desired end state, so it infers an intended goal from the post
conditions. In this case, the postconditions of action stack(B,C) state that block B is on block
C. So, the agent infers the goal as on(B,C). Note "on" is the predicate associated with “stack” in
the construction domain. This is added into the set of goals (G) in the “evaluate” phase. After this
goal is selected in the “intend” phase, the agent creates a plan to achieve it in the “plan” phase. In
this scenario, a satisfying plan is: [pickup(C), stack(B,C)]. These actions are performed in the
two subsequent “act” phases. The final state achieved after the agent performs the inferred goal is
shown in Figure 2(b).

Similarly, when sentence 3: “Grab the yellow triangle” is perceived, the operator extracted for
the verb “grab” is “pickup”. The predicate for this verb is “holding” and the argument “yellow
triangle” is mapped to D as operator argument and to the corresponding domain object. The current
state of the world is described in Figure 2(b). The current state doesn’t satisfy the preconditions of
operator “pickup” because the D block is on the A block; hence, the action pickup(D) is not
executable. Therefore, the agent will infer a goal from the postconditions which is that the agent is
holding the block D. So, the agent infers a goal of holding(D). Observe that the predicate for the
verb itself is holding which is a postcondition. After this goal is selected, the agent creates the plan
[unstack(D,A), pickup(D)] to achieve it. This leads to the final state of D being in the agent’s
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Figure 2. (a) Initial state of the objects (blocks, triangles) in the construction domain, (b) State after executing
the stacking goal on B (blue) block and C (green) block, (c) State after executing a pickup goal on D (yellow)
triangle, and (d) State after executing the action of the putting the D (yellow) triangle on B (blue) block.

hand. The final state is shown in Figure 2(c). Note that there are other alternative goals that might
satisfy this instruction, such as “unstack" the yellow triangle from the "red block”. We are not
exploring these possibilities in this paper.

For sentence 4: “Please stack the yellow triangle on the blue block”, the SRL annotator extracts
two verbs namely “please” and “stack”. However, the main verb of the sentence is “stack” as
“please” is not a domain specific operator. The agent will identify the operator as “stack” and the
predicate as “on”. The arguments are mapped to C and B objects in the domain.The preconditions
of the operator are holding(D) ∧ clear(B). Since the current state satisfies the preconditions, the
agent will infer that this action is executable and perform it, putting block D on block B. The
MIDCA agent’s final state shown in Figure 2(d).

6. Limitations

We use some of the examples from Table 1, to explore the limitations of our goal inference proce-
dure. First, our procedure doesn’t consider all possible alternative goals associated with an instruc-
tion. Second, some verbs identified by the SRL Annotator do not lead to correct identification of an
operator, because they do not describe executable operations. For example in sentence 5, the user
intent is to pick up the red block but the verb “need” does not correspond to any domain operator.
The annotator does not recognize the word “grab” as a verb in contrast to the behavior displayed
on sentence 3. Similarly in sentence 7: “I want the red block in your hand”, the intent was that the
agent will be holding the block. However, the verb “want” doesn’t correspond to any operator in
the domain. Third, the SRL annotator extracts verbs but will fail if there are not enough arguments
for the operator. To demonstrate this issue, consider sentence 6: “Put down the red block”. This
fails as it couldn’t identify down as the second argument. So, our procedure will fail to infer a goal
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or action. However, “putdown” combined is a domain operator. The means the sentence itself can
be converted to a valid goal/task in the domain. In contrast, the SRL sometimes failed to identify
the verb. For example the word “hold” in sentence 8: “Hold the purple triangle”, is not interpreted
as a verb by the SRL annotator. So, the SRL fails to extract a PAS. However, “hold” can be asso-
ciated with domain predicate “holding”. This means the sentence represents a valid goal but our
procedure failed to recognize it.

Another limitation of the procedure is due to the rigidity of the annotator. We have to be very
specific with the sentence structure or else the annotator either fails to extract PAS or doesn’t extract
all the arguments. A sample case is if we change the order of the arguments in the sentence. Con-
sider Sentences 2 and 9, they differ in the order of their arguments: yellow triangle and blue block.
Although the SRL is able to detect both the arguments in sentence 2, it fails to detect the second
argument in sentence 9. So, the order of the arguments matters while giving the instruction.

7. Discussion and Future Work

In this paper, we describe a simple procedure for inferring the intent behind a user-provided instruc-
tion. We demonstrated the effectiveness of this procedure for inferring user intent in some initial
examples. We believe that our procedure is headed towards achieving flexibility and improving hu-
man robot collaborative experience. We plan to develop a concrete experimental design with human
subjects in order to get evidence about whether this procedure increases user satisfaction.

We identified several limitations of the procedure caused by the design assumptions and the per-
formance of SRL. The MIDCA agent only considers a single possible goal that the user might have
meant. In future work, we plan on considering multiple goals consistent with the same instruction.
We also plan to explore training the SRL annotator with domain specific instructions and developing
new approaches to interpretation of instructions with no verb. Some of these limitations are caused
by our commitment to accepting free-form instructions rather than engaging in rigid pre-scripted
conversations. So, despite the limitations, we believe that with additional work we can increase user
satisfaction through goal inference in Human Robot collaborations.

In future work, we plan to provide experimental evidence for increased user satisfaction due to
the goal inference procedure, extend the procedure to additional domains to demonstrate generality,
and add the capability to disambiguate similar objects through conversation. We will look into
alternative techniques to decrease the manual work in the filtering of the synsets. We will further
investigate what type of verbs affects the performance of the SRL and look into improving it. We
also plan to investigate inference of the most likely alternative goal using Bayesian inference and/or
an agent’s history of interactions with the environment. We will also explore adding domain-specific
knowledge graphs or ontologies to increase the accuracy of user intent inference.
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