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Abstract
Analogical reasoning fundamentally involves exploiting redundancy in a given task, but there are
many different ways an intelligent agent can choose to define and exploit redundancy, often result-
ing in very different levels of task performance. We explore such variations in analogical reasoning
within the domain of geometric matrix reasoning tasks, namely on the Raven’s Standard Progres-
sive Matrices intelligence test. We show how different analogical constructions used by the same
basic visual-imagery-based computational model—varying only in how they “slice” a matrix prob-
lem into parts and do search and optimization within/across these parts—achieve very different
levels of test performance, ranging from 13/60 correct all the way up to 57/60 correct. Our find-
ings suggest that the ability to select or build effective high-level analogical constructions can be
as important as an agent’s competencies in low-level reasoning skills, which raises interesting open
questions about the extent to which building the “right” analogies might contribute to individual
differences in human matrix reasoning performance, and how intelligent agents might learn to build
or select from among different analogical constructions in the first place.

1. Introduction

Raven’s Progressive Matrices (RPM) is a very widely-used human intelligence test that contains
geometric matrix reasoning problems like those shown in Figure 1—including 2×2 problems (left)
and 3×3 problems (right). The task is to select the answer from the options printed at the bottom
that best completes the matrix on top.

How do you solve these problems? Your solution process is likely to involve constructing
analogies from the problem elements—one row or column becomes the source, another row or
column becomes the target, you find a mapping between them, and finally you transfer information
from the source to the target to produce an answer—but there are many possible analogies to choose
from. For the 2×2 problem on the left, you might construct analogies based on rows or columns.
For the 3×3 problem on the right, there are far more variations. Perhaps you just focus on the top
row and bottom row, ignoring the middle row completely. Or, maybe you look at the top row first,
use the second row to “verify” your hypothesis, and then try to fill in the bottom row.
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Figure 1. Examples of RPM-like problems: (a) is a 2×2 problem and (b) is a 3×3 problem. Real RPM
problems are not shown, to protect the secrecy of the RPM tests.

When taking the RPM, no one tells you how to construct these various analogies to get to the
answer. Some research suggests that the ability to construct abstract analogical relations might be
an innate ability that distinguishes humans from other species (Hespos et al., 2020). The RPM
was specifically designed to test a person’s eductive ability, or the ability to extract information
from and make sense of a complex situation (Raven et al., 1998), where analogies are usually
indispensable. Previous computational models have explored many different dimensions of matrix
reasoning, including the capacity for subgoaling (Carpenter et al., 1990), specific pattern-matching
strategies (Cirillo & Ström, 2010), various forms of rule induction (Rasmussen & Eliasmith, 2011;
Little et al., 2012; Shegheva & Goel, 2018), and methods for dynamically re-representing and re-
organizing visual elements to find robust mappings (Lovett & Forbus, 2017).

In this paper, we present a systematic examination of another dimension of matrix reasoning,
i.e., different ways to construct analogies from matrix elements. As our base model, we use the
Affine and Set Transformation Induction (ASTI) model, which operates on scanned, pixel-based
images from the RPM test booklet and uses affine transformations and set operations to reason
about image differences (Kunda et al., 2013; Kunda, 2013). Our contributions include:
• We present a three-level search hierarchy for representing different types of RPM problem-

solving approaches. First, at the level of images, a model can search across a set of image
transformations to best interpret differences within a given pair or trio of images (e.g., to ex-
plain the variation across a given row, column, or diagonal). Second, at the level of a problem
matrix, a model can search across different analogies to find appropriate transfers of relation-
ships across different pairs or trios of images, including existing rows/columns that appear in the
original matrix as well as more complex spatial groupings of elements that can be obtained from
spatial re-interpretations of the original matrix. Third, at the highest level of problem solving,
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a model can use one of several integration strategies that specify how search and optimization
at each of the preceding levels are integrated to produce the final answer.
• We demonstrate that a certain combination of transformations, analogies, and integration strat-

egy is sufficient for solving 57/60 problems on the Raven’s Standard Progressive Matrices test,
which shows that this task-specific language of representations and inference mechanisms is
quite expressive with respect to this particular domain.
• Through systematic ablation experiments, we show that test performance can vary widely as

a function of overall analogy constructions, i.e., particular selections at different levels of the
search hierarchy. For example, if transformations and analogies are held fixed, then variations
in integration strategy alone can produce test performance ranging from 13/60 up to 57/60.

2. ASTI+ Model Description

In this section, we describe the expanded Affine and Set Transformation Induction (ASTI) model
(Kunda et al., 2013; Kunda, 2013), which we call ASTI+. We describe the model and its variations
in terms of five core representations/mechanisms: 1) image representations; 2) similarity metrics;
3) image transformations; 4) matrix analogies; and 5) integration strategies.

2.1 Image Representations

Since the standard RPM is in black and white, we represent each problem as a binary (i.e. pure black
and white) image. Hence, an image can also be represented as a set of black pixels. Throughout
this paper, we use these two representations interchangeably. Binary images are generated from
grayscale scanning images of RPM problems, where a threshold is manually set to convert grayscale
values to binary values. An RPM-specific automated image processing pipeline (Kunda, 2013) was
used to decompose each full test page into images of individual matrix entries and answer options,
as shown in Figure 2. These individual images are then fed as inputs to the ASTI+ models.

Figure 2. Illustration of input to our models for the 2×2 example problem: mij is the matrix entry in Row i
and Column j, and Ok is the k-th answer option.

2.2 Similarity Metrics

We use the Jaccard index and the asymmetric Jaccard index to measure the similarity between
images, as shown in Equation 1 and 2, where A and B are two sets representing two binary images.
Equation 2 is asymmetric because JA(A,B) 6= JA(B,A), and it measures the extent to which A is
inside (or a subset of) B.

J(A,B) =
|A ∩B|
|A ∪B|

(1)
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JA(A,B) =
|A ∩B|
|A|

(2)

A problem in Equation 1 and 2 is that A and B should be well aligned. In other words, A and B
should have the same shape and size, and pixels at the same coordinates in A and B should spatially
correspond. However, the images of individual matrix entries and options come in various shapes
and sizes.

We take a simple and robust approach to this problem — slide one image over the other (like
a correlation filter), calculate a similarity value at every relative position, and select the maximum
similarity. In the process of sliding, images are padded to have the same shape and size in order for
them to be fed into Equation 1 and 2.

S(A,B) = (J(A,B), posAB) (3)

SA(A,B) = (JA(A,B), posAB, posDA, D) (4)

As a result, similarity procedures in our models are defined in Equation 3 and 4, where J(A,B) and
JA(A,B) are the maximum similarity values at the relative position posAB of A to B, D = B −A
aligned by posAB , and posDA is the relative position of D to A.

2.3 Transformations

The ASTI+ models represent low-level visuospatial domain knowledge in the form of a discrete
set of image transformations, i.e. functions that map from one or more input images to an output
image. All of these functions operate on images at the pixel level, without re-representing visual
information in terms of higher-order features, shapes, etc. While these functions were defined
manually, based largely on inspections of the Raven’s test, important directions for future work
include expanding these functions to include higher-order features and concepts, as well as learning
these functions from perceptual experience (Memisevic & Hinton, 2010; Michelson et al., 2019).

There are two types of ASTI+ image transformations: unary and binary. Unary transformations
take a single input image, while binary transformations take two input images. All of the ASTI+

Figure 3. Illustration of affine transformations used in our models.
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Figure 4. Illustrations of set transformations used in our models: (a) Given an analogy A:B::C:? and an
unary set transformation T , the output image is O = T (C|A,B), where C is the input, and B and C are
parameters of T . (b) Given an analogy A:B:C::D:E:? and a binary set transformation T , the output image is
O = T (A,B|C) when T is applied on A:B:C, where A and B are the inputs, and C is a parameter of T , or
O = T (D,E|O′) when T is applied on D:E:?, where O′ is any option of the RPM problem.

Table 1. Details of unary, binary, and hybrid unary/binary transformations.
add_diff(C|A,B) Calculate SA(A,B) = (· · · , posDA, D). Align D and C using posDA|A=C . Output O = C ∪D.
sub_diff(C|A,B) Calculate SA(B,A) = (· · · , posBA, posDB , D). Align C and D using posBA|A=C and posDB .

Output O = C −D.
xor_diff(C|A,B) Calculate S(A,B) = (· · · , posAB). Align A and B using posAB , and calculate D = A⊕B. Align C

and D using posAB|A=C . Output O = C ⊕D.
duplicate(C|A,B) Let O be an empty image of the same size as B. Calculate SA(A,B) = (· · · , posAB , · · · ) and

B = B − A aligned by posAB , and copy C to the position of posAB|A=C in O. Repeat this until
nothing is left in B. Output O.

rearrange(C|A,B) Let O be an empty image of the same size as B. Decompose C, A and B into connected compo-
nents C1, C2, · · · , Cl, A1, A2, · · · , Am and C1, C2, · · · , Cn. If l = m = n is false, output a value
indicating failure. Otherwise, find a 1-to-1 mapping f : {1, 2, · · · , n} → {1, 2, · · · , n} that maximizes∑n

i=1 J(Ai, Bf(i)) by calculating S(Ai, Bj) = (J(Ai, Bj), posAiBj
) for each i and each j. Find

another 1-to-1 mapping g : {1, 2, · · · , n} → {1, 2, · · · , n} that minimizes
∑n

i=1 distance(Ci, Ag(i)).
Generate O by copying Ci to position of posAg(i)Bf(g(i))|Ag(i)=Ci

in O for all i.

unite(A,B|C) Calculate SA(A,C) = (· · · , posAC , · · · ) and SA(B,C) = (· · · , posBC , · · · ). Align A and
B with posAC and pocBC . Output O = A ∪B.

intersect(A,B|C) Calculate SA(C,A) = (· · · , posCA, · · · ) and SA(C,B) = (· · · , posCB , · · · ). Align A and B
with posCA and pocCB . Output O = A ∩B.

inverse_unite(A,B|C) Calculate SA(B,A) = (· · · , posBA, · · · ) and SA(C,A) = (· · · , posCA, · · · ). Align A, B
and C using posBA and posCA. Output image O = A− (B − C).

xor(A,B) Calculate S(A,B) = (· · · , posAB). Align A and B by posAB . Output O = A⊕B.
shadow_mask_unite(A,B) Let X and Y be the shadows of A and B, where “shadow” is defined to be a copy of an image

where any white area surrounded by black in the original image is colored black. Calculate
S(X,Y ) = (· · · , posXY ). Align X and Y using posXY , and calculate M = X ∩ Y . Align A
and B using posXY |X=A,Y =B . Output O = M ∩ (A ∪B).

preserving_sub_diff(D,E|A,B,C) Given analogy A:B:C::D:E:?, preserving_sub_diff works as sub_diff(E|B,C).
But it requires that A ⊂ (B−C) and D ⊂ (E−O), where O is an option. Otherwise,
output a value indicating failure. (This transformation NOT shown in Figure 4.)
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transformations are based on fundamental affine transformations or set operations, or combinations
of these. These transformations extend the original collections proposed in earlier ASTI research
(Kunda et al., 2013; Kunda, 2013).

We have nine unary affine transformations in our models: eight rectilinear rotations/reflections,
as shown in Figure 3, plus a ninth scaling transformation that doubles the area of the input image.

We have eleven additional set transformations in our models: five unary and five binary, as
shown in Figure 4.a and b respectively, plus one additional hybrid unary/binary transformation. De-
tails of each transformation are given in Table 1. Unary transformations are defined relative to analo-
gies between pairs of images, i.e. A:B::C:? for images A,B,C. Binary transformations are defined
relative to analogies between triplets of images, i.e., A:B:C::D:E:? for images A,B,C,D,E. How
such analogies are defined within a given RPM problem is described in the next subsection.

2.4 Analogies

An analogy within an RPM matrix reasoning problem is composed of abstract parallel relations
between matrix entries. We assume that all the abstract parallel relations in an analogy should be
instantiated by a single transformation. Note that while this assumption seems adequate for solving
most problems on the Standard Raven’s test, items on the Advanced test or other geometric analogy
tests may require considering multiple transformations (Carpenter et al., 1990; Kunda, 2015). Figure
5 shows some examples of analogies within an RPM matrix, where the images and the missing part
are represented by letters and a question mark. The analogies in our models are composed of either
pairs of matrix entries (Figure 5.a and b) or 3-tuples of matrix entries (Figure 5.c and d).

Figure 5. Illustrations of simple analogies in 2×2 and 3×3 RPM problems: given a 2×2 matrix, (a) and
(b) show a row analogy A:B::C:? and a column analogy A:C::B:?; similarly, given a 3×3 matrix, (c)
and (d) show row analogies A:B:C::G:H:? and D:E:F::G:H:?, and column analogies A:D:G::C:F:? and
B:E:H::C:F:?.

In addition to these “simple analogies” in Figure 5, our ASTI+ models also expand these possi-
ble analogies drawn from the problem matrix in two important ways. First, for 3 × 3 matrices, the
models further consider several sub-problems, as shown in in Figure 6. For example, consider the
simple analogies in Figure 5.c, A:B:C::G:H:? and D:E:F::G:H:?. They use only two of three rows
of the matrix. Thus, we put them in a recursive format, A:B:C::D:E:F:::D:E:F::G:H:? as shown
in Figure 6.a, where all the rows are taken into account. In this recursive analogy, two sub-problems
are created — the first sub-problem is A:B:C::D:E:? with F as the only option; the second sub-
problem is D:E:F::G:H:? with the options from the original RPM problem. All the sub-problems
should be solved equally well by the correct transformation.

Second, the models capture more sophisticated spatial regularities in a matrix by expanding it in
a way that the spatial relation between any two entries in the original matrix still holds everywhere in
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Figure 6. Illustrations of recursive analogies in 3×3 RPM problems: (a) are (b) are 3-tuple analogies and (c)
through (j) are pair analogies. Each rectangle or square represents a sub-problem. All the sub-problems in a
matrix are equally considered while solving the matrix.

the expanded matrix, and then enclose parts of the expanded matrix with quadrilaterals, as shown in
Figure 7. Each quadrilateral contains a matrix that can be used to generate analogies as the original
matrix. We follow three reasonable heuristics to enclose these matrices: (1) it should contain all
the entries of the original matrix, (2) it should be of the same size as the original matrix, and (3)
it should have a ? at one of the corners. Note that the entries that are grayed out in Figure 7.g
are not in any matrix. While we do not necessarily expect that humans use this type of expansion
plus quadrilateral strategy, this approach provides a systematic and parsimonious way to capture
regularities within a matrix that humans might perceive and reason about, albeit in different ways.

Figure 7. Expanded matrices to generate analogies: (a) through (c) are expanded from the 2×2 matrix in
Figure 5, and (d) through (g) are expanded from the 3×3 matrix in Figure 5. Different quadrilaterals are used
to enclose matrices to generate analogies.
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2.5 General Integration Strategy

All of our ASTI+ models share a 3-stage general strategy for solving an RPM problem. In Stage 1,
they try to explain the variations in the matrix with some analogies and transformations. In Stage
2, they verify their explanations by predicting an answer image and comparing it to each option,
and/or plugging each option into the matrix and checking if the explanations still hold. In Stage 3,
the best explanation, i.e. the best analogy and the best transformation, along with the corresponding
answer option, are outputted as the answer.

To quantify “how well” an analogy and a transformation explain the variations across matrix
entries, we introduce three kinds of scores based on the Jaccard and the asymmetric Jaccard indices
introduced in Section 2.2: (1) the MAT score measures how well an analogy and a transformation
explain the variations in the matrix in Stage 1; (2) the O score measures how well an analogy and a
transformation explain the variations involving the options in Stage 2; (3) the MATO score, used as
the final score to select the answer, is computed from the MAT and O scores.

For example, given the matrix in Figure 5.a, analogy A:B::C:? and transformation flip(X):
MAT = J(flip(A), B); O = J(flip(C), O); and MATO = (MAT + O)/2. However, score
calculation methods are analogy- and transformation-dependent, as described in more details below.

MAT Scores. For transformations in forms of T (A) or T (A,B) (without extra parameters),
MAT scores are calculated in the same way as flip(X). For transformations with extra parameters,
MAT scores can not be calculated in the same way because we don’t know the extra parameters. For
example, for add_diff(I|S, T ) and A:B::C:?, we can not use MAT = J(add_diff(A|S, T ), B)
because we don’t know S and T (but we can use add_diff(C|A,B) to calculate O score). In
this case, the MAT score is calculated as MAT = JA(A,B) for add_diff(I|S, T ). Although
transformation-specific approaches are taken to calculate MAT scores, it is always a function of one
or more Jaccard and asymmetric Jaccard indices of known matrix entries.

O Scores. For transformations using only Jaccard index to calculate MAT scores, the Jaccard
index is also used to calculate O scores. For transformations using asymmetric Jaccard index, for
example add_diff and sub_diff , asymmetric Jaccard index is always higher than Jaccard index
given the same input (see Equation 1 and 2). As a result, transformations measured by asymmetric
Jaccard index tend to have higher scores even if their explanations are pretty bad. To regulate
such transformations, we calculate multiple Jaccard and asymmetric Jaccard indices, each of which
characterizes a distinct aspect of the transformation, and average them to get an O score.

For example, for add_diff(C|A,B) and A:B::C:?, three aspects of the transformation are
considered: (1) how much C is a subset of O, where O is an option, (2) how the difference between
A and B compares to the difference between C and O and (3) how similar the predicted image
is to O. This leads us to O = (JA(C,O) + J(D,D′) + J(add_diff(C|A,B), O)))/3, where
D = B −A and D′ = O − C after A, B, C and O are properly aligned.

MATO Scores. MATO scores are weighted averages of MAT and O scores, where the weight
is proportional to the number of variations that the score measures. For recursive analogies in 3×3
matrices, scores of the original problem are derived from the scores of sub-problems. Suppose
that there are n sub-problems in a recursive analogy. Let MATk and Ok be the MAT score and
the O score of the k-th sub-problem. The final MAT score is MAT = [

∑n−1
k=1(MATk + Ok) +

MATn]/(2n− 1), and the final MATO score is MATO = [
∑n

k=1(MATk + Ok)]/2n.
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Figure 8. The dependencies of scores: The dashed lines denote partial dependence. Given the relations in an
analogy, MAT relies on the entries that are not related to the missing entries while O relies on the entries that
are related to the missing entries.

2.6 Specific Integration Strategies: When and What to Maximize

Given the dependencies of scores in Figure 8, the general strategy boils down to an optimization
problem in which MATO score is maximized over the analogy a, the transformation t and the option
O (the matrix m is fixed for an RPM problem). A special heuristic in this optimization is that,
often, maximization of MAT score implies the maximization of O score and thus the maximization
of MATO score. In other words, the best explanation for the known matrix entries should often still
be the best if you plug the options into the matrix. However, this heuristic may not work if there
is ambiguity or noise in the problem, or if the reasoning agent does not have sufficient/appropriate
transformations for that particular problem.

Therefore, we introduce three specific integration strategies, i.e., each in the form of a spe-
cific maximizing process—from totally relying on the heuristic to totally ignoring the heuristic.
In particular, given an RPM matrix m, an analogy a, a transformation t and an option O, MAT
score is a function MAT(m,a, t), O score is a function O(m,a, t, O), and MATO is a function
MATO(MAT,O). The 3 processes can be written as the optimization problems I, II and III, where I
totally relies on the heuristic, III totally ignores the heuristic, and II lies in between.

Models using these three optimization formulations are labeled as following M-confident (I),
M-neutral (II), and M-prudent (III) strategies, respectively.

MATO∗ = max
O

MATO(MAT(m,a∗, t∗),O(m,a∗, t∗, O))

a∗, t∗ = argmax
a,t

MAT(m,a, t)
(I)

MATO∗ = max
a,O

MATO(MAT(m,a, t∗),O(m,a, t∗, O))

t∗ = argmax
t

MAT(m,a, t)
(II)

MATO∗ = max
a,t,O

MATO(MAT(m,a, t),O(m,a, t, O)) (III)

Since the O score also depends on the option O in Figure 8, it can also serve as the objec-
tive function to select the answer from the options. Therefore, we have another 3 optimizations
maximizing O, which we label as corresponding O-strategies: O-confident, O-neutral (IV) ,and
O-prudent (V). (Note that since MATO is simply a weighted average of MAT and O, O-confident
is equivalent to M-confident (I)).
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O∗ = max
a,O

O(m,a, t∗, O)

t∗ = argmax
t

MAT(m,a, t)
(IV)

O∗ = max
a,t,O

O(m,a, t, O) (V)

A natural way to consider these optimization problems is that they correspond to the reasoning
agents from being extremely confident to being extremely prudent. For example, a very confident
agent (I) might come up with only one explanation (i.e. an analogy and a transformation) for what
is observed in the matrix, and then verify this explanation against the options, while a very prudent
agent (Optimization III and V) enumerates all the possibilities.

3. Experimental Results

First, we compare integration strategies, given the complete set of transformations and analogies.
Models were run against all 60 scanned problems from the Standard RPM test.Results are shown in
Figure 9. The M-neutral strategy always ties with the M-prudent strategy, solving 57/60 problems.
The M-confident strategy performs slightly worse, solving 55/60 problems.

Interestingly, while the confident strategy performs worst in maximizing MATO in Figure 9.a,
it performs best in maximizing O in Figure 9.b. Meanwhile, O-neutral and O-prudent strategies in
Figure 9.b contrast sharply with their counterparts in Figure 9.a. In particular, the more the strategy
relies on the heuristic that we mentioned in Section 2.5, the more the performance degrades from
maximizing MATO to maximizing O. We surmise that this is because the RPM is designed to have
distractors of very high O and very low MAT. In other words, these distractors work like traps
for strategies that maximize only O scores, which is consistent with observations that people often
make errors of “repetition” while solving RPM problems (Kunda et al., 2016).

The bubble tables in Figure 9.c and 9.d show the details of each problem’s answers given by
different strategies. MAT, O and correctness of the answers are encoded as size, darkness and hue
of bubbles (correct answers are in blue and incorrect ones are in red). Note that the “signed” O
score is only for visualization to distinguish between correct and incorrect answers, and the real
scores in our models are always positive in [0, 1]. Figure 9.c also shows a subtle difference between
strategies: although different strategies can have the same answer to a problem, they may come to
the same answer via different analogies and transformations; otherwise blue bubbles in any single
column should be of the same size and color.

If we put all the bubbles in a 2-D plane of MAT and O scores, we will have the scatterplots
in Figure 9.e and 9.f. Since most of the points in Figure 9.e represent problems that are correctly
solved, and these points are mostly located near or below the diagonal, we hypothesize that, for
a "naive" (with little prior knowledge about RPM) participant or computational model to solve an
RPM problem, a good explanation for the known matrix entries matters more than a good expla-
nation of how an option can be matched. Recall that MAT and O are measurements of these two
explanations. On the flip side, many more points, representing incorrect answers, are located above
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Figure 9. Comparison between the strategies given the complete set of analogies and transformations: (a)
and (b) show numbers of problems correctly solved by each strategy in every single problem set and the
entire standard RPM test; (c) and (d) are bubble tables showing MAT and O scores for each strategy and
each problem, where red bubbles are incorrect answers and blue bubbles are correct answers; (e) and (f) are
scatterplots where each bubble in (c) and (d) is a datapoint in the 2-D plance of MAT and O. Note that (a),
(c) and (e) are for strategies maximizing MATO while (b), (d) and (f) are for strategies maximizing O.

the diagonal in Figure 9.f, which further consolidates this hypothesis. This hypothesis based on
MAT and O scores is consistent with previous suggestions that high-achieving testees take the op-
tions less into account, or none at all except comparing their predictions with the options, than
low-achieving testees (Bethell-Fox et al., 1984; Carpenter et al., 1990; Lovett & Forbus, 2017).
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Figure 10. Stack bar charts of numbers of problems correctly solved by M-prudent strategy using different
analogy groups and transformation groups.

Next, we compare model configurations all using the same M-prudent strategy but with differ-
ent subsets of transformations and analogies. We divide transformations into 4 groups: Affine={all
the affine transformations}, Diff={add_diff, sub_diff, xor_diff}, Match={duplicate, rearrange} and
Set={unite, intersect, inverse_unite, preserving_sub_diff, xor, shadow_mask_unite}. We also di-
vide analogies into 4 groups according to shapes of quadrilaterals: Group S from Figure 7.a and
7.d, Group H from Figure 7.b and 7.e, Group V from Figure 7.c and 7.f, and Group R from Fig-
ure 7.g. Figure 10 shows the performance of different combinations of analogy and transformation
groups using the M-prudent strategy. The groups are arranged in a 1-to-1 way in Figure 10.a and
in a progressive way in Figure 10.b. The strength and the weakness of each analogy group and
each transformation group clearly emerge from Figure 10.a. For example, S analogies plus Diff
transformations are really good at problems in Set A, B and C, whereas R analogies and Set trans-
formations specialize in solving Set D and E but work pretty bad on Set A, B, and C. In Figure 10.b,
increases can be seen in both vertical and horizontal directions. However, the vertical increases are
more significant than the horizontal increases. This does not mean that transformations are more
important than analogies, because, as we can see in Figure 10.a, the S group outperforms H, V and
R for every transformation group, and most of the problems in Set A, B and C solved by H, V and R
can also be also solved by S with a different transformation. We might expect to see more variation
across analogy groups if they are defined at a finer level.
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4. Related Work

4.1 Knowledge-Based Models

Knowledge-Based Models using Propositional Representations. While not explicitly an RPM
model, Evans’ early ANALOGY program (Evans, 1964) solved geometric analogy problems in the
form of A:B::C:{five options} by applying a predefined set of spatial transformations to account for
variation in the analogy source. Carpenter et al. (1990) similarly used 5 predefined rules to explain
the variations in Advanced RPM matrices, and conducted experiments around working memory and
subgoaling. Some recent works brought propositional representations to a finer level of components
of geometric objects, rather than the entire geometric objects. One of the most well-known works
is CogSketch plus Structure-Mapping Engine (Falkenhainer et al., 1989; Lovett et al., 2010; Forbus
et al., 2011; Lovett & Forbus, 2017), where CogSketch encodes qualitative spatial relations be-
tween 2-D objects, and Structure-Mapping Engine compares the relations using structure-mapping
theory (Gentner, 1983). Prade and Richard (2009; 2010; 2013) also provide great theoretical and
systematical interpretations of analogies and apply them on various analogical reasoning tasks such
as progressive matrices. Another distinctive work is the anthropomorphic method (Cirillo & Ström,
2010; Strannegård et al., 2013), which solves the RPM problems without looking at the options.
For each problem, it maintains a hierarchical representation of the answer and keeps updating it
with analogies and transformations. Different from all the above models is a work from a computa-
tional neuroscience perspective by Rasmussen and Eliasmith (2011), where each transformation is
implemented through spike neuron models using Vector Symbolic Architecture (Gayler, 2004) and
Neural Engineering Framework (Eliasmith & Anderson, 2004).

Knoweldge-Based Models using Visual Representations. Kunda, McGreggor and Goel
(2009; 2010; 2011; 2012; 2013; 2014; 2014) proposed several computational models that work
directly on the visual representations of geometric objects, including the original ASTI model ex-
tended here as well as the fractal model. Shegheva and Goel (2018) proposed another interesting
model, which represents rules of variations with graphical models using Markov Random Fields.

4.2 Data-Driven Models

Data-Driven Models using Visual Representations. Recent approaches from machine learn-
ing have tackled RPM-like problems using mostly neural-network-based techniques. The general
machine-learning solution for RPM problems is: (1) each answer option is plugged into the matrix,
(2) sequences of images of rows, columns or the entire matrix are fed into a feature-extraction mod-
ule, (3) scores of how well the option fits into the row, the column or the matrix are computed on
the features, and (4) the answer is selected according to the scores. Two Raven-like datasets, Pro-
cedurally Generated Matrices (PGM) (Santoro et al., 2018) and Relational and Analogical Visual
rEasoNing (RAVEN) (Zhang et al., 2019), have been proposed and widely used to train machine
learning models.

Zhuo and Kankanhalli (2020) show that an RPM problem can be solved by both supervised
learning and unsupervised learning. For supervised learning, they experiment with ResNet models
pre-trained on ImageNet, which, nonetheless consists of very distinct images from RPM problems,
can still perform quite well on RAVEN dataset. For unsupervised learning, although no scores
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of the options are specified for training, they introduced pseudo-labels (scores) to train the mod-
els: they plug each answer option into a 3×3 matrix to get 8 different last rows; the first 2 rows
and the 8 last rows are assigned pseudo-labels of [1, 1, 0, 0, 0, 0, 0, 0, 0, 0], which allows a standard
CNN+dropout+fully-connected model to be trained in a supervised way.

Santoro et al. (2017) proposed an interesting relational network (RN) module which explicitly
computes the pairwise relation (as a vector) between any two input objects. It is a plug-and-play
module for many existing deep learning models, which originally work on a set of input objects,
to work on the Cartesian product of the set of input objects. Based on RN modules, WReN model
and its extensions (Santoro et al., 2018; Jahrens & Martinetz, 2020; Steenbrugge et al., 2018; van
Steenkiste et al., 2019) are proposed and tested against the PGM dataset.

Different from the general machine-learning solution, Hua and Kunda (2019) proposed the first
generative data-driven model for solving RPM problems (to the best of our knowledge), which
utilizes GAN networks to generate the predicted images for missing entries, and the answers are
selected through image similarities between the predicted images and the options.

Using Both Visual and Propositional Representations. The RAVEN dataset is different from
PGM dataset in that it includes both visual and propositional descriptions of geometric objects. To
incorporate propositional descriptions into machine learning models, Zhang et al. (2019) proposed
the Dynamic Residual Tree (DRT) module to add the propositional structural information of geo-
metric objects into the image features. Ahmed et al. (2019) proposed another model that used two
LSTMs for reasoning through propositional and visual representations respectively.

5. Conclusion and Future Work

In this paper, we have described a new search hierarchy framework for describing reasoning on
Raven’s matrix problems, including model variations in transformations, analogies, and integration
strategies. We show that a specific configuration of the ASTI+ model can solve 57/60 problems on
the Raven’s Standard Progressive Matrices test, using scanned images from the paper test booklet
as inputs. We further demonstrate that test performance can vary widely not only as a function of
transformations and analogies that a model might use, but also the higher-level integration strat-
egy, i.e., when and how, across analogies and transformations, the model chooses to perform its
maximization calculations.

In tasks such as the RPM where eductive ability is required to extract information from a new
situation, redundant information of regularity often exists; otherwise, ambiguity can hardly be elim-
inated because little prior knowledge is known about this situation. Therefore, methods for repre-
senting, identifying, and exploiting such redundancies are crucial to solving the task. Generally,
analogy is often used for this purpose, as in our ASTI+ models. By varying the configuration of
the ASTI+ model, we are actually varying its ability to identify and represent redundancies, and the
extent to which it can exploit these redundancies to inform is answer.

The implication of this work in term of intelligence is twofold. First, for artificial intelligence,
analogical ability is an unavoidable issue if we expect our agents to be able to operate in new
situations. Second, for human intelligence, analogical ability contributes significantly to individual
differences in eductive ability. The ASTI+ models demonstrate analogical reasoning framed as
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exhaustive searches through various pre-defined analogical spaces. Humans’ analogical reasoning is
far more sophisticated than this kind of explicit search through a predefined analogy space; instead,
analogy spaces must be inferred, and every analogy is built “on demand.” This raises an interesting
and central question for AI agents, i.e., how agents can develop or bootstrap analogy spaces and
select from them as humans do, instead of resorting to explicit searches over predefined search
spaces. Additional important open areas for future work are discussed below.

We used some parameters in our models that were fit specifically to the specific test problem
inputs used in our experiments—for example, the threshold to convert grayscale images to binary
images, and the threshold to filter out noise pixels. The transformations and similarity metrics used
by the model are, in turn, also sensitive to these parameters. To remove these dependencies, we can
either integrate advanced image processing techniques to improve the input image representation,
or develop more robust transformations and similarity metrics.

Our current models use only a single analogy and a single transformation in an explanation.
However, considering multiple analogies and transformations simultaneously is likely important,
especially for more advanced problems beyond the standard Raven’s test (Carpenter et al., 1990;
Kunda, 2015). Then, how to coordinate multiple pathways and merge the results from these path-
ways becomes an important open question.

Going one step further, virtually all extant computational RPM models, this one included, es-
sentially use a single reasoning pipeline to solve every problem. However, there is ample evidence
from psychology and neuroscience that many people use multiple strategies to solve Raven’s prob-
lems, including within the context of a single testing session. For example, studies have found
behavioral (DeShon et al., 1995) and neural (Prabhakaran et al., 1997) differences across test items
linked to visual versus verbal problem solving strategies (see Kunda et al. (2013) for a review of
these visual/verbal strategy differences); many other dimensions of strategy differences likely exist
as well. How do people manage multiple strategies, and meta-cognitively perform strategy selec-
tion and switching for appropriate problems? And, correspondingly, how might an intelligent agent
benefit from similar strategy flexibility during complex problem solving as on the Raven’s test?

Finally, while the definitions of analogies and strategies were performed manually in this re-
search, there is an enormous and looming question of how humans induce such strategies online,
which (to our knowledge) no prior AI systems have accomplished on the Raven’s test (Hernández-
Orallo et al., 2016). (Even RPM models that use learning-based approaches still require the system
designer to define, for example, the notion of maximizing a function between entries in the problem
matrix and each answer option.) Research in program induction may provide one path to tackle this
thorny question (Schmid & Kitzelmann, 2011), including how strategies might be induced in the
first place as well as adapted from problem to problem.
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