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Abstract 

Procedure automation can relieve users of the burden of repetitive, time-consuming, or complex 

procedures and enable them to focus on more cognitively demanding tasks. Procedural learning is a 

method by which procedure automation can be achieved by intelligent computational assistants. 

This paper explores the use of filtering heuristics based on action models for automated planning to 

augment sequence mining techniques. Sequential pattern mining algorithms rely primarily on 

frequency of occurrence to identify patterns, leaving them susceptible to discovering patterns that 

make little sense from a cognitive  perspective. In contrast, humans are able to form models of 

procedures from small numbers of observations, even without explicit instruction. We posit that 

humans are able to do so because of background knowledge about actions and procedures, which 

lets them effectively filter out meaningless sequential patterns. The action models foundational to 

artificial intelligence (AI) planning is one way to provide semantics to actions, supporting the design 

of heuristics for eliminating spurious patterns discovered from event logs. We present experiments 

with various filters derived from these action models, the results of which show the value of the 

filters in greatly reducing the number of sequential patterns discovered without sacrificing the 

number of correct patterns found, even with small, noisy event logs. 

1.  Introduction 

Humans are quite adept at learning procedures from observation. Children watch and learn, from 

parents and teachers, siblings and playmates. New hires shadow experienced professionals to learn 

about their new organization’s standard procedures. An apprentice learns new skills by watching a 

master at work. Although interaction and direct teaching typically accompany learning from 

observation, we are able to recognize meaningful patterns in observed behavior even without 

explicit demonstration or instruction. And we can do so without requiring large numbers of 

examples. We are able to identify what is relevant and what is not so that even with just a few 

examples of some unknown procedure being executed, we are able to learn the underlying process. 
A popular computational technique for discovering sequential patterns from multiple examples 

is sequence mining. In the data mining community, sequence mining has been applied to discover 

patterns in consumer behavior (Agrawal & Srikant, 1995) to be used, for example, in marketing 

campaigns to recommend products a consumer is likely to be interested in. In bioinformatics, 

sequence mining is used to discover motifs—gene and protein sequences that have distinct 

functions (Abouelhoda & Ghanem, 2010). Our particular interest is in discovering repeated action 

sequences that correspond to execution traces of processes or procedures that could be automated. 

This is closest to the work on process mining, which attempts to discover process knowledge from 
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event logs, primarily for the purpose of analysis (van der Aalst et al., 2012). All these applications 

of sequence mining operate on large volumes of data and rely on frequency as the main indicator 

of a pattern. They are interested in finding frequent patterns that signify general trends. In many 

cases, the ‘correctness’ of a pattern is immaterial—it doesn’t really matter if a purchase pattern is 

not particularly meaningful or a discovered biological motif or process workflow is not quite right; 

they are often generated as possibilities or starting points for a human expert to analyze or refine. 

In contrast, the patterns we wish to discover are intended for automation and must thus 

correspond to meaningful, coherent sequences of actions. Unlike the characters that comprise 

protein sequences or the simple events in transaction logs, actions are also rich in structure. They 

have parameters (often typed), preconditions, and effects; they take inputs and generate outputs; 

they are organized in hierarchies; and so on. Furthermore, in our setting, we cannot assume 

voluminous action logs from which to discover patterns. This greatly lowers the tolerance for noise 

and increases the need for effective generalization from small numbers of examples. 

AI planning relies on action models to construct plans for achieving particular goal conditions 

from a given set of initial conditions. These formal specifications of actions enable the reasoning 

required to determine which actions can be executed in a given state and the effects they will have, 

enabling an automated planner to generate a sequence of actions to achieve a goal (Ghallab et al., 

2004). In the work described in this paper, we set out to investigate whether we could augment 

sequence mining techniques with filtering heuristics derived from planning knowledge to help 

identify promising candidate sequences. Using the action models, we devised two sets of 

heuristics—a set of action filters to eliminate noise from discovered patterns, and a set of candidate 

filters to eliminate undesirable discovered patterns— and we conducted experiments to evaluate 

the ability of these filters to improve precision without sacrificing recall. 

We begin with a discussion of related work in procedural learning and sequence mining. We then 

present the sequential pattern mining problem and our basic approach to discovering frequent 

parameterized action sequences. We discuss experiments on a bank transaction dataset and present 

results illustrating the problem with using simple frequency-based techniques to find candidate 

procedures—a problem exacerbated by the presence of noise. We then introduce action models and 

present the motivation behind the filters we designed to eliminate undesirable candidates. We 

discuss experiments with the filters on both the noise-free and noisy datasets, showing the 

effectiveness of the filters in increasing precision, with minimal decrease in recall. The work is a 

first attempt at using planning knowledge to improve the results of sequence mining for procedure 

learning and we conclude with a discussion of future work. 

2.  Related Work 

Procedural learning—the acquisition of skills for performing tasks—has been well-studied in the 

cognitive science and AI communities. A broad array of approaches have been explored, including 
learning from problem-solving (Laird et al., 1986), learning from observation (van Lent & 

Rosenbloom, 2001), learning from instruction (Blythe, 2005), multi-modal learning (Allen et al., 

2007), learning from demonstration (Gervasio & Murdock, 2009), and learning from solution traces 

(Li et al., 2009). The work in this paper addresses the same problem, but differs in the use of event 

logs as the source of data from which to learn procedures. The event logs capture the actions 

executed by one or more agents rather than actions of the learning agent itself or the actions of an 

expert and they are not guaranteed to be complete, clean (i.e., noise-free), or optimal. As such, we 

use as our starting point the work in sequential pattern mining. 
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In the AI planning community, the concept of macro-operators was conceived as a means for 

compiling the search involved to determine a sequence of actions to achieve a goal from a given 

initial state, simplifying planning in similar future situations (Fikes et al., 1972). Later work has 

explored macro learning for iterative and recursive plans (Shavlik, 1990), partially ordered plans 

(Botea et al., 2005), hierarchical task networks (Hogg et al., 2014), and arbitrary planners and 

domains (Newton et al., 2007). The procedures discovered in our work are driven by a similar 

motivation of efficiency but are learned from logs of user actions that can interleave tasks and may 

be suboptimal or noisy, in contrast to the correct-by-construction sample plans for a single goal that 

underpin macro learning.  

The idea of finding sequential patterns in data has been explored in a variety of ways in a number 

of fields. In the data mining community, sequential pattern mining was introduced by Agrawal and 

Srikant (1995) in their seminal work on algorithms for market basket analysis. Frequent sequential 

patterns discovered in databases of customer transactions can be used to drive various decisions 

about marketing activities. A multitude of sequential pattern mining algorithms have been 

developed since then (e.g., Fournier-Viger et al., 2014; Pei et al., 2004; Srikant & Agrawal, 1996; 

Zaki, 2001), differing in how they search the space of patterns, how they represent the database, 

how they generate next candidates, and how they determine the support (frequency of occurrence) 

for a pattern (Fournier-Viger et al., 2017). Because the applications driving the work in the data 

mining community involve very large databases, the research in this area has focused primarily on 

time and space efficiency. 

Sequence mining in bioinformatics (Abouelhoda & Ghanem, 2010) similarly involves very large 

databases and thus emphasizes highly efficient algorithms. However, while data mining problems 

often involve finding patterns in large numbers of relatively short sequences, sometimes involving 

a very large number of items, biological sequence mining involves finding patterns in very long 

sequences from relatively small alphabets. Furthermore, the main driver for biological sequence 

mining is finding repeated strings that correspond to some significant biological structure or 

function—i.e., motifs (e.g., Bailey et al., 2009; Chou & Schwartz, 2011). 

Process mining is concerned with the analysis of processes based on event logs (van der Aalst, 

2012). Growing out of the work on business process modeling, much of the work in this area is 

concerned with the discovery of processes for the purposes of process modeling, conformance 

checking, or workflow enhancement. Because real-life processes can often be quite complex, 

process mining is designed to discover more complex control structures such as loops and 

conditionals—for example, a popular representation of a learned model is a Petri net. Process 

mining has been applied to a variety of domains, assorted healthcare applications (Rojas et al., 

2016), software development (Cook & Wolf, 1998), public works infrastructure (van der Aalst et 

al., 2007), and various other business processes. 

Although process mining is not limited to analyzing simple events, its primary focus is on 

discovering control flow (van der Aalst, 2012). Thus, the consideration of other attributes of the 
events such as actors, timestamps, and resources is typically done outside of the mining process 

itself. Constraint-based mining (Negrevergne & Guns, 2015; Pei et al., 2004; Pei & Wang, 2002)  

provides a possible avenue for biasing the search for frequent patterns by requiring that they satisfy 

user-specified constraints. However, the constraints addressed have typically been limited in scope, 

focused on syntactic features of sequential patterns. Negrevergne & Guns (2015) categorize 

constraints into four types: constraints on patterns (e.g., minimum size), constraints on the cover 

set (e.g., minimum frequency), constraints on the inclusion relation (e.g., maximum gap), and 

preferences over the candidate patterns (e.g., maximal patterns). Most work on sequence mining 
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focuses on developing specialized algorithms for a select subset of these constraints. We can 

leverage this work but require a new approach to utilize the semantic constraints that govern the 

action sequences of task-oriented procedures. 

3.  Sequential Pattern Mining for Procedure Learning 

Sequential pattern mining is a specialized data mining task for finding sequential patterns in data 

(Chand et al., 2013; Fournier-Viger et al., 2017). It has been applied to a variety of real-life 

problems, including market basket analysis, biological sequence discovery, clickstream analysis, 

and workflow verification. However, sequence mining algorithms almost always rely purely on 

frequency of occurrence to identify candidate patterns. In particular, all pattern mining algorithms 

specify a minimum support parameter that denotes the minimum frequency of occurrence for a 

pattern to be considered a viable candidate. And, as described in the previous section, while some 

algorithms are able to accommodate additional constraints, these are still limited to relatively 

shallow properties rather than any knowledge about what makes a good pattern. 

The sequence mining algorithms today are robust and highly efficient, but they have two main 

limitations when applied to procedural learning. First, sequence mining algorithms operate over 

sequences of atoms—e.g., DNA sequences, items purchased by an online customer, URL 

clickstreams, event logs. In contrast, procedure mining should be designed for input sequences 

composed of parameterized actions and should be able to discover relationships between those 

parameters to achieve parameter generalization. Second, there are no semantics associated with 

these atoms—in fact, they are often simply converted into integers for compactness. Because the 

sequence mining algorithms are purely statistical, the atoms over which they operate have no 

semantics. In contrast, the actions in procedures have meaning—they are intended to achieve 

something, they have preconditions and effects, they manipulate data, etc.  

The work described in the remainder of this paper addresses the second limitation. Here, we first 

review how we address the first limitation using the technique described in (Gervasio & Lee, 2013). 

Consider the example in Table 1. Event Logs shows three event sequences, each composed of a Get 
action followed by an Approve action. Get is an ID retrieval action with one input parameter (the 

Table 1. Sequential pattern mining is limited to finding patterns over actions (without arguments) 

(Result 1). Simply appending arguments to actions (Result 2) does not enable the parameter 

generalization required to achieve the Desired Result. (Support refers to the number of times the pattern 

appears in the input sequences.) 

Event Logs Result 1 Result 2 Desired Result 

Get(John,ID45) 
Approve(ID45) 

Sequence 1, Support 3: 
Get 

Approve 

Sequence 1, Support 1: 
GetJohnID45 
ApproveID45 

Sequence 1, Support 2: 
Get(Name1,Id2) 
Approve(Id2)) 

Get(Jane,ID21) 
Approve(ID62) 

 Sequence 2, Support 1: 
GetJaneID21 
ApproveID21 

Sequence 2, Support 1: 
Get(Name1,Id2) 

Approve(Id3) 

Get(Jill,ID37) 
Approve(ID37) 

 Sequence 3, Support 1: 
GetJillID37 

ApproveID37 
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name of the person whose ID to retrieve) and one output parameter (the person’s ID). Approve is 
an approval action taking one input (the ID of the person to approve). The first and third input 

sequences are examples of the same procedure, involving the id retrieval and subsequent approval 

for the same person. The second is a different procedure involving the retrieval of one person’s ID 

and the approval of another. 

A straight application of sequence mining would look only at the action names (Get and 

Approve), resulting in discovering a single pattern covering all three sequences (Table 1, Result 1). 

A possible approach to including action arguments is to translate each action in the input sequence 

into a new string that concatenates the action name with its arguments. However, this results in the 

opposite problem of under-generalization, with each input sequence being recognized as a separate 

pattern (Table 1, Result 2). The desired result is one that distinguishes between the patterns with 

recognition of the relationships between the action arguments as well (Table 1, Desired Result). 
As in (Gervasio & Lee, 2013), to achieve the desired parameter generalization, we first apply 

sequence mining on the actions only (Table 1, Result 1). We then apply a postprocessing step to 

partition the supporting sequences according to parameter matches by going through each 

supporting sequence and assigning unique ids to the different argument values in order. This 

enables the recognition that there are two unique argument values in the first and third sequences 

but three in the second; and also that the second unique argument value in the first and third 

sequences is the second argument for the first action and the sole argument for the second. For list 

and set (collection) arguments, unification and variablization can be extended to find supports from 

collections to individuals (e.g., first([a,b,c]) → a) and from individuals to collections (e.g., 

list(a,b,c) = [a,b,c])  (Eker et al., 2009). This modified sequential pattern mining approach serves 

as our basic procedure mining algorithm, which we use in the baseline experiment described next. 

4.  Baseline Experiment 

4.1  Data 

To evaluate our approach, we repurposed transactional log datasets collected by the IEEE Task 

Force on Process Mining and made available through the 4TU.Centre for Research Data (2016). 

Specifically, we used the Large Bank Transaction Process dataset (Muñoz-Gama, 2014), a 

collection of synthetic event logs generated from a large model of bank transactions. The IEEE 

Task Force collection includes both real-life and synthetic logs. We chose to work with the 

synthetic logs because they included the Petri net model from which the logs were generated, 

enabling us to develop “ground truth” data (i.e., the target procedures for our mining algorithm) to 

use for evaluation. Figure 1 shows the complete bank transactions model and Figure 2 shows the 

portion corresponding to sender  (customer) authentication; this is the portion we focused on in our 

experiments. From here, we extracted 28 target (ground truth) procedures, corresponding to the 

paths described in Figure 3. 

 Like most transactional logs, each entry in the bank transaction dataset consists simply of a log 

identifier and an event type. To transform the data into a form more akin to the action logs we 

would obtain from a system that logs parameterized actions, we modeled each action (square) in 

Figure 3 in terms of its inputs and outputs. We then translated each event in the dataset to its 

equivalent action, generating the action log we used in our experiments. Figure 4 illustrates this 

transformation. The dataset provided a few different synthetically generated logs. For our 

experiments, we used the one comprising 2000 noise-free logs of observed transaction sequences 
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(corresponding to 2000 different customers). However, because we expect to have many fewer logs 

in our target application, we mined procedures from only 100 (randomly selected) logs from this 

dataset. We refer to this dataset as the noise-free dataset. 

 
Figure 3. Example conversion from event log to action log. Each atomic event is translated into its 

equivalent parameterized action. 

 

 

 

Figure 2. The target (ground truth) procedures in the Sender Authentication subprocess consist of all 

possible paths between a green square and a red square. The diagram is a Petri net so all the branches 

emanating from a square must be traversed in any order This leads to six different sequences for the 

High Check subgraph and two for the Low Check subgraph. 

 

 

 

Figure 1. Large Bank Transaction Petri Net Model. Callout shows the Sender (Customer) 

Authentication subprocess used in the experiments discussed in this paper. (The complete model on the 

left is shown only to provide context; its details are irrelevant.) 
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To create noisy versions of this dataset, we injected two types of noise: redundant actions and 

extraneous actions.1 We injected redundant actions by going through each action in the log, and 

making a decision on whether to repeat that action with probability p. Similarly, we inserted 

extraneous actions by going through each action and deciding to insert a randomly selected action 

with probability p. Using p = 0.1, we created three noisy datasets: one with redundant actions only, 

one with extraneous actions only, and one with both redundant and extraneous actions.2 

4.2  Experimental Setup and Evaluation Metrics 

Given the ground truth sequences, we were interested in how well the candidate sequences 

discovered by sequence mining would match ground truth. Thus, we measured precision and recall. 
There is an argument to be made that precision is more important than recall when learning 

procedures from observation, so we report two F measures: the F1 score, which weights precision 

and recall evenly; and the F0.5 score, which weights precision twice as much as recall. 

We expect recall to be high, since sequential pattern mining is designed to discover as many 

patterns as possible. But because every subsequence of a frequent sequence will also be a frequent 

sequence, we expected many spurious procedures to be found and thus precision to be low. This 

subsumption property is what led much work in frequent pattern mining to focus on finding only 

maximal sequences (i.e., frequent sequences which are not contained in a longer frequent sequence) 

or closed sequences (i.e., maximal sequences which are not contained in a longer maximal sequence 

with exactly the same support). For procedure mining, however, we intentionally do not want to 

limit ourselves to closed or maximal sequences because there are likely to be useful subsequences 

as well, as seen in the ground truth procedures. 

To establish a baseline, we ran the CM-SPAM3 algorithm (Fournier-Viger et al., 2014) over the 

transformed action log with a minimum support of 5. Table 2 summarizes the results for the Noise-

 
1 We also considered missing actions but decided this did not make sense in the procedural automation setting 

because action traces that were missing actions would not have accomplished the desired effects and are 
thus not really examples of the target procedure. 

2 We tried both smaller and larger values of p. These resulted in the expected decrease and increase, 
respectively, in the number of candidates generated but the overall results on the effects of using filters did 
not change. 

3 Sequence mining algorithms target very large datasets, so the algorithms are designed to be highly efficient 
for particular data mining problems. Our objective was simply to see whether we could leverage established 
sequence mining algorithms to learn automatable procedures from small amounts of data. We decided to 
use the CM-SPAM implementation in the Sequential Pattern Mining Framework (SPMF) data mining 
library (Fournier-Viger et al., 2016) because it was a particularly efficient algorithm that provided all 
frequent sequences and a controllable maximum gap parameter. 

 
Figure 4. Example conversion from event log to action log. Each atomic event is translated into its 

equivalent parameterized action. 
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free case and the three noisy datasets (Redundant, Extraneous, Both). As expected, recall is high 

(perfect in the Noise-free case) but precision is fairly poor (12%). Performance degrades with the 

noisy datasets, with more incorrect candidates found in all three and fewer correct candidates found 

in the Extraneous and Both noisy datasets as well. 

5.  Knowledge-guided Candidate Filtering 

Sequential pattern mining relies solely on frequency of occurrence to identify candidates. While 

this may be sufficient for finding repetitive occurrences such as buying patterns or frequent 

clickthrough behavior, it is inadequate for finding procedures—i.e., meaningful action sequences 

intended to achieve some goal. Action sequences based purely on frequency of observation may 

not always be good candidates for automation. They may require (non-observable) intervening 

actions, include systematic noise, include non-automatable actions, and so on. Extraneous actions 

which serve no purpose cannot be filtered out, nor can nonsensical action sequences such as those 

that start with actions with preconditions that have not been established. The action models used in 

AI planning are designed precisely to enable reasoning about such dependencies between actions. 

With this in mind, we set out to see how we could use action models to filter out the false candidates 

from the large number of candidates generated by sequential pattern mining algorithms. 

5.1  Action Model 

We use a hybrid action model that combines standard STRIPS-style semantics capturing 

preconditions and effects with a dataflow-oriented representation of actions in terms of their inputs 

and outputs. 

5.1.1  Planning Domain Definition Language.  

The Planning Domain Definition Language (PDDL) (Kovacs, 2011; McDermott et al., 1998), 

originated from STRIPS (Fikes & Nilsson, 1971), is the de facto standard for encoding first-

principles planning knowledge. In PDDL, the domain description includes a model for each action, 

which comprises a set of (typed) parameters and a set of preconditions and effects which define, 

respectively, what is required for and what results from the execution of the action. For example, 

Figure 5 (left) shows the action definition for a FinishAuthentication action in the Bank Transaction 

domain. It has two parameters (the sender and the authentication ID), requires that authentication 

Table 2. Baseline Performance. Sequence mining finds all true candidates (perfect recall) but many 

false ones (low precision). All types of noise increase the number of incorrect candidates found, while 

extraneous actions and both redundant and extraneous actions also decrease the number of correct 

candidates found. 

Dataset #Cand True Recall Prec F1 F0.5 

Noise-free 229 28 1.000 0.1223 0.2179 0.1483 

Redundant 289 28 1.000 0.0720 0.1343 0.0884 

Extraneous 252 25 0.8929 0.0992 0.1786 0.1206 

Both 372 19 0.6786 0.0511 0.0950 0.0627 
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be in process and that the customer already have been registered, and results in the sender being 

authenticated. 

5.1.2  Task Learning Actions 

In our work on learning procedures from demonstration in informational domains (Gervasio & 

Murdock, 2009; Eker et al., 2009; Garvey et al., 2009), we found data flow—i.e., the information 

producer-consumer relationship between actions—to be a particularly useful concept, with most 

actions involving the production of information required by subsequent actions and/or the 

consumption of data generated by previous actions. By focusing on the identification and 

generalization of data flow, we were able to develop techniques for learning general, parameterized 

procedures from as little as one example. To support the reasoning required to identify and 

generalize data flow, we developed a representation where actions have typed parameters, each 

designated as an input or an output, with the semantics that given particular input arguments, 

executing the action will generate the output arguments. For example, Figure 5 (right) shows the 

action definition for StartAuthentication: Given as input a sender (name), it outputs a new 

authentication ID. 

5.1.3  Hybrid Action Model 

We extended our existing task learning action model with preconditions and effects as in PDDL to 

encode the planning knowledge for a domain. We note that prior work on learning plans from 

examples assumes information not just about the actions that were executed but also the state of 

the world before and after the execution of each action. However, action or transactional logs 

typically lack such state information. And yet humans are able to look at such action sequences and 

infer the intervening states based on their knowledge of the actions. We are also able to identify 

related actions and to ignore irrelevant ones. This was the primary motivation behind our 

investigation into the use of action-model-based heuristics to filter the candidate patterns 

discovered through sequential pattern mining. 

5.2  Candidate Filters 

The preconditions and effects and the inputs and outputs of an action provide valuable information 

regarding whether inclusion of the action in an observed sequence makes sense. To leverage this 

information in identifying good candidates for automation, we developed a set of filtering heuristics 

 

 

Figure 5. PDDL specification of FinishAuthentication action (left) and dataflow-based specification of 

StartAuthentication action (right). 
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based on common-sense knowledge about the nature of actions and procedures in this domain. 

These filters, summarized in Table 3, are meant primarily to serve as examples and to evaluate the 

idea of knowledge-based filtering; they are not meant to be complete or definitive.  

The Precondition filter discards any candidate containing an action whose preconditions are not 

satisfied. This corresponds to the fact that a procedure cannot be executed to completion if any 

precondition of any of its actions is not satisfied. Since event logs do not contain state information, 

we rely on information about acceptable initial state conditions instead. To signify these conditions 

that denote possible states from which an authentication procedure might be initiated, we augment 

the action model with metadata identifying such conditions. For example, in this domain, the 

condition of a customer being known is a valid (possible) initial condition but the condition of 

authority being notified is not. 

The next three filters rely on knowledge about the processes in the domain, as tracked by the 

conditions established by the actions. Specifically, processes must start and they must end. By 

designating certain conditions as referring to a process, we can recognize when an action starts the 

process (i.e., establishes the condition) or finishes it (i.e., negates the condition). For example, the 

action StartAuthentication has the effect of (authenticating ?customer) (i.e., starting an 

authentication process) while the action FinishAuthentication has the effect of (not (authenticating 
?customer)) (i.e., finishing it). The Start filter requires candidates to begin with an action that starts 

a process while the Finalize filter requires them to end with an action that finishes a process. The 

Complete filter combines the two, requiring that every action that starts a process has a 

corresponding action that ends it.  

The final candidate filter, Branch, discards candidates that do not begin with an action recognized 

to be one of multiple options. This is a filter that may not apply to procedures in many other domains 

but in the banking transaction domain, we know that there are often steps that can be executed in 

any order—i.e., each of the steps can effectively start a procedure consisting of all the step in some 

order. In the banking transaction model, for example, the check for high-risk (i.e., new or unknown) 

clients involves checking the customer’s banking history, checking the customer’s profile, and 

notifying authorities. The intuition behind the Branch filter is that action sequences beginning with 

any one of these branching actions is likely to correspond to a good candidate. 

In addition to the candidate filters in Table 3, we also devised action filters for discarding 

unnecessary actions in candidates; these filters are summarized in Table 4. The Contribution filter 

requires that every action serve a purpose—i.e., it either establishes a condition or produces an 

output required by a subsequent action, or it requires a condition or input produced by a preceding 

action. The Duplicate filter discards actions that are exact repetitions of the previous actions, the 

Table 3. Candidate filters. 

Filter Description 

Precondition Discards candidates with any action having an unsatisfied or unsatisfiable precondition 

Start Discards candidates that do not begin with an action that starts a process 

Finalize Discards candidates that do not end with an action that completes a process 

Complete Discards candidates that have an action that starts (ends) a process without a 

matching action that ends (starts) it 

Branch Discards candidates that do not start with a recognized branching action 
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rationale being that repeating the exact same action serves no purpose. These action filters are 

designed to eliminate extraneous actions, whether due to inadvertent execution, multitasking, or 

some other reason and that may lead to spurious patterns being discovered. Meanwhile, the Gap 
filter utilizes the maximum gap constraint in pattern mining algorithms such as CM-SPAM, which 

is designed to accommodate noise by allowing gaps to a certain length within a sequence. For the 

experiments described below, we allowed up to one intervening action between any two elements 

of a candidate sequence, which we implemented by setting the built-in CM-SPAM maximum gap 

parameter accordingly. 

Based on the recognition that the Precondition and Contribution filters check for necessary 
conditions while the rest checked for desirable ones, we also devised two combinations of filters 

that require passing the Contribution and Precondition filters and at least one of the other candidate 

filters. These are described in (Table 5). 

6.  Experimental Results 

6.1  Noise-Free Data 

Our main hypothesis was that the filters would remove bad candidates from consideration, thereby 

improving precision. However, we were also interested in whether recall would suffer and by how 

much. Table 6 summarizes the results with the use of the different filters, alone and in combination, 

applied over the frequent sequences found by CM-SPAM on the noise-free dataset. The individual 

candidate filters never degrade precision and F scores and in most cases, improve them, although 

recall is sometimes affected. Among the individual filters, the Branch filter results in the highest 

precision, the Complete filter in the highest F1 score, and both filters in the highest F0.5 score. 

However, the Branch filter has markedly lower recall. The best performance overall, however, is 

achieved by the Combo1 filter, which records the highest precision and F-scores, along with almost 
perfect recall. 

Table 4. Action filters. 

Filter Description 

Contribution Discards actions that are not required by any succeeding action or that do not require 

any preceding action 

Duplicate Discards immediate repeated actions in a sequence 

Gap Ignores up to a certain number of intervening actions 

 

Table 5. Combination Filters 

Filter Description 

Combo1 Discards actions that do not pass the Contribution filter and then candidates that do 
not pass the Precondition filter and at least two of Branch, Start, 
Finalize, and Complete 

Combo2 Discards actions that do not pass the contribution filter and then candidates that do not 

pass the Precondition filter and either the Branch or Complete filter 
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The Contribution, Duplicate, and Gap action filters were designed primarily to address noise and 

so were not expected to help much in the noise-free case. Because the noise-free dataset contained 

no repeated actions, the Duplicate filter also offers no improvement over the baseline. The Gap 
filter, because it is designed to recognize patterns even with segments that do not match (allowable 

gaps), results in an explosion in the number of patterns found, greatly affecting performance. The 

Contribution filter has a mild positive effect on performance, removing a small number of false 

positives for a slight improvement in precision. 

6.2  Noisy Data 

Table 7 summarizes the results of applying the different filters on the noisy dataset with Redundant 
actions only. With the exception of the Gap filter, every filter improved precision and F-scores. 

Not surprisingly, the Duplicate filter, which removes repeated actions (i.e., exactly the injected 

Table 6. Results of filtering on noise-free dataset. 

Filter #Cands True Recall Prec F1 F0.5 

Precondition 229 28 1.000 0.1223 0.2179 0.1483 

Start 94 17 0.6071 0.1809 0.2787 0.2104 

Finalize 87 15 0.5357 0.1724 0.2609 0.1994 

Complete 156 28 1.000 0.1795 0.3043 0.2147 

Branch 92 17 0.6071 0.1848 0.2833 0.2147 

Contribution 215 28 1.000 0.1302 0.2305 0.1576 

Duplicate 229 28 1.000 0.1223 0.2179 0.1483 

Gap 1020 28 1.000 0.0275 0.0534 0.0341 

Combo1 128 26 0.9286 0.2031 0.3333 0.2407 

Combo2 169 28 1.0000 0.1657 0.2843 0.1989 

 

Table 7. Results of filtering on noisy dataset with Redundant actions. 

Filter #Cands True Recall Prec F1 F0.5 

Precondition 251 28 1.0000 0.1116 0.2007 0.1357 

Start 156 17 0.6071 0.1090 0.1848 0.1304 

Finalize 134 15 0.5357 0.1119 0.1852 0.1329 

Complete 272 28 1.0000 0.1029 0.1867 0.1254 

Branch 149 17 0.6071 0.1141 0.1921 0.0961 

Contribution 357 28 1.000 0.0784 0.1455 0.1362 

Duplicate 229 28 1.000 0.1223 0.2179 0.1483 

Gap 2201 28 1.0000 0.0127 0.0251 0.0158 

Combo1 128 26 0.9286 0.2031 0.3333 0.2407 

Combo2 169 28 1.0000 0.1657 0.2843 0.1989 
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noise), resulted in the best precision on the Redundant dataset, matching the performance of the 

baseline in the noise-free case. And applying the Duplicate filter in combination with any of the 

other filters matched performance in the corresponding noise-free case (results omitted for brevity). 

The best performance, however, results from the combination filters. 

The Gap filter, as in the noise-free case, significantly increased the number of candidates, 

resulting in greatly degraded precision and F-scores. The Gap filter is designed to find candidates 

that would not otherwise be found because of insufficient support due to noise. For example, if 

there are three sequences ACB, AB, and ADB, then an allowable gap of one would find the sequence 

AB with support three, while allowing no gap would not find any sequence with support greater 

than one. Thus, the result here may be explained by the fact that without filtering, all ground truth 

candidates are already found—i.e., there is nothing useful left for the Gap filter to find. Instead it 

finds many other extra candidates. We had expected the Gap filter to have some positive effect on 

small datasets having patterns that have frequencies of occurrence close to the minimum, but the 

extremely high number of other patterns found makes it unlikely that it will be useful. 

Table 8 shows the results for the different filters on the noisy dataset with Extraneous actions 

only, and Table 9 shows the results for the noisy dataset with Both redundant and extraneous 

actions. The results are similar to those for noise due to Redundant actions only. Again, with the 

exception of the Gap filter, all the filters have a positive effect on performance, with the 

combination filters resulting in the greatest improvement. 

6.3  Discussion 

The experimental results confirm that standard sequential pattern mining techniques discover a 

large number of irrelevant action sequences and that action-model-based filters help eliminate many 

of them. Every candidate filter and all but the Gap action filter was able to eliminate irrelevant 

sequences and most were able to do so without overly sacrificing recall. Baseline precision is just 

over 12% in the noise-free case and ranges from 5–10% in the noisy datasets. With the filters, this 

reaches up to 20% in the noise-free case and up to 15–20% for the noisy datasets. Similarly, the 

baseline F0.5 score is under 15% in the noise-free case and ranges from around 9–12% in the noisy 
datasets. With the filters, this reaches up to 24% in the noise-free case and up to 18–24% for the 

Table 8. Results of filtering on noisy dataset with Extraneous actions. 

Filter #Cands True Recall Prec F1 F0.5 

Precondition 232 25 0.8929 0.1078 0.1923 0.1308 

Start 99 15 0.5357 0.1515 0.2362 0.1769 

Finalize 89 13 0.4643 0.1461 0.2222 0.1693 

Complete 159 25 0.8929 0.1572 0.2674 0.1882 

Branch 98 15 0.5357 0.1531 0.2381 0.1786 

Contribution 208 25 0.8929 0.1202 0.2119 0.1454 

Duplicate 251 25 0.8929 0.0996 0.1792 0.1211 

Gap 1266 28 1.0000 0.0221 0.0433 0.0274 

Combo1 116 26 0.8214 0.1983 0.3194 0.2338 

Combo2 159 28 0.8929 0.1572 0.2674 0.1882 
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noisy datasets. Although this marks a 100–200% improvement, it remains to be seen whether a 1 

in 5 hit rate for discovered procedures intended for automation is sufficient. Nevertheless, these 

results show that knowledge-based heuristics for filtering candidate patterns and pattern actions can 

be an effective addition to standard sequential pattern mining to guide discovery toward meaningful 

action sequences that are more likely to correspond to procedures.  

7.  Conclusions and Future Work 

In this paper, we proposed a hybrid approach for procedure mining that combines knowledge-

based heuristics derived from AI planning models with statistical techniques from sequential 

pattern mining to discover candidate action sequences for automation. The approach leverages 

efficient sequence mining techniques to find frequent action sequences from logs of user actions to 

serve as candidate action sequences for automation. Using action models that provide a semantic 

representation of actions in terms of their preconditions and effects and inputs and outputs, we 

devised filtering heuristics to help identify good candidate sequences for automation. The idea was 

to encode in these filters the knowledge of which patterns ‘made sense’ from a procedural 

perspective—i.e., patterns whose actions were related in some way or were otherwise indicative of 

a procedure. We conducted several experiments to evaluate the usefulness of the filters on both 

noise-free and noisy datasets and the experimental results show that the action-model-based 

filtering heuristics successfully eliminate a large number of irrelevant sequences discovered by 

standard sequential pattern mining.  

Our approach does introduce an additional cost to deployment above and beyond that of purely 

statistical methods in that it requires the formulation of the action model for any new domain to 

which it is applied. However, this is a one-time expense that could be justified for many applications 

if our preliminary results on improved quality of recognition hold more generally. 

As discussed previously, the filtering heuristics we presented in this paper may not apply to all 

domains all the time. Some, like the Branch filter, take advantage of characteristics specific to the 

banking transaction domain. On the other hand, we are likely to be able to leverage characteristics 

specific to any domain by designing new filters, corresponding to the knowledge one would have 
about processes in that domain. For example, in a customer support call-center application, all 

Table 9. Results of filtering on noisy dataset with both Redundant and Extraneous actions. 

Filter #Cands True Recall Prec F1 F0.5 

Precondition 218 19 0.6786 0.0872 0.1545 0.1056 

Start 135 11 0.3929 0.0815 0.1350 0.0968 

Finalize 131 9 0.3214 0.0687 0.1132 0.0815 

Complete 252 19 0.6786 0.0754 0.1357 0.0917 

Branch 134 12 0.4286 0.0896 0.1481 0.1064 

Contribution 296 19 0.6786 0.0642 0.0950 0.0627 

Duplicate 268 26 0.9286 0.0970 0.1757 0.1182 

Gap 1339 28 1.0000 0.0209 0.0410 0.0260 

Combo1 108 17 0.6071 0.1574 0.2599 0.1847 

Combo2 149 19 0.6786 0.1275 0.2147 0.1522 
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procedures might begin with creating an incident report and filling in the date and time of the call. 

They may also all include retrieving resolution options based on a standard operating manual or 

prior similar incidents. And they may all conclude with either a resolution or an escalation. 

It is also likely that we will have to learn from even smaller numbers of examples. This will need 

filters like the Gap filter to  enable finding sequences for which there may not be enough support 

otherwise. For example, an abstraction filter that recognizes a set of actions to be variants of each 

other because they achieve the same cumulative effects would allow sequences that differed only 

in the variant used to be grouped together. 

We believe that our use of action models to inform statistical sequence mining has potential 

benefits that go beyond increased precision. One such benefit is providing rationale for mined 

sequences. The preconditions and effects characterize the causal structure of the procedure: what it 

does, when it can be done (its accumulated preconditions), and why it would be done (i.e., its 

accumulated effects). We can potentially use this information to generate explanations to a user to 

accompany suggestions for task automation, drawing on explanatory techniques such as those 

described in (Seegebarth et al., 2012). 

Our work is motivated by the ultimate objective of enabling process automation for real-world 

usage. Our focus to date has been on a collaborative task management tool that we developed 

previously called Task Assistant (Peintner et al., 2009).  Task Assistant supports distributed human 

teams in collectively executing complex coordinated processes (e.g., Standard Operating 

Procedures (SOPs)) through an explicit representation of tasks, dependencies, deadlines, and status. 

Task Assistant has been deployed successfully to a number of operational user communities, 

including the U.S. Pacific Fleet (PACFLT), the U.S. Strategic Command (STRATCOM), and the 

Kansas National Guard. With those deployments, we have seen the opportunity to improve team 

and individual efficiency by introducing automation to perform frequently performed support tasks, 

many of which focus on information retrieval to aid human decision making. Our first approach to 

procedure automation for Task Assistant involved learning from demonstration technology (Myers 

et al., 2011). While useful, the approach still required significant user effort to recognize the need 

for automation and to explicitly demonstrate the procedures to be automated. Our engagement with 

the user community has shown a strong desire for approaches that can automate procedures with 

minimal human intervention, as would be enabled by the procedure mining technique introduced 

in this paper.  
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