
Advances in Cognitive Systems 8 (2020) 1–6 Submitted 7/2020; published 8/2020

© 2020 Cognitive Systems Foundation. All rights reserved.

Learning Procedures by Augmenting Sequential Pattern Mining with

Planning Knowledge

Melinda Gervasio MELINDA.GERVASIO@SRI.COM

Karen Myers KAREN.MYERS@SRI.COM

Artificial Intelligence Center, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025 USA

Abstract

Procedure automation can relieve users of the burden of repetitive, time-consuming, or complex

procedures and enable them to focus on more cognitively demanding tasks. Procedural learning is a

method by which procedure automation can be achieved by intelligent computational assistants.

This paper explores the use of filtering heuristics based on action models for automated planning to

augment sequence mining techniques. Sequential pattern mining algorithms rely primarily on

frequency of occurrence to identify patterns, leaving them susceptible to discovering patterns that

make little sense from a cognitive perspective. In contrast, humans are able to form models of

procedures from small numbers of observations, even without explicit instruction. We posit that

humans are able to do so because of background knowledge about actions and procedures, which

lets them effectively filter out meaningless sequential patterns. The action models foundational to

artificial intelligence (AI) planning is one way to provide semantics to actions, supporting the design

of heuristics for eliminating spurious patterns discovered from event logs. We present experiments

with various filters derived from these action models, the results of which show the value of the

filters in greatly reducing the number of sequential patterns discovered without sacrificing the

number of correct patterns found, even with small, noisy event logs.

1. Introduction

Humans are quite adept at learning procedures from observation. Children watch and learn, from

parents and teachers, siblings and playmates. New hires shadow experienced professionals to learn

about their new organization’s standard procedures. An apprentice learns new skills by watching a

master at work. Although interaction and direct teaching typically accompany learning from

observation, we are able to recognize meaningful patterns in observed behavior even without

explicit demonstration or instruction. And we can do so without requiring large numbers of

examples. We are able to identify what is relevant and what is not so that even with just a few

examples of some unknown procedure being executed, we are able to learn the underlying process.
A popular computational technique for discovering sequential patterns from multiple examples

is sequence mining. In the data mining community, sequence mining has been applied to discover

patterns in consumer behavior (Agrawal & Srikant, 1995) to be used, for example, in marketing

campaigns to recommend products a consumer is likely to be interested in. In bioinformatics,

sequence mining is used to discover motifs—gene and protein sequences that have distinct

functions (Abouelhoda & Ghanem, 2010). Our particular interest is in discovering repeated action

sequences that correspond to execution traces of processes or procedures that could be automated.

This is closest to the work on process mining, which attempts to discover process knowledge from

M. GERVASIO AND K. MYERS

2

event logs, primarily for the purpose of analysis (van der Aalst et al., 2012). All these applications

of sequence mining operate on large volumes of data and rely on frequency as the main indicator

of a pattern. They are interested in finding frequent patterns that signify general trends. In many

cases, the ‘correctness’ of a pattern is immaterial—it doesn’t really matter if a purchase pattern is

not particularly meaningful or a discovered biological motif or process workflow is not quite right;

they are often generated as possibilities or starting points for a human expert to analyze or refine.

In contrast, the patterns we wish to discover are intended for automation and must thus

correspond to meaningful, coherent sequences of actions. Unlike the characters that comprise

protein sequences or the simple events in transaction logs, actions are also rich in structure. They

have parameters (often typed), preconditions, and effects; they take inputs and generate outputs;

they are organized in hierarchies; and so on. Furthermore, in our setting, we cannot assume

voluminous action logs from which to discover patterns. This greatly lowers the tolerance for noise

and increases the need for effective generalization from small numbers of examples.

AI planning relies on action models to construct plans for achieving particular goal conditions

from a given set of initial conditions. These formal specifications of actions enable the reasoning

required to determine which actions can be executed in a given state and the effects they will have,

enabling an automated planner to generate a sequence of actions to achieve a goal (Ghallab et al.,

2004). In the work described in this paper, we set out to investigate whether we could augment

sequence mining techniques with filtering heuristics derived from planning knowledge to help

identify promising candidate sequences. Using the action models, we devised two sets of

heuristics—a set of action filters to eliminate noise from discovered patterns, and a set of candidate

filters to eliminate undesirable discovered patterns— and we conducted experiments to evaluate

the ability of these filters to improve precision without sacrificing recall.

We begin with a discussion of related work in procedural learning and sequence mining. We then

present the sequential pattern mining problem and our basic approach to discovering frequent

parameterized action sequences. We discuss experiments on a bank transaction dataset and present

results illustrating the problem with using simple frequency-based techniques to find candidate

procedures—a problem exacerbated by the presence of noise. We then introduce action models and

present the motivation behind the filters we designed to eliminate undesirable candidates. We

discuss experiments with the filters on both the noise-free and noisy datasets, showing the

effectiveness of the filters in increasing precision, with minimal decrease in recall. The work is a

first attempt at using planning knowledge to improve the results of sequence mining for procedure

learning and we conclude with a discussion of future work.

2. Related Work

Procedural learning—the acquisition of skills for performing tasks—has been well-studied in the

cognitive science and AI communities. A broad array of approaches have been explored, including
learning from problem-solving (Laird et al., 1986), learning from observation (van Lent &

Rosenbloom, 2001), learning from instruction (Blythe, 2005), multi-modal learning (Allen et al.,

2007), learning from demonstration (Gervasio & Murdock, 2009), and learning from solution traces

(Li et al., 2009). The work in this paper addresses the same problem, but differs in the use of event

logs as the source of data from which to learn procedures. The event logs capture the actions

executed by one or more agents rather than actions of the learning agent itself or the actions of an

expert and they are not guaranteed to be complete, clean (i.e., noise-free), or optimal. As such, we

use as our starting point the work in sequential pattern mining.

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

3

In the AI planning community, the concept of macro-operators was conceived as a means for

compiling the search involved to determine a sequence of actions to achieve a goal from a given

initial state, simplifying planning in similar future situations (Fikes et al., 1972). Later work has

explored macro learning for iterative and recursive plans (Shavlik, 1990), partially ordered plans

(Botea et al., 2005), hierarchical task networks (Hogg et al., 2014), and arbitrary planners and

domains (Newton et al., 2007). The procedures discovered in our work are driven by a similar

motivation of efficiency but are learned from logs of user actions that can interleave tasks and may

be suboptimal or noisy, in contrast to the correct-by-construction sample plans for a single goal that

underpin macro learning.

The idea of finding sequential patterns in data has been explored in a variety of ways in a number

of fields. In the data mining community, sequential pattern mining was introduced by Agrawal and

Srikant (1995) in their seminal work on algorithms for market basket analysis. Frequent sequential

patterns discovered in databases of customer transactions can be used to drive various decisions

about marketing activities. A multitude of sequential pattern mining algorithms have been

developed since then (e.g., Fournier-Viger et al., 2014; Pei et al., 2004; Srikant & Agrawal, 1996;

Zaki, 2001), differing in how they search the space of patterns, how they represent the database,

how they generate next candidates, and how they determine the support (frequency of occurrence)

for a pattern (Fournier-Viger et al., 2017). Because the applications driving the work in the data

mining community involve very large databases, the research in this area has focused primarily on

time and space efficiency.

Sequence mining in bioinformatics (Abouelhoda & Ghanem, 2010) similarly involves very large

databases and thus emphasizes highly efficient algorithms. However, while data mining problems

often involve finding patterns in large numbers of relatively short sequences, sometimes involving

a very large number of items, biological sequence mining involves finding patterns in very long

sequences from relatively small alphabets. Furthermore, the main driver for biological sequence

mining is finding repeated strings that correspond to some significant biological structure or

function—i.e., motifs (e.g., Bailey et al., 2009; Chou & Schwartz, 2011).

Process mining is concerned with the analysis of processes based on event logs (van der Aalst,

2012). Growing out of the work on business process modeling, much of the work in this area is

concerned with the discovery of processes for the purposes of process modeling, conformance

checking, or workflow enhancement. Because real-life processes can often be quite complex,

process mining is designed to discover more complex control structures such as loops and

conditionals—for example, a popular representation of a learned model is a Petri net. Process

mining has been applied to a variety of domains, assorted healthcare applications (Rojas et al.,

2016), software development (Cook & Wolf, 1998), public works infrastructure (van der Aalst et

al., 2007), and various other business processes.

Although process mining is not limited to analyzing simple events, its primary focus is on

discovering control flow (van der Aalst, 2012). Thus, the consideration of other attributes of the
events such as actors, timestamps, and resources is typically done outside of the mining process

itself. Constraint-based mining (Negrevergne & Guns, 2015; Pei et al., 2004; Pei & Wang, 2002)

provides a possible avenue for biasing the search for frequent patterns by requiring that they satisfy

user-specified constraints. However, the constraints addressed have typically been limited in scope,

focused on syntactic features of sequential patterns. Negrevergne & Guns (2015) categorize

constraints into four types: constraints on patterns (e.g., minimum size), constraints on the cover

set (e.g., minimum frequency), constraints on the inclusion relation (e.g., maximum gap), and

preferences over the candidate patterns (e.g., maximal patterns). Most work on sequence mining

M. GERVASIO AND K. MYERS

4

focuses on developing specialized algorithms for a select subset of these constraints. We can

leverage this work but require a new approach to utilize the semantic constraints that govern the

action sequences of task-oriented procedures.

3. Sequential Pattern Mining for Procedure Learning

Sequential pattern mining is a specialized data mining task for finding sequential patterns in data

(Chand et al., 2013; Fournier-Viger et al., 2017). It has been applied to a variety of real-life

problems, including market basket analysis, biological sequence discovery, clickstream analysis,

and workflow verification. However, sequence mining algorithms almost always rely purely on

frequency of occurrence to identify candidate patterns. In particular, all pattern mining algorithms

specify a minimum support parameter that denotes the minimum frequency of occurrence for a

pattern to be considered a viable candidate. And, as described in the previous section, while some

algorithms are able to accommodate additional constraints, these are still limited to relatively

shallow properties rather than any knowledge about what makes a good pattern.

The sequence mining algorithms today are robust and highly efficient, but they have two main

limitations when applied to procedural learning. First, sequence mining algorithms operate over

sequences of atoms—e.g., DNA sequences, items purchased by an online customer, URL

clickstreams, event logs. In contrast, procedure mining should be designed for input sequences

composed of parameterized actions and should be able to discover relationships between those

parameters to achieve parameter generalization. Second, there are no semantics associated with

these atoms—in fact, they are often simply converted into integers for compactness. Because the

sequence mining algorithms are purely statistical, the atoms over which they operate have no

semantics. In contrast, the actions in procedures have meaning—they are intended to achieve

something, they have preconditions and effects, they manipulate data, etc.

The work described in the remainder of this paper addresses the second limitation. Here, we first

review how we address the first limitation using the technique described in (Gervasio & Lee, 2013).

Consider the example in Table 1. Event Logs shows three event sequences, each composed of a Get
action followed by an Approve action. Get is an ID retrieval action with one input parameter (the

Table 1. Sequential pattern mining is limited to finding patterns over actions (without arguments)

(Result 1). Simply appending arguments to actions (Result 2) does not enable the parameter

generalization required to achieve the Desired Result. (Support refers to the number of times the pattern

appears in the input sequences.)

Event Logs Result 1 Result 2 Desired Result

Get(John,ID45)
Approve(ID45)

Sequence 1, Support 3:
Get

Approve

Sequence 1, Support 1:
GetJohnID45
ApproveID45

Sequence 1, Support 2:
Get(Name1,Id2)
Approve(Id2))

Get(Jane,ID21)
Approve(ID62)

 Sequence 2, Support 1:
GetJaneID21
ApproveID21

Sequence 2, Support 1:
Get(Name1,Id2)

Approve(Id3)

Get(Jill,ID37)
Approve(ID37)

 Sequence 3, Support 1:
GetJillID37

ApproveID37

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

5

name of the person whose ID to retrieve) and one output parameter (the person’s ID). Approve is
an approval action taking one input (the ID of the person to approve). The first and third input

sequences are examples of the same procedure, involving the id retrieval and subsequent approval

for the same person. The second is a different procedure involving the retrieval of one person’s ID

and the approval of another.

A straight application of sequence mining would look only at the action names (Get and

Approve), resulting in discovering a single pattern covering all three sequences (Table 1, Result 1).

A possible approach to including action arguments is to translate each action in the input sequence

into a new string that concatenates the action name with its arguments. However, this results in the

opposite problem of under-generalization, with each input sequence being recognized as a separate

pattern (Table 1, Result 2). The desired result is one that distinguishes between the patterns with

recognition of the relationships between the action arguments as well (Table 1, Desired Result).
As in (Gervasio & Lee, 2013), to achieve the desired parameter generalization, we first apply

sequence mining on the actions only (Table 1, Result 1). We then apply a postprocessing step to

partition the supporting sequences according to parameter matches by going through each

supporting sequence and assigning unique ids to the different argument values in order. This

enables the recognition that there are two unique argument values in the first and third sequences

but three in the second; and also that the second unique argument value in the first and third

sequences is the second argument for the first action and the sole argument for the second. For list

and set (collection) arguments, unification and variablization can be extended to find supports from

collections to individuals (e.g., first([a,b,c]) → a) and from individuals to collections (e.g.,

list(a,b,c) = [a,b,c]) (Eker et al., 2009). This modified sequential pattern mining approach serves

as our basic procedure mining algorithm, which we use in the baseline experiment described next.

4. Baseline Experiment

4.1 Data

To evaluate our approach, we repurposed transactional log datasets collected by the IEEE Task

Force on Process Mining and made available through the 4TU.Centre for Research Data (2016).

Specifically, we used the Large Bank Transaction Process dataset (Muñoz-Gama, 2014), a

collection of synthetic event logs generated from a large model of bank transactions. The IEEE

Task Force collection includes both real-life and synthetic logs. We chose to work with the

synthetic logs because they included the Petri net model from which the logs were generated,

enabling us to develop “ground truth” data (i.e., the target procedures for our mining algorithm) to

use for evaluation. Figure 1 shows the complete bank transactions model and Figure 2 shows the

portion corresponding to sender (customer) authentication; this is the portion we focused on in our

experiments. From here, we extracted 28 target (ground truth) procedures, corresponding to the

paths described in Figure 3.

 Like most transactional logs, each entry in the bank transaction dataset consists simply of a log

identifier and an event type. To transform the data into a form more akin to the action logs we

would obtain from a system that logs parameterized actions, we modeled each action (square) in

Figure 3 in terms of its inputs and outputs. We then translated each event in the dataset to its

equivalent action, generating the action log we used in our experiments. Figure 4 illustrates this

transformation. The dataset provided a few different synthetically generated logs. For our

experiments, we used the one comprising 2000 noise-free logs of observed transaction sequences

M. GERVASIO AND K. MYERS

6

(corresponding to 2000 different customers). However, because we expect to have many fewer logs

in our target application, we mined procedures from only 100 (randomly selected) logs from this

dataset. We refer to this dataset as the noise-free dataset.

Figure 3. Example conversion from event log to action log. Each atomic event is translated into its

equivalent parameterized action.

Figure 2. The target (ground truth) procedures in the Sender Authentication subprocess consist of all

possible paths between a green square and a red square. The diagram is a Petri net so all the branches

emanating from a square must be traversed in any order This leads to six different sequences for the

High Check subgraph and two for the Low Check subgraph.

Figure 1. Large Bank Transaction Petri Net Model. Callout shows the Sender (Customer)

Authentication subprocess used in the experiments discussed in this paper. (The complete model on the

left is shown only to provide context; its details are irrelevant.)

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

7

To create noisy versions of this dataset, we injected two types of noise: redundant actions and

extraneous actions.1 We injected redundant actions by going through each action in the log, and

making a decision on whether to repeat that action with probability p. Similarly, we inserted

extraneous actions by going through each action and deciding to insert a randomly selected action

with probability p. Using p = 0.1, we created three noisy datasets: one with redundant actions only,

one with extraneous actions only, and one with both redundant and extraneous actions.2

4.2 Experimental Setup and Evaluation Metrics

Given the ground truth sequences, we were interested in how well the candidate sequences

discovered by sequence mining would match ground truth. Thus, we measured precision and recall.
There is an argument to be made that precision is more important than recall when learning

procedures from observation, so we report two F measures: the F1 score, which weights precision

and recall evenly; and the F0.5 score, which weights precision twice as much as recall.

We expect recall to be high, since sequential pattern mining is designed to discover as many

patterns as possible. But because every subsequence of a frequent sequence will also be a frequent

sequence, we expected many spurious procedures to be found and thus precision to be low. This

subsumption property is what led much work in frequent pattern mining to focus on finding only

maximal sequences (i.e., frequent sequences which are not contained in a longer frequent sequence)

or closed sequences (i.e., maximal sequences which are not contained in a longer maximal sequence

with exactly the same support). For procedure mining, however, we intentionally do not want to

limit ourselves to closed or maximal sequences because there are likely to be useful subsequences

as well, as seen in the ground truth procedures.

To establish a baseline, we ran the CM-SPAM3 algorithm (Fournier-Viger et al., 2014) over the

transformed action log with a minimum support of 5. Table 2 summarizes the results for the Noise-

1 We also considered missing actions but decided this did not make sense in the procedural automation setting

because action traces that were missing actions would not have accomplished the desired effects and are
thus not really examples of the target procedure.

2 We tried both smaller and larger values of p. These resulted in the expected decrease and increase,
respectively, in the number of candidates generated but the overall results on the effects of using filters did
not change.

3 Sequence mining algorithms target very large datasets, so the algorithms are designed to be highly efficient
for particular data mining problems. Our objective was simply to see whether we could leverage established
sequence mining algorithms to learn automatable procedures from small amounts of data. We decided to
use the CM-SPAM implementation in the Sequential Pattern Mining Framework (SPMF) data mining
library (Fournier-Viger et al., 2016) because it was a particularly efficient algorithm that provided all
frequent sequences and a controllable maximum gap parameter.

Figure 4. Example conversion from event log to action log. Each atomic event is translated into its

equivalent parameterized action.

M. GERVASIO AND K. MYERS

8

free case and the three noisy datasets (Redundant, Extraneous, Both). As expected, recall is high

(perfect in the Noise-free case) but precision is fairly poor (12%). Performance degrades with the

noisy datasets, with more incorrect candidates found in all three and fewer correct candidates found

in the Extraneous and Both noisy datasets as well.

5. Knowledge-guided Candidate Filtering

Sequential pattern mining relies solely on frequency of occurrence to identify candidates. While

this may be sufficient for finding repetitive occurrences such as buying patterns or frequent

clickthrough behavior, it is inadequate for finding procedures—i.e., meaningful action sequences

intended to achieve some goal. Action sequences based purely on frequency of observation may

not always be good candidates for automation. They may require (non-observable) intervening

actions, include systematic noise, include non-automatable actions, and so on. Extraneous actions

which serve no purpose cannot be filtered out, nor can nonsensical action sequences such as those

that start with actions with preconditions that have not been established. The action models used in

AI planning are designed precisely to enable reasoning about such dependencies between actions.

With this in mind, we set out to see how we could use action models to filter out the false candidates

from the large number of candidates generated by sequential pattern mining algorithms.

5.1 Action Model

We use a hybrid action model that combines standard STRIPS-style semantics capturing

preconditions and effects with a dataflow-oriented representation of actions in terms of their inputs

and outputs.

5.1.1 Planning Domain Definition Language.

The Planning Domain Definition Language (PDDL) (Kovacs, 2011; McDermott et al., 1998),

originated from STRIPS (Fikes & Nilsson, 1971), is the de facto standard for encoding first-

principles planning knowledge. In PDDL, the domain description includes a model for each action,

which comprises a set of (typed) parameters and a set of preconditions and effects which define,

respectively, what is required for and what results from the execution of the action. For example,

Figure 5 (left) shows the action definition for a FinishAuthentication action in the Bank Transaction

domain. It has two parameters (the sender and the authentication ID), requires that authentication

Table 2. Baseline Performance. Sequence mining finds all true candidates (perfect recall) but many

false ones (low precision). All types of noise increase the number of incorrect candidates found, while

extraneous actions and both redundant and extraneous actions also decrease the number of correct

candidates found.

Dataset #Cand True Recall Prec F1 F0.5

Noise-free 229 28 1.000 0.1223 0.2179 0.1483

Redundant 289 28 1.000 0.0720 0.1343 0.0884

Extraneous 252 25 0.8929 0.0992 0.1786 0.1206

Both 372 19 0.6786 0.0511 0.0950 0.0627

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

9

be in process and that the customer already have been registered, and results in the sender being

authenticated.

5.1.2 Task Learning Actions

In our work on learning procedures from demonstration in informational domains (Gervasio &

Murdock, 2009; Eker et al., 2009; Garvey et al., 2009), we found data flow—i.e., the information

producer-consumer relationship between actions—to be a particularly useful concept, with most

actions involving the production of information required by subsequent actions and/or the

consumption of data generated by previous actions. By focusing on the identification and

generalization of data flow, we were able to develop techniques for learning general, parameterized

procedures from as little as one example. To support the reasoning required to identify and

generalize data flow, we developed a representation where actions have typed parameters, each

designated as an input or an output, with the semantics that given particular input arguments,

executing the action will generate the output arguments. For example, Figure 5 (right) shows the

action definition for StartAuthentication: Given as input a sender (name), it outputs a new

authentication ID.

5.1.3 Hybrid Action Model

We extended our existing task learning action model with preconditions and effects as in PDDL to

encode the planning knowledge for a domain. We note that prior work on learning plans from

examples assumes information not just about the actions that were executed but also the state of

the world before and after the execution of each action. However, action or transactional logs

typically lack such state information. And yet humans are able to look at such action sequences and

infer the intervening states based on their knowledge of the actions. We are also able to identify

related actions and to ignore irrelevant ones. This was the primary motivation behind our

investigation into the use of action-model-based heuristics to filter the candidate patterns

discovered through sequential pattern mining.

5.2 Candidate Filters

The preconditions and effects and the inputs and outputs of an action provide valuable information

regarding whether inclusion of the action in an observed sequence makes sense. To leverage this

information in identifying good candidates for automation, we developed a set of filtering heuristics

Figure 5. PDDL specification of FinishAuthentication action (left) and dataflow-based specification of

StartAuthentication action (right).

M. GERVASIO AND K. MYERS

10

based on common-sense knowledge about the nature of actions and procedures in this domain.

These filters, summarized in Table 3, are meant primarily to serve as examples and to evaluate the

idea of knowledge-based filtering; they are not meant to be complete or definitive.

The Precondition filter discards any candidate containing an action whose preconditions are not

satisfied. This corresponds to the fact that a procedure cannot be executed to completion if any

precondition of any of its actions is not satisfied. Since event logs do not contain state information,

we rely on information about acceptable initial state conditions instead. To signify these conditions

that denote possible states from which an authentication procedure might be initiated, we augment

the action model with metadata identifying such conditions. For example, in this domain, the

condition of a customer being known is a valid (possible) initial condition but the condition of

authority being notified is not.

The next three filters rely on knowledge about the processes in the domain, as tracked by the

conditions established by the actions. Specifically, processes must start and they must end. By

designating certain conditions as referring to a process, we can recognize when an action starts the

process (i.e., establishes the condition) or finishes it (i.e., negates the condition). For example, the

action StartAuthentication has the effect of (authenticating ?customer) (i.e., starting an

authentication process) while the action FinishAuthentication has the effect of (not (authenticating
?customer)) (i.e., finishing it). The Start filter requires candidates to begin with an action that starts

a process while the Finalize filter requires them to end with an action that finishes a process. The

Complete filter combines the two, requiring that every action that starts a process has a

corresponding action that ends it.

The final candidate filter, Branch, discards candidates that do not begin with an action recognized

to be one of multiple options. This is a filter that may not apply to procedures in many other domains

but in the banking transaction domain, we know that there are often steps that can be executed in

any order—i.e., each of the steps can effectively start a procedure consisting of all the step in some

order. In the banking transaction model, for example, the check for high-risk (i.e., new or unknown)

clients involves checking the customer’s banking history, checking the customer’s profile, and

notifying authorities. The intuition behind the Branch filter is that action sequences beginning with

any one of these branching actions is likely to correspond to a good candidate.

In addition to the candidate filters in Table 3, we also devised action filters for discarding

unnecessary actions in candidates; these filters are summarized in Table 4. The Contribution filter

requires that every action serve a purpose—i.e., it either establishes a condition or produces an

output required by a subsequent action, or it requires a condition or input produced by a preceding

action. The Duplicate filter discards actions that are exact repetitions of the previous actions, the

Table 3. Candidate filters.

Filter Description

Precondition Discards candidates with any action having an unsatisfied or unsatisfiable precondition

Start Discards candidates that do not begin with an action that starts a process

Finalize Discards candidates that do not end with an action that completes a process

Complete Discards candidates that have an action that starts (ends) a process without a

matching action that ends (starts) it

Branch Discards candidates that do not start with a recognized branching action

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

11

rationale being that repeating the exact same action serves no purpose. These action filters are

designed to eliminate extraneous actions, whether due to inadvertent execution, multitasking, or

some other reason and that may lead to spurious patterns being discovered. Meanwhile, the Gap
filter utilizes the maximum gap constraint in pattern mining algorithms such as CM-SPAM, which

is designed to accommodate noise by allowing gaps to a certain length within a sequence. For the

experiments described below, we allowed up to one intervening action between any two elements

of a candidate sequence, which we implemented by setting the built-in CM-SPAM maximum gap

parameter accordingly.

Based on the recognition that the Precondition and Contribution filters check for necessary
conditions while the rest checked for desirable ones, we also devised two combinations of filters

that require passing the Contribution and Precondition filters and at least one of the other candidate

filters. These are described in (Table 5).

6. Experimental Results

6.1 Noise-Free Data

Our main hypothesis was that the filters would remove bad candidates from consideration, thereby

improving precision. However, we were also interested in whether recall would suffer and by how

much. Table 6 summarizes the results with the use of the different filters, alone and in combination,

applied over the frequent sequences found by CM-SPAM on the noise-free dataset. The individual

candidate filters never degrade precision and F scores and in most cases, improve them, although

recall is sometimes affected. Among the individual filters, the Branch filter results in the highest

precision, the Complete filter in the highest F1 score, and both filters in the highest F0.5 score.

However, the Branch filter has markedly lower recall. The best performance overall, however, is

achieved by the Combo1 filter, which records the highest precision and F-scores, along with almost
perfect recall.

Table 4. Action filters.

Filter Description

Contribution Discards actions that are not required by any succeeding action or that do not require

any preceding action

Duplicate Discards immediate repeated actions in a sequence

Gap Ignores up to a certain number of intervening actions

Table 5. Combination Filters

Filter Description

Combo1 Discards actions that do not pass the Contribution filter and then candidates that do
not pass the Precondition filter and at least two of Branch, Start,
Finalize, and Complete

Combo2 Discards actions that do not pass the contribution filter and then candidates that do not

pass the Precondition filter and either the Branch or Complete filter

M. GERVASIO AND K. MYERS

12

The Contribution, Duplicate, and Gap action filters were designed primarily to address noise and

so were not expected to help much in the noise-free case. Because the noise-free dataset contained

no repeated actions, the Duplicate filter also offers no improvement over the baseline. The Gap
filter, because it is designed to recognize patterns even with segments that do not match (allowable

gaps), results in an explosion in the number of patterns found, greatly affecting performance. The

Contribution filter has a mild positive effect on performance, removing a small number of false

positives for a slight improvement in precision.

6.2 Noisy Data

Table 7 summarizes the results of applying the different filters on the noisy dataset with Redundant
actions only. With the exception of the Gap filter, every filter improved precision and F-scores.

Not surprisingly, the Duplicate filter, which removes repeated actions (i.e., exactly the injected

Table 6. Results of filtering on noise-free dataset.

Filter #Cands True Recall Prec F1 F0.5

Precondition 229 28 1.000 0.1223 0.2179 0.1483

Start 94 17 0.6071 0.1809 0.2787 0.2104

Finalize 87 15 0.5357 0.1724 0.2609 0.1994

Complete 156 28 1.000 0.1795 0.3043 0.2147

Branch 92 17 0.6071 0.1848 0.2833 0.2147

Contribution 215 28 1.000 0.1302 0.2305 0.1576

Duplicate 229 28 1.000 0.1223 0.2179 0.1483

Gap 1020 28 1.000 0.0275 0.0534 0.0341

Combo1 128 26 0.9286 0.2031 0.3333 0.2407

Combo2 169 28 1.0000 0.1657 0.2843 0.1989

Table 7. Results of filtering on noisy dataset with Redundant actions.

Filter #Cands True Recall Prec F1 F0.5

Precondition 251 28 1.0000 0.1116 0.2007 0.1357

Start 156 17 0.6071 0.1090 0.1848 0.1304

Finalize 134 15 0.5357 0.1119 0.1852 0.1329

Complete 272 28 1.0000 0.1029 0.1867 0.1254

Branch 149 17 0.6071 0.1141 0.1921 0.0961

Contribution 357 28 1.000 0.0784 0.1455 0.1362

Duplicate 229 28 1.000 0.1223 0.2179 0.1483

Gap 2201 28 1.0000 0.0127 0.0251 0.0158

Combo1 128 26 0.9286 0.2031 0.3333 0.2407

Combo2 169 28 1.0000 0.1657 0.2843 0.1989

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

13

noise), resulted in the best precision on the Redundant dataset, matching the performance of the

baseline in the noise-free case. And applying the Duplicate filter in combination with any of the

other filters matched performance in the corresponding noise-free case (results omitted for brevity).

The best performance, however, results from the combination filters.

The Gap filter, as in the noise-free case, significantly increased the number of candidates,

resulting in greatly degraded precision and F-scores. The Gap filter is designed to find candidates

that would not otherwise be found because of insufficient support due to noise. For example, if

there are three sequences ACB, AB, and ADB, then an allowable gap of one would find the sequence

AB with support three, while allowing no gap would not find any sequence with support greater

than one. Thus, the result here may be explained by the fact that without filtering, all ground truth

candidates are already found—i.e., there is nothing useful left for the Gap filter to find. Instead it

finds many other extra candidates. We had expected the Gap filter to have some positive effect on

small datasets having patterns that have frequencies of occurrence close to the minimum, but the

extremely high number of other patterns found makes it unlikely that it will be useful.

Table 8 shows the results for the different filters on the noisy dataset with Extraneous actions

only, and Table 9 shows the results for the noisy dataset with Both redundant and extraneous

actions. The results are similar to those for noise due to Redundant actions only. Again, with the

exception of the Gap filter, all the filters have a positive effect on performance, with the

combination filters resulting in the greatest improvement.

6.3 Discussion

The experimental results confirm that standard sequential pattern mining techniques discover a

large number of irrelevant action sequences and that action-model-based filters help eliminate many

of them. Every candidate filter and all but the Gap action filter was able to eliminate irrelevant

sequences and most were able to do so without overly sacrificing recall. Baseline precision is just

over 12% in the noise-free case and ranges from 5–10% in the noisy datasets. With the filters, this

reaches up to 20% in the noise-free case and up to 15–20% for the noisy datasets. Similarly, the

baseline F0.5 score is under 15% in the noise-free case and ranges from around 9–12% in the noisy
datasets. With the filters, this reaches up to 24% in the noise-free case and up to 18–24% for the

Table 8. Results of filtering on noisy dataset with Extraneous actions.

Filter #Cands True Recall Prec F1 F0.5

Precondition 232 25 0.8929 0.1078 0.1923 0.1308

Start 99 15 0.5357 0.1515 0.2362 0.1769

Finalize 89 13 0.4643 0.1461 0.2222 0.1693

Complete 159 25 0.8929 0.1572 0.2674 0.1882

Branch 98 15 0.5357 0.1531 0.2381 0.1786

Contribution 208 25 0.8929 0.1202 0.2119 0.1454

Duplicate 251 25 0.8929 0.0996 0.1792 0.1211

Gap 1266 28 1.0000 0.0221 0.0433 0.0274

Combo1 116 26 0.8214 0.1983 0.3194 0.2338

Combo2 159 28 0.8929 0.1572 0.2674 0.1882

Melinda Gervasio

M. GERVASIO AND K. MYERS

14

noisy datasets. Although this marks a 100–200% improvement, it remains to be seen whether a 1

in 5 hit rate for discovered procedures intended for automation is sufficient. Nevertheless, these

results show that knowledge-based heuristics for filtering candidate patterns and pattern actions can

be an effective addition to standard sequential pattern mining to guide discovery toward meaningful

action sequences that are more likely to correspond to procedures.

7. Conclusions and Future Work

In this paper, we proposed a hybrid approach for procedure mining that combines knowledge-

based heuristics derived from AI planning models with statistical techniques from sequential

pattern mining to discover candidate action sequences for automation. The approach leverages

efficient sequence mining techniques to find frequent action sequences from logs of user actions to

serve as candidate action sequences for automation. Using action models that provide a semantic

representation of actions in terms of their preconditions and effects and inputs and outputs, we

devised filtering heuristics to help identify good candidate sequences for automation. The idea was

to encode in these filters the knowledge of which patterns ‘made sense’ from a procedural

perspective—i.e., patterns whose actions were related in some way or were otherwise indicative of

a procedure. We conducted several experiments to evaluate the usefulness of the filters on both

noise-free and noisy datasets and the experimental results show that the action-model-based

filtering heuristics successfully eliminate a large number of irrelevant sequences discovered by

standard sequential pattern mining.

Our approach does introduce an additional cost to deployment above and beyond that of purely

statistical methods in that it requires the formulation of the action model for any new domain to

which it is applied. However, this is a one-time expense that could be justified for many applications

if our preliminary results on improved quality of recognition hold more generally.

As discussed previously, the filtering heuristics we presented in this paper may not apply to all

domains all the time. Some, like the Branch filter, take advantage of characteristics specific to the

banking transaction domain. On the other hand, we are likely to be able to leverage characteristics

specific to any domain by designing new filters, corresponding to the knowledge one would have
about processes in that domain. For example, in a customer support call-center application, all

Table 9. Results of filtering on noisy dataset with both Redundant and Extraneous actions.

Filter #Cands True Recall Prec F1 F0.5

Precondition 218 19 0.6786 0.0872 0.1545 0.1056

Start 135 11 0.3929 0.0815 0.1350 0.0968

Finalize 131 9 0.3214 0.0687 0.1132 0.0815

Complete 252 19 0.6786 0.0754 0.1357 0.0917

Branch 134 12 0.4286 0.0896 0.1481 0.1064

Contribution 296 19 0.6786 0.0642 0.0950 0.0627

Duplicate 268 26 0.9286 0.0970 0.1757 0.1182

Gap 1339 28 1.0000 0.0209 0.0410 0.0260

Combo1 108 17 0.6071 0.1574 0.2599 0.1847

Combo2 149 19 0.6786 0.1275 0.2147 0.1522

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

15

procedures might begin with creating an incident report and filling in the date and time of the call.

They may also all include retrieving resolution options based on a standard operating manual or

prior similar incidents. And they may all conclude with either a resolution or an escalation.

It is also likely that we will have to learn from even smaller numbers of examples. This will need

filters like the Gap filter to enable finding sequences for which there may not be enough support

otherwise. For example, an abstraction filter that recognizes a set of actions to be variants of each

other because they achieve the same cumulative effects would allow sequences that differed only

in the variant used to be grouped together.

We believe that our use of action models to inform statistical sequence mining has potential

benefits that go beyond increased precision. One such benefit is providing rationale for mined

sequences. The preconditions and effects characterize the causal structure of the procedure: what it

does, when it can be done (its accumulated preconditions), and why it would be done (i.e., its

accumulated effects). We can potentially use this information to generate explanations to a user to

accompany suggestions for task automation, drawing on explanatory techniques such as those

described in (Seegebarth et al., 2012).

Our work is motivated by the ultimate objective of enabling process automation for real-world

usage. Our focus to date has been on a collaborative task management tool that we developed

previously called Task Assistant (Peintner et al., 2009). Task Assistant supports distributed human

teams in collectively executing complex coordinated processes (e.g., Standard Operating

Procedures (SOPs)) through an explicit representation of tasks, dependencies, deadlines, and status.

Task Assistant has been deployed successfully to a number of operational user communities,

including the U.S. Pacific Fleet (PACFLT), the U.S. Strategic Command (STRATCOM), and the

Kansas National Guard. With those deployments, we have seen the opportunity to improve team

and individual efficiency by introducing automation to perform frequently performed support tasks,

many of which focus on information retrieval to aid human decision making. Our first approach to

procedure automation for Task Assistant involved learning from demonstration technology (Myers

et al., 2011). While useful, the approach still required significant user effort to recognize the need

for automation and to explicitly demonstrate the procedures to be automated. Our engagement with

the user community has shown a strong desire for approaches that can automate procedures with

minimal human intervention, as would be enabled by the procedure mining technique introduced

in this paper.

Acknowledgments

This material is based upon work supported by the Office of Naval Research (ONR) under Contract

N00014-15-C-5040. Any opinions, findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of ONR.

References

Abouelhoda, M. & Ghanem, M. (2010) String mining in bioinformatics. In M. M. Gaber (Ed.),

Scientific Data Mining and Knowledge Discovery: Principles and Foundations, 207–247, Berlin,

Heidelberg: Springer-Verlag,.

Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. Proceedings of the International

Conference on Data Engineering (ICDE).

M. GERVASIO AND K. MYERS

16

Allen, J., Chambers, N., Ferguson, G., Galescu, L., Jung, H., Swift, M., & Taysom, W. (2007).

PLOW: A collaborative task learning agent. Proceedings of the 27th AAAI Conference on

Artificial Intelligence (pp. 1514–1519).

Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., &

Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids

Research, 37(suppl_2), W202–W208.

Blythe, J. (2005). Task learning by instruction in Tailor. Proceedings of the 10th International

Cconference on Intelligent User Interfaces (pp. 191–198).

Botea, A., Müller, M., & Schaeffer, J. (2005). Learning partial-order macros from solutions..

Proceedings of the 15th International Conference on Automated Planning and Scheduling (pp.

231–240).

Chand, C., Thakkar, A., & Ganatra, A. (2013). Sequential pattern mining: Survey and current

research challenges. International Journal of Soft computing and Engineering, 2(1), 185–193.

Chou, M. F. & Schwartz, D. (2011). Biological sequence motif discovery using motif-x. Current

Protocols in Bioinformatics, 35(1).

Cook, J. E. & Wolf, A. L. (1998). Discovering models of software processes from event-based data.

ACM Transactions on Software Engineering and Methodology (TOSEM), 7(3), 215–249.

Eker, S., Lee, T. J., & Gervasio, M. (2009). Iteration learning by demonstration. Papers from the

AAAI 2009 Spring Sympsoium on Agents that Learn from Human Teachers.

Fikes, R. E., Hart, P. E., & Nilsson, H. J. (1972). Learning and executing generalized robot plans.

Artificial Intelligence, 3, 251–288.

Fikes, R. E. & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving

to problem solving. Artificial Intelligence, 2(3–4), 189–208.

Fournier-Viger, P., Gomariz, A., Campos, M., & Thomas, R. (2014). Fast vertical mining of

sequential patterns using co-occurrence information. Proceedings of the Pacific-Asia Conference

on Knowledge Discovery and Data Mining (pp. 40–52).

Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H. T..

(2016). The SPMF OpenSource data mining library version 2. Proceedings of the 19th European

Conference on Principles of Data Mining and Knowledge Discovery, 36–40.

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., & Thomas, R. (2017). A survey of

sequential pattern mining. Data Science and Pattern Recognition, 1(1), 54–77.

Garvey, T., Gervasio, M., Lee, T., Myers, K., Angiolillo, C., Gaston, M., Knittel, J., &

Kolojejchick, J. (2009). Learning by demonstration to support military planning and decision

making. Proceedings of the 21st International Conference on Innovative Applications of Artificial

Intelligence.

Gervasio, M. & Lee, T. J. (2013). Discovering action idioms. Proceedings of the 2013 IEEE

Symposium on Visual Languages and Human-Centric Computing (pp. 11–14).

Gervasio, M. T. & Murdock, J. L. (2009). What were you thinking? Filling in missing dataflow

through inference in learning from demonstration. Proceedings of the 14th International

Conference on Intelligent User Interfaces.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice. Elsevier.

 LEARNING PROCEDURES THROUGH SEQUENCE MINING

17

Kovacs, D. L. (2011). BNF definition of PDDL 3.1. Unpublished manuscript from the IPC-2011

website. https://helios.hud.ac.uk/scommv/IPC-14/repository/ kovacs-pddl-3.1-2011.pdf

Hogg, C., Munoz-Avila, H., & Kuter, U. (2014). Learning hierarchical task models from input

traces. Computational Intelligence, 32(1), 3-48.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general

learning mechanism. Machine learning, 1(1), 11–46.

Li, N., Stracuzzi, D. J., Langley, P., and Nejati, N. (). Learning hierarchical skills from problem

solutions using means-ends analysis. Proceedings of the Annual Meeting of the Cognitive Science

Society, 31(31), 1858–1863.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld, D., & Wilkins,

D. (1998). PDDL–The Planning Domain Definition Language. CVC TR-98-003/DCS TR-1165,

Yale Center for Computational Vision and Control.

Muñoz-Gama, J. (2014). Large Bank Transaction Process. Universitat Politècnica de Catalunya

(Barcelonatech). Dataset. https://doi.org/10.4121/uuid:c1d1fdbb-72df-470d-9315-

d6f97e1d7c7c.

Myers, K., Kolojejchick, J., Angiolillo, C., Cummings, T., Garvey, T., Gervasio, M., Haines, W.,

Jones, C., Knittel, J., Morley, D., Ommert, W., & Potter, S. (2011). Learning by demonstration

technology for military planning and decision making: A deployment story. Proceedings of the

23rd International Conference on Innovative Applications of Artificial Intelligence.

Negrevergne, B. & Guns, T. (2015). Constraint-based sequence mining using constraint

programming. Proceedings of the International Conference on AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems (pp. 288–305), Springer.

Newton, M. A. H., Levine, J., Fox, M., & Long, D. (2007). Learning macro-actions for arbitrary

planners and domains.. Proceedings of 17th International Conference on Automated Planning

and Scheduling (pp. 256–263).

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., & Hsu, M. C. (2004).

Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Transactions on

Knowledge and Data Engineering, 16(11), 1424–1440.

Pei, J., Han, J., & Wang, W. (2002). Mining sequential patterns with constraints in large databases.

Proceedings of 2002 ACM International Conference on Information and Knowledge

Management.

Peintner, B., Dinger, J., Rodriguez, A., & Myers, K. (2009). Task assistant: Personalized task

management for military environments. Proceedings of the 21st International Conference on

Innovative Applications of Artificial Intelligence.

Rojas, E., Muñoz-Gama, J., Sepúlveda, M., & Capurro, D. (2016). Process mining in healthcare: A

literature review. Journal of Biomedical Informatics, 61, 224–236.

Seegebarth, B., Schattenberg, B., & Biundo, S. (2012). Making hybrid plans more clear to human

users—a formal approach for generating sound explanations. Proceedings of the 22nd

International Conference on Automated Planning and Scheduling (pp. 225–233).

Shavlik, J. W. (1990). Acquiring recursive and iterative concepts with explanation-based learning.

Machine Learning, 5(1), 39–70.

https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf
https://helios.hud.ac.uk/scommv/IPC-14/repository/kovacs-pddl-3.1-2011.pdf
https://doi.org/10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c
https://doi.org/10.4121/uuid:c1d1fdbb-72df-470d-9315-d6f97e1d7c7c

M. GERVASIO AND K. MYERS

18

Srikant, R. & Agrawal, R. (1996). Mining sequential patterns: Generalization and performance

improvements. Proceedings of the International Conference on Extending Database Technology,

(pp. 1–17). Springer: Berlin, Heidelberg.

van der Aalst, W. (2012). Process mining: Overview and opportunities. ACM Transactions on

Management Information Systems (TMIS), 3(2), 7.

van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M. van Dongen, B.F., Alves De Medeiros,

A.K., Song, M., & Verbeek, H.M.W. (2007). Business process mining: An industrial application.

Information Systems, 32(5), 713–732.

van Lent, M. & Laird, J. E. (2001). Learning procedural knowledge through observation.

Proceedings of the 1st International Conference on Knowledge Capture (pp. 179–186).

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning, 42(1–2), 31–60.

