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Abstract
Many robot manipulation tasks comprise discrete action sequences characterized by continuous
dynamics, while the transitions between these discrete dynamic modes are characterized by dis-
continuous dynamics. The individual modes may represent different types of contacts, surfaces,
or other factors, and each mode and transition between the modes may require a different control
strategy. This paper describes a piece-wise continuous, hybrid control framework for such manipu-
lation tasks. The underlying representation enables the robot to automatically and efficiently detect
the transitions between known modes, recognize new modes, and incrementally learn a dynamics
model for variable impedance (i.e., stiffness) control in each mode, invariant to the direction of
motion and the magnitude of applied forces. The framework is evaluated on a robot manipulator
sliding an object along a surface to achieve a desired motion trajectory in the presence of changes
in surface friction, applied force, or the type of contact between the object and the surface.

1. Introduction

Consider a robot manipulator sliding an object over a surface along a desired pattern, as shown in
Figure 1. For the system comprising the robot and its environment, the dynamics of the task, i.e., the
relationships between the forces acting on the robot and the resultant accelerations, vary markedly
before and after the object comes in contact with the surface. The dynamics also vary based on
the type of contact (e.g., surface or edge contact), surface friction, applied force, and other factors.
We consider tasks that involve changes in dynamics due to changes in the nature of contact as
“changing-contact” tasks. Tasks such as peg insertion, screwing, stacking, and pushing, which form
the basis of industrial assembly tasks, are changing-contact tasks. The interaction dynamics of the
robot system in such tasks are continuous except when a contact is made or broken. Similarly, many
robot (and human) manipulation tasks are changing-contact tasks characterized by discontinuities
in the dynamics when the nature of the interaction between objects changes. These discontinuities
make it difficult to learn a single model of the task’s dynamics, but it is possible to construct a
hybrid system with continuous dynamics within each of a number of discrete dynamic modes that
may need distinct control strategies (Kroemer et al., 2019). Then, the overall task’s dynamics are
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piece-wise continuous, with the corresponding hybrid model being used to transition between the
individual modes over time (Lee et al., 2017).

Figure 1: Manipulator sliding an object in a pat-
tern along three surfaces with different friction.

Constructing separate (continuous) models
for the different modes introduces the need for a
transition model (i.e., a strategy) that accurately
chooses the mode under operation at any point
in time, revises the existing dynamics models
to adapt to changes within any given mode,
and identifies and learns dynamics models for
previously unseen modes. Existing methods
achieve this objective by learning from large
labeled training datasets, using comprehensive
knowledge of domain dynamics, imposing un-
realistic assumptions or hardware requirements,
and/or using a state representation that makes it
computationally expensive to learn the dynam-
ics models. Research in human motor control,
on the other hand, indicates that humans start performing any new task with higher arm stiffness to
account for unforeseen disturbances, but quickly acquire experience to perform the task accurately
with much lower stiffness. They do so by building internal models of task dynamics based on dif-
ferent representations to predict the configurations (of object and hand) and the forces during task
execution (Burdet et al., 2001; Kawato, 1999; Shadmehr & Krakauer, 2008). These findings are
mapped to the following tenets that form the basis of our computational framework:

• Each dynamic mode of the hybrid model comprises a forward model (i.e., predictor), a control
law, and a relevance condition.

• The forward model’s state is based on the end effector sensor measurements, with the con-
troller operating in the task space (instead of joint space) and any given mode using an abstract
task-dependent state representation.

• The relevance condition determines when the current mode is irrelevant; this is confirmed
using samples collected under high stiffness, and either a new dynamic model is learned or
an existing one is revised based on the prediction error.

The combination of these tenets (first two related to representation, third related to information pro-
cessing) is novel and our framework implements these tenets to make the following contributions:

• Incrementally learns a non-linear, piece-wise continuous model of the dynamics of any given
task without prior knowledge of its modes or the order in which the modes appear.

• Incorporates a transition model that automatically creates clusters corresponding to the modes
of any given task, and identifies transition to existing or new modes during task execution.
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• Introduces a reduced feature representation that makes the learning of dynamics models com-
putationally efficient, and makes the identification of modes independent of the motion direc-
tion and magnitude of applied forces.

• Incrementally learns and revises a probabilistic model of any given mode’s dynamics, using
the model for variable impedance (i.e., stiffness) control and compliant motion in that mode.

The novelty is in the first three contributions; the last one builds on our prior work on variable
impedance control of continuous contact tasks (Mathew et al., 2019). The underlying learning and
control challenges are explored in the context of a manipulator sliding an object on a surface in a
desired (given) motion pattern defined in the task space. We limit sensor input to that from a force-
torque sensor at the end of the manipulator, and demonstrate the framework’s ability to perform the
desired task reliably in the presence of discrete changes in surface friction, applied force, and type
of contact. We describe our framework in Section 2. Section 3 discusses the experimental results,
followed by review of related work in Section 4, and the conclusions in Section 5.

2. Problem Formulation and Framework

This section first describes the formulation of changing-contact manipulation tasks as a piece-wise
continuous hybrid system (Section 2.1). Section 2.2 describes the control strategy and learning of
continuous dynamics within a single mode. Section 2.3 explains the detection and modeling of the
discrete dynamic modes.

2.1 Piece-wise Continuous Hybrid System

In a piece-wise continuous hybrid system, the state can be described as the tuple 〈m, s〉 where
m ∈ M is a mode from a discrete set of modes M , and s ∈ Sm is an element in the continuous
subspace Sm ⊆ Rd associated with m. This formulation assumes that subspaces do not intersect
or overlap, i.e., Sm ∩ Sn = ∅ ∀ m 6= n. The evolution of s within a mode is determined by a
discrete-time continuous function Sm(.), but the state transition is discrete and discontinuous at the
boundaries between modes. Lee et al. (2017) called the boundary between modes m and m′, where
the transition occurs, as guard regions that are denoted by Gm,m′ ⊆ Sm. In the guard regions, s is
transported to st+1 ∈ Sm′ through a reset function rm,m′(.). State propagation is thus governed by:

st+1 =

{
rmt,mt+1(st) + wt if st ∈ Gmt,mt+1

Sm(st) + wt if st ∈ Smt

(1)

where wt is additive (Gaussian) process noise. In the context of the sliding task considered in this
paper, the forces and torques measured by the robot at its end-effector constitute the observable state
(s) of the system that varies continuously within each contact mode. This formulation makes the rea-
sonable assumption that properties such as friction are continuous across the surface of each object.
The control strategy guiding the object’s motion in the (static or smoothly changing) environment
in that mode can be considered to determine the function Sm(.) governing the evolution of s in that
mode. When mode changes occur (i.e., in the guard regions), the dynamics corresponds to a new
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state in mode n where the state evolution is guided by function Sn(.). For changing-contact tasks,
measurements within the guard region are pronounced and significantly different when compared
with the readings within a dynamic mode. The mode switches impose structure on manipulation
tasks; the transitions can be considered as triggers for changing the current model of the domain.

In our framework, each mode comprises a (i) forward model that predicts part of the observable
state (end effector forces and torques), with the error between predictions and actual measurements
used to revise the model and provide a component of the control signal; (ii) control law that in-
cludes a feed-forward term and feedback terms based on the measured error in predictions; and
(iii) relevance condition that (in)validates a mode based on the magnitude of changes in sensor
measurements. We describe these components below.

2.2 Forward Model and Control Law

We build on our previous work (which explored continuous contact tasks) (Mathew et al., 2019) to
learn the dynamics model for each mode and develop the control strategy. Specifically, the continu-
ous dynamics of each mode is learned using an Incremental Gaussian Mixture Model (IGMM) (Song
& Wang, 2005). IGMM internally uses a variant of the Expectation-Maximization (EM) algo-
rithm to fit the model. In our implementation, the GMM was incrementally fit over points X =
(X1, ..., XT ), with Xt = [St−1, Dt] where each point contains information about a subset of previ-
ous observable state (St−1), along with the current values of the subset of the observable state to be
predicted (Dt). During task execution, the learned model provides a function:

f : St 7→ Dt+1 (2)

that predicts Dt+1 at the next time step as a function of the current (measured) value of St, using
Gaussian Mixture Regression (GMR) (Sung, 2004). Recall that in this paper, the primary sensor
is the force-torque sensor at the end effector; the observable state includes the end-effector forces,
torques, and velocities ([Fee, τ, ẋ]), with St−1 = [Feet−1 , τt−1, ẋt−1] and Dt = [Feet , τt]. We used
the magnitude of force, torque, and velocity instead of their 3D vector representation because the
magnitudes of frictional forces and torques are ideally independent of the motion direction. This
simplified representation is sufficient to predict the end-effector forces and torques along the motion
direction; it makes the learning process simpler, more computationally efficient, and independent of
the direction of motion. The learned model always predicts the forces and torques along (or against)
the direction of motion; the components along other axes can be computed when needed.

The predictions from the forward model provide the feed-forward term that cancels out the
effect of the environment forces (friction) during motion, in the control law:

ut = Kp
t ∆xt + Kd

t ∆ẋt + ufct + λt−1kt (3)

ufct = Kf
t∆Ft + F dt (4)

Kp
t = Kp

free + (1− λt−1)(Kp
max −Kp

free) (5)

λt = 1− 1

1 + e−r(εt−ε0)
(6)
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where ut, the control command to the robot end-effector at time t, is a task space wrench, i.e., a
vector of 3D force and 3D torque. Equation 3 is a hybrid force-motion variable impedance control
law in which the first two terms implement a proportional-derivative (PD) feedback controller for
motion control (with Kp

t and Kd
t being the positive definite stiffness and damping matrices), the

third term is a force feedback control signal (ufct ), and the last term is based on prediction error of
the forward model. The state for the control law considers the pose (xt) and velocity (ẋ) in task
space, i.e., in 6D coordinates (three each for position and orientation). Equation 4 implements a
simple proportional controller for force control with Kf

t as the gain matrix and ∆F as the error
in task-space force; in our task, the direction for force control is orthogonal to direction of motion
control. The last term in Equation 3 is a control signal based on the prediction of the forward
model kt in the current mode and a weighting factor λ ∈ [0, 1] based on the error in the prediction
(εt)—we use a logistic function (Equation 6) whose (hyper)parameters (growth rate r, sigmoid
midpoint ε0) are tuned experimentally. The feed-forward term thus contributes only if the mode’s
dynamics are learned properly. Equation 5 updates the stiffness parameter of the overall control
law based on the prediction error; Kp

max is the maximum allowed stiffness, Kp
free is the minimum

stiffness needed for accurate pose tracking in the absence of external disturbances (in free space),
and Kd

t =
√

Kp
t /4 is a known constraint for critically-damped systems (Ijspeert et al., 2013). We

have established the advantages of a variable impedance control formulation for continuous contact
tasks in prior work (Mathew et al., 2019). Note that the hybrid force-motion controller provides
the appealing property of compliance in the direction of force control while following the desired
motion pattern. As a result, the manipulator is able to adapt smoothly and automatically if, for
instance, the surface is tilted or raised during task execution.

2.3 Recognizing Mode Changes and New Modes

Any change in mode is accompanied by a sudden significant change in the sensor readings. In
our framework, the relevance condition is defined as a threshold on the magnitude of change in the
measured end-effector forces and torques. A common threshold is determined by the designer for all
modes associated with any given task; the current mode is relevant until this threshold is exceeded.
The robot responds to any change in mode by briefly using a high-stiffness control strategy while
quickly obtaining a batch of sensor data to confirm and respond to the transition. Once a mode
change is confirmed, the robot learns a new dynamics model for a new mode or uses (and revises)
an existing dynamics model if the change is to a previously known mode.

The management of modes is based on an online incremental clustering algorithm called Bal-
anced Iterative Reducing and Clustering using Hierarchies (BIRCH) (Zhang et al., 1997). This
algorithm incrementally and dynamically clusters incoming data for given memory and time con-
straints, without having to examine all existing data points or clusters. We used the implementation
of BIRCH in the Scikit-learn library (Pedregosa et al., 2011). Each cluster represents a mode in a
suitable feature space (more details below), and the clusters are updated using a set/batch of fea-
ture data. The fraction of the input feature vectors assigned to any existing cluster determines the
confidence in the corresponding mode being the current mode. If the highest such confidence value
is above a task-dependent threshold, the corresponding mode is triggered and the associated dy-
namics model is used and revised. If the input feature vectors are not sufficiently similar to an
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Figure 2: The torque measured at the pivot (τ ) varies for different relative orientation of the object
(θ), unlike the force at the tip (Fr). The object is moving at ẋ resulting in a frictional resistance Fr
in the opposite direction at point of contact.

existing cluster, a new cluster (i.e., mode) is constructed and the the corresponding dynamics model
is learned—see Section 2.2.

The key factor influencing the reliability and efficiency of this approach is the choice of the
feature representation (i.e., the state descriptor) for the mode. This representation is task dependent
but the objective is to identify properties that concisely and uniquely representing the modes and
vary substantially only when mode change occurs. Recall that factors of interest are changes in the
surface friction, type of contact, and applied force. For the task of sliding an object over surfaces
with different values of friction, the property that strongly influences the end-effector forces (Fee) is
the friction coefficient between the object and the surface. When two objects slide over each other
at constant velocity, Fee is proportional to the applied normal force (R) and the friction coefficient
(µ) (assuming the relative orientation of their surface normals do not change); µ is then give by:

µ ∝ ‖Fee‖
R

(7)

A concise feature representation for this task is thus ‖F
t
ee‖
Rt , which has the effect of making mode

classification independent of the magnitude of the applied force.
For changes in the type of contact, end-effector orientation is a useful feature. However, small

changes in orientation can lead to significant changes in the measured torques (see Figure 2), re-
sulting in the recognition of different modes. A more reasonable feature is the magnitude of the
end-effector torques that can be measured using the force-torque sensor in the wrist:

τ = Frl sin θ (8)

where Fr is the force at the tip, l is the length of the pivot arm, and θ is the orientation between the
surface normals. Figure 2 shows that for any object, τ is different for the different types of contacts.
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With the magnitude of the torques (‖τ‖) as the feature representation, modes can be classified
independent of the motion direction and object orientation. This representation would not work
when the magnitude of the applied force differs. If we instead assume that the force measured at the
wrist (Fee) approximates the force at the tip of the object (Fr), which is a reasonably assumption,
Equations 7 and 8 imply that ‖τ

t‖
Rt is invariant to the magnitude of the applied force for a fixed

relative orientation between the objects in contact:

τ = µRl sin(θ) (9)

Ideally ‖τ‖R is constant for each mode (based on θ) provided object geometry (l) and friction (µ)
do not change. Experimental studies reveal that this property by itself is insufficient to distinguish
between contacts when the applied normal force changes because the assumption about kinematic
friction (i.e., that Fr = µR) does not hold in many real-world situations (Baraff, 1991). We thus
use [‖τ‖R , ‖Fee‖

R ] as the feature representation for each mode; it supports generalization over different
normal forces while reliably capturing the factors influencing the nature of the contact.

Table 1: Control loop of framework
Input : Desired motion pattern as sequence of task space way-points, Control parameters:

Kp
free,K

p
max; Dynamics models M = {fi : i ∈ [1, N ]}; Current mode: m = 0.

1 while Motion pattern not complete do
2 if Object in contact with surface then
3 if mode transition detected then

// Set high stiffness
4 Kp

t ← Kp
max

// Detect (new/existing) mode
5 m = detect_classify_mode()

// Populate new model for new mode
6 if new mode found then
7 M = M ∪ fm
8 end
9 end

10 Update and use fm for control (Section 2.2)
11 else
12 Kp

t ← Kp
free

13 end
14 end

Algorithm 1 is an overview of the framework’s control loop for a manipulator sliding an object
on a surface; it proceeds until a desired motion pattern is completed. Control and learning methods
are used only after the object is in contact with the surface (lines 2-10), not when the manipulator is
moving in free space (lines 11-13). The robot detects mode changes when there are large changes
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in the sensor measurements (line 3). The robot responds to any detected mode change by setting
a high stiffness (line 4), collecting feature samples, determining the transition to a new or existing
mode (line 5) and creating new models if necessary (lines 6-8). In the absence of a mode transition,
the robot continues with the current mode and dynamics model (line 10).

3. Experimental Setup and Evaluation

We used a 7-DoF Franka Emika Panda manipulator robot for our experiments—see Figure 1. The
robot had to slide an object along a desired motion pattern on a surface, and we considered variations
in surface friction (“changing surface” task) and in contact types (“changing contact type” task).
This desired motion pattern is encoded based on a single demonstration of the task by the human
designer, e.g., human moves the manipulator along a desired path. We experimentally evaluated the
following hypothesis:

H1: Learning separate dynamics models for the different modes results in better performance than
using a single model that is revised continuously;

H2: The framework provides reliable and efficient performance for changing-contact manipula-
tion tasks; and

H3: The framework’s performance is robust to changes in motion direction and applied forces.

where H1 explores the need for learning different dynamics models for different modes; H2 and
H3 examine whether the framework can reliably and efficiently transition to the appropriate mode
(and model) in the presence of changes in direction of motion and applied forces. We used the root
mean square error (RMSE) in the context of different measurements (e.g., end effector position,
forces, stiffness etc) as the key performance measure. Unless stated otherwise, each data point in
the results below is the result of 10 repeated trials on the robot. Since our approach is a significant
departure from state of the art approaches for manipulation tasks (e.g., those based on deep learn-
ing), we do not provide an experimental comparison with these approaches but include a discussion
in Section 4. A video demonstrating the operation of our framework and some of the experimental
results discussed in this paper can be found online1.

3.1 H1: Need for Multiple Models

We first evaluated hypothesis H1, i.e., the need for separate dynamics models for different modes
in the context of changing-contact tasks. As the robot was sliding an object (rigidly fixed to the
end-effector) over a flat surface, the surface friction was changed to obtain two distinct surfaces.
The robot had a dynamics model for the first surface but not for the second surface.

Experimental results indicated that in 90% of the trials, the robot was unable to complete the
task, i.e., the robot stops performing the task before the trajectory is completed. The feed-forward
values being predicted by the model for the rougher surface were much higher than those required
for the smoother surface, making the robot overshoot (when it transitioned to the smoother surface)

1. https://youtu.be/m210rxIDZ7Q
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Figure 3: Performance when a dynamics model is learned from scratch for a new mode. Top:
position tracking; Bottom: variation in controller stiffness.

and reach the safety limits imposed on the joint torques, resulting in the robot stopping its motion.
In other words, the observed performance is unreliable with a single incrementally revised dynamics
model when there are pronounced discrete changes in the mode.

Next, the robot performed the same task using a single model with the difference that it uses
a high stiffness controller to learn a new model from scratch when a change to the second surface
is detected; recall that the robot does not initially have a forward model for the second surface.
This strategy performed better than with a single incrementally learned dynamics (forward) model,
and the task was completed successfully in all the trials—Figure 3. The robot had to operate with
high-stiffness until a reliable forward model for the new mode had been created, which expends
much more energy than necessary. On the other hand, when the models for the two surfaces (i.e.,
modes) are available, the robot is able to switch between them spending much less time under high-
stiffness—Figure 4. The difference in performance is statistically significant, e.g., RMSE for the
plots in Figure 3 and Figure 4 are 0.017 and 0.015 respectively. We repeated these experiments
for other combinations of surfaces (with different friction) and for motion patterns over more than
two different surfaces with different surface friction. In each case, the robot was able to detect the
new mode and learn a new model from scratch, and to transition to using the existing models when
appropriate (discussed in Section 3.2). These results support hypothesis H1.

3.2 H2+H3: Detecting Different Surfaces

To evaluate hypotheses H2 and H3, we first considered the changing surface task. As the robot was
sliding an object between two surfaces, one surface was randomly changed to that with a different
value of friction. Starting with no knowledge about the surfaces, the robot incrementally identified
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Figure 4: Performance when learned models are used for distinct modes. Top: position tracking;
Bottom: variation in controller stiffness.

each dynamic mode and built a dynamics model for each mode (i.e., each distinct surface) while
operating briefly under high stiffness. Once it learned the dynamics models for the different modes,
it responded to subsequent mode changes by using the corresponding model.

Figure 5: Modes detected and their confidence values. The numbers on top of a peak (in green)
indicate the confidence with which the transition was identified. The number below a peak (in red)
shows the mode with the next highest confidence. “N” indicates a transition to a new mode. The
red vertical lines indicate the actual occurrences of mode transitions.

Figure 5 summarizes the results over one trial of this experiment. We observe that the framework
is able to identify transitions to existing or new modes with high confidence. In each instance, the
second best choice of mode is associated with a much lower value of confidence. The results also
indicate that the algorithms and the underlying feature representation make the performance robust
to changes in the direction of motion, i.e., a new mode is not identified when the manipulator moves

10



HYBRID MODELS FOR VARIABLE IMPEDANCE CONTROL OF MANIPULATION

Figure 6: Performance for changing-surface task. Top: variation of controller stiffness. Bottom:
absolute error in trajectory tracking. The spikes during trajectory tracking correspond to a tempo-
rary, incorrect feed-forward prediction by the previous model after the guard regions.

over a previously seen surface in a new direction. There is some confusion between surfaces 2 and
3, but this is because of the similarity in their friction values.

Figure 6 shows the absolute error in trajectory tracking during this task and the corresponding
stiffness parameters used by the controller. The peaks in the error plot correspond to the sudden
change of surface. The prediction made by the model of the previous mode caused a momentary
loss of trajectory tracking ability, until the robot switches to the high-stiffness mode for identifying
the current mode. Once the robot identified the current mode, it used lower stiffness to complete the
task. As discussed above, switching to a previously learned mode requires a much shorter period of
high stiffness (and expends much less energy) compared with learning a new dynamics model from
scratch. These results support hypothesis H2, and to some extent H3.

3.3 H2+H3: Different Types of Contacts

Next we conducted experiments with the changing contact type task. The robot had to slide an
object along a trajectory on a surface under three different types of contacts—see top of Figure 7.
The robot started with no prior knowledge of the task except the motion pattern provided by the
single demonstration of the task. During each trial, the robot approached the table to execute a
particular type of contact while maintaining a normal force of 10N . Contact with the surface triggers
a transition; the robot proceeds to slide the object (in its grip) along the surface with the force of
10N . This is initially done at a high stiffness if it is learning a new dynamics model, or at a suitably
low stiffness if the transition is to an existing mode/model.
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Figure 7: Initial trial of the changing contact type task. Top: The different contacts are shown such
that the end-effector’s motion is towards the right; Middle: The forces measured along the direction
of motion; Bottom: Torques measured about axis parallel to surface and perpendicular to direction
of motion. The spikes in the measurements correspond to contact transitions; dashed vertical lines
(in brown) indicate when the framework has managed to learn a reliable dynamics model.

Figure 7 summarizes the learning of a model for each contact type, along with the variation
of end-effector force and torque measured along the axis that is most affected by the motion. We
observe that separate models are learned for the three contacts with significant confidence.

Next, Figure 8 shows that when the learned dynamics models were tested on the same task after
changing the sequence of contacts, the robot was still able to recognize the contact modes accurately.
The second plot in the figure shows the end-effector forces predicted by the dynamics model for the
contact mode. The feed-forward term is used and revised online when the model is reliable, but the
term is zero when the robot is yet to identify the mode. Similarly, the stiffness parameters of the
impedance controller are varied according to the prediction error of the dynamics model; recall that
a high stiffness is used when the dynamics model has not been learned.

Next, Figure 9 demonstrates the robustness of the framework to motion along a direction dif-
ferent from that used during training. The feed-forward model predictions and the corresponding
variable impedance behavior for one of the trials is shown, along with the model chosen with the
highest confidence (bottom of the figure). The identified modes match the true modes in all cases.
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Figure 8: Testing previously learned dynamics models when the contacts appear in a different se-
quence. Top: Torques measured about the axis parallel to surface and perpendicular to direction
of motion; The spikes in the measurements correspond to contact; Middle: End-effector forces
predicted by the forward model for the current mode; Bottom: Variations in the controller stiffness
due to the predicted forces.

The framework was then tested for the same task and contacts while applying a different con-
stant normal force on the surface as the manipulator was sliding over the surface. The results are
summarized in Figure 10. We observe the ability to identify modes and adapt the existing models
of any given node during one trial of experimental evaluation. These results match those in Table 2;
although the confidence associated with the modes is a little lower and the time taken to recognize
the modes is a little more when the normal force is changed, the framework is still able to recognize
the modes correctly and the task is completed successfully using variable impedance control. The
lower confidence can be attributed to the kinetic friction assumption (i.e., that µ = F/R) being
unrealistic in many real world tasks. Note that the results in Figures 7–9 also indicate that the time
taken to recognize the modes will be longer if the modes under consideration are similar, e.g., modes
1 and 3 are similar in these experiments. These results support hypotheses H2 and H3 and indicate
the need for further research on the choice of features used to represent the modes.
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Figure 9: Testing the previously learned dynamics models for motion in a different direction. Top:
Torques measured about the axis parallel to surface and perpendicular to direction of motion; Mid-
dle: End-effector forces predicted by the forward model for the current mode; Bottom: Controller
stiffness variation due to the predicted forces.

4. Related Work

Many methods have been developed to address the learning and control problems in robot manipula-
tion (Kroemer et al., 2019), especially methods based on reinforcement learning (RL) (Stulp et al.,
2012) and those combining deep networks and RL for learning flexible behaviors from complex
data (Andrychowicz et al., 2018; Hausman et al., 2018; Lowrey et al., 2018). These data-driven
methods require large labeled datasets, often collected through multiple repetitions of the task by
the robot. These requirements are difficult to satisfy in practical domains, especially on a physical
robot. Also, the training process optimizes several parameters and the internal representations and
decision making mechanisms are opaque, making it computationally expensive to learn action poli-
cies and difficult to transfer them to new tasks. Although sim-to-real strategies have been developed
to reduce the need for training on real robots, aspects such as the dynamics of rigid bodies with
friction are too complicated to be modeled in a real-time dynamics simulator (Johnson et al., 2016).
Also, these methods are not well-suited for a hybrid system formulation because they implicitly or
explicitly consider a single model for the entire manipulation task (Kroemer et al., 2019).
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Figure 10: Testing the previously trained transition model with a different normal force (20N instead
of 10N). Top: Torques measured about axis parallel to surface and perpendicular to direction of
motion; Middle: End-effector forces predicted by the forward model for the current mode; Bottom:
Controller stiffness variation due to the predicted forces.

RL and optimal control methods for robot manipulation often assume the task dynamics are
smooth. The application of learning strategies to a hybrid systems formulation of robot control has
been limited (Lee et al., 2017), with many methods focusing on bipedal locomotion (Nakamura
et al., 2007). Planning methods for manipulation often take the dynamics of manipulation into ac-
count (Toussaint et al., 2018; Jain & Niekum, 2018), but they assume that models of the system, and
knowledge of actions and modes, are known a priori. Unlike other online learning methods (Yang
et al., 2011), our framework does not require a periodically repeating trajectory, and it does not learn
a time-series of controller parameters to be used in a repeatable dynamic environment. Instead, our
framework learns to adapt its controller based on the current dynamic forces experienced.

Many methods have shown the benefits of incorporating modes or phases in the design of con-
trollers (Romano et al., 2011), and many methods learn controllers for such multi-phase tasks (Buşo-
niu et al., 2018; Koval et al., 2016). Different strategies for sequencing motion primitives have also
been used to solve manipulation tasks, but they assume the existence of a library of modes or motion
primitives or segment a sequence of primitives from human demonstrations (Niekum et al., 2013).
This makes the learned policy dependent on the specific movements and their sequence.
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Ground Truth
Detected Mode Contact 1 Contact 2 Contact 3

Contact 1 83 9 16
Contact 2 2 88 1
Contact 3 14 2 79

New Mode 1 1 4
Ground Truth

Detected Mode Contact 1 Contact 2 Contact 3
Contact 1 81 10 17
Contact 2 3 86 1
Contact 3 15 2 77

New Mode 1 2 5

Table 2: Confusion matrix of average confidence (%) across 10 trials associated with mode recogni-
tion based on the learned dynamics models for three types of contacts. Top: Normal force of 10N ;
Bottom: Normal force 20N .

In a departure from existing work, our framework for changing-contact manipulation draws
inspiration from human motor control. It significantly expands approaches that incorporate modes
in the design of controllers to support (a) automatic recognition of modes and identification of new
modes invariant to the direction of motion and magnitude of the applied force; and (b) incremental
learning and revision of dynamic models for variable impedance control in the individual modes.

5. Conclusions and Future Work

This paper described a computational framework inspired by human motor control, which formu-
lated changing-contact manipulation tasks as a piece-wise continuous, hybrid system. Any such
task is considered to be made up of discrete modes with continuous dynamics and distinct control
strategies. Each mode comprises a forward (predictive) model, a hybrid force-motion (feedback)
control law, and a relevance condition. The use of different representations for a mode’s components
enables the robot to automatically, reliably, and efficiently create clusters for the modes of the task,
identify mode changes, and incrementally learn and revise dynamics models for the modes. Unlike
data-driven methods that require many labeled training examples, our framework is able to learn
and revise the dynamics model for each observed mode from very few examples. Unlike existing
control methods for related manipulation tasks, our method is not limited to the sequence of modes
seen during demonstrations, and it does not require prior information about the number of modes in
the task (Lee et al., 2017; Niekum et al., 2013). Experimental results on a physical robot manipula-
tor indicate the ability to reliably follow the desired motion trajectory on a surface in the presence
of changing surface friction, type of contacts, and applied force, invariant to changes in the motion
direction and magnitude of applied forces. In addition, the framework formulates the manipulation
problem such that it can be applied to different changing contact tasks such as peg-insertion, block
pushing, stacking, etc. Also, the approach based on hybrid models may also be applied to other
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dynamics and control problems such as mobile robot navigation exploring and mapping different
terrains, and aerial robots performing surveillance of different environments.

Our future work will address the limitations of the current framework and explore new direc-
tions. For instance, the current strategy of switching between modes (and dynamics models) is not
smooth, with occasional spikes in sensor measurements in the guard (i.e., transition) regions. Also,
we will explore tasks with many more modes, which may potentially require a functional formu-
lation over the set of possible modes. Another direction for future research is to investigate other
examples of changing-contact manipulation tasks, and additional factors that influence such tasks.
In addition, it would also be interesting to explore the automatic selection (or learning) of the feature
representation suitable for the modes of each changing-contact manipulation task. The longer-term
objective is to enable reliable, efficient, and smooth learning and control in the context of a robot
manipulator performing complex assembly tasks with multiple objects in complex domains.
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