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Abstract 

Real-time agents with a limited set of primitive actions produce complex behaviors by choosing the 

parameters and timing of the actions appropriately. These parameters and timings are often based 

on plans that are specified or learned. The planning process is usually separate from the anomaly 

and goal management process and hence managing interactions between the two processes become 

complex. This position paper discusses how task-specific planning knowledge and task-general 

knowledge for anomaly and goal management can interact in the time-sensitive Active logic 

framework to produce, monitor and adjust task-oriented agent behaviors in real-time. 

 1. Introduction 

The behavior of task-oriented, goal-directed agents tends to rely on explicit sophisticated plans 
generated by planning systems. Presented with a task, a planning system deliberates to choose a 
plan that has been learned or stored. Having chosen a plan, a goal-driven agent executes the plan 
while simultaneously optimizing the execution to meet the agent’s goals. For real-time agents, the 
conditions that render a plan viable may no longer hold as the agent performs a task. Additionally, 
since time is not at a standstill during agent deliberation, the time spent on planning affects the time 
available for performing actions. Hence, checking preconditions, adopting goals, detecting 
conflicts, and choosing actions, all need to be interleaved in time for agents to remain responsive 
to changes and exhibit effective real-time behavior. 

Though managing active goals dynamically is a core foundation of goal-driven autonomy 
(Muñoz-Avila, 2018; Molineaux et al., 2010), implementations (Weber et al., 2010; Beetz, 2002; 
Shivashankar et al., 2013) often separate the planner from the controller that manages goals and 
anomalies. This leads to complex plan-repair and re-planning (Coddington, 2006; Dannenhauer & 
Munoz-Avila, 2015) when conditions change. Real-time agents situated in dynamically changing 
environments cannot afford complicated plan-repair and re-planning while remaining responsive 
to the anomalies that occur in their environments. Interleaving learning, planning and execution 
can produce real-time behaviors (Jaidee et al., 2013, Ghallab et al., 2016). 

In this position paper, we discuss a methodology based on a time-situated framework – Active 
logic (Elgot-Drapkin & Perlis, 1990) – that integrates the planning, anomaly processing and goal 
management within the same reasoning process. The methodology uses a hierarchical goal structure 
to represent the agent’s task-specific knowledge. The goal hierarchy is akin to the task structures 
that planners based on hierarchical task networks (Georgievski & Aiello, 2015) make use of. The 
goal hierarchy gives a structural decomposition of how a task-request can be decomposed into 



D. JOSYULA, A. HERRON, AND K. M’BALE 

2 
 

goals, subgoals and actions that the agent can initiate on its own. The methodology uses a set of 
control rules that manage anomalies and goals to provide real-time behaviors in accordance with 
changes in the environment and the passage of time.  

 2. Active Logic and Task-Oriented Agency 

We use task to denote the activity assigned to an agent by an external agent (human). The agent 
adopts goals internally to perform tasks. Thus, the task of retrieving a book from the living room 
may result in adopting a goal to move to the living room and another goal to locate the book. For 
real-time behavior, an agent must keep track of its progress towards these goals and respond to 
changes as time and situations evolve.  

With reasoning proceeding temporally in a step-by-step manner, Active logic (Perlis et al., 
2017) provides a mechanism to integrate changes in the environment, passage of time and progress 
towards goals into the ongoing inferences. Active logic’s ability to detect contradictions and 
distrust contradictory formulas helps to manage conflicting information (e.g., contradictory goals 
and prerequisites). The non-monotonic nature of Active logic allows formulas derived in one step 
to be removed or distrusted in a later step when they no longer hold. Thus, without complex re-
planning, an agent can adopt goals as their prerequisites become true in the environment and drop 
them as they are fulfilled or become unnecessary or unfulfillable.   

 Active logic allows defining rules for observation processing, goal formation, action selection, 
and anomaly detection as data that can be manipulated the same way as the task-specific planning 
knowledge. This means that Active-logic based agents have the potential to not only exhibit real-
time behavioral changes when task contexts or environments change but they can also cause 
changes to the control processes for anomaly and goal management in real-time. Active-logic based 
reasoners (Purang, 2001) have been previously used to provide interleaved planning and execution 
(Nirkhe, 1995) in task-oriented agents (Josyula, 2005). This paper extends the previous framework 
with task-specific goal hierarchy structures to manage more complex tasks. 

3. Schema for Task Specifications 

We define a general schema for specifying task-related knowledge as a goal hierarchy similar to 
the hierarchical goal network (Shivashankar et al., 2013), within the Active logic framework. The 
top level of the goal hierarchy is the task and the bottom level has the primitive actions that the 
agent can perform. Complex and primitive goals form the internal nodes in the hierarchy. We use 
the following notation to define the schema:   

• T denotes the set of tasks and G denotes the set of goals that can lead to task completion.  
• A lower-case letter denotes an element of the set denoted by its equivalent upper-case letter. 
• Goals are either primitive PG or complex CG, i.e., G=CG∪BG. A complex goal is made of 

subgoals which may be primitive or complex, whereas a primitive goal is made exclusively 
of actions the agent can execute. Each complex goal cg є CG is a set, where cg={x ∣ x є G}.  
Each complex goal may be an ordered or an unordered set.  

• A is the set of action predicates associated with the primitive actions of the agent. 

We now define the task specification schema as TSS = {P, AG, GG, R, S, U, V, Z} for each task, 
where each of the components are as follows: 
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• P is the purpose of a task, where 𝑃: 𝑇 → 𝐺. 
• AG is a mapping from primitive goals to an action, where 𝐴𝐺: 𝑃𝐺 → 𝐴.  
• GG shows the subgoal composition of each goal, where 𝐺𝐺: 𝐶𝐺 → 𝐺, is a mapping from a 

complex goal to another primitive or complex goal. 
• R specifies the preconditions for actions, where 𝑅: 𝐴 → 𝐹 and 𝑎 є 𝐴 is mapped to 𝑓 є 𝐹 if 

the agent must know f before it can execute the action associate with a.  
• S specifies the preconditions for goals, where 𝑆: 𝐺 → 𝐹 and 𝑔 є 𝐺 is mapped to 𝑓 є 𝐹, if 

the agent must know f before it can adopt the goal g. 
• U denotes the post victory conditions that indicate the success of actions, where 𝑈: 𝐴 →

𝐹 and a is mapped to f if f is a general template for the expectation e that must hold if a 
succeeds. 

• V denotes the post victory conditions that indicate the success of goals, where 𝑉: 𝐺 → 𝐹 
and g is mapped to f if f is a general template for a condition that must hold if g succeeds. 

• Z denotes the optimization conditions for actions, where 𝑍: 𝐴 → 𝐹 and 𝑎 є 𝐴 maps to 𝑓 є 𝐹 
if an instantiation of f provides parameter values to optimize the action a.  

4. Active-logic based Rule Definition Language 

The control rules for agent behavior are specified in a generalized first order language based on 
Active logic. The relevant parts of the language necessary to understand the rules specified in 
Section 5 is described next.  

Forward-if rules: These are generalized modus ponens rules with the caveat that the 
consequent is derived one step after all the antecedents become true.  Once a consequent is derived, 
it is added to the KB and takes part in other subsequent inferences. 

Introspection predicates: Special predicates for introspection used in the rules and their 
explanation are given below in Table 1.   

Table 1: Introspection predicates 

𝑖𝑛𝐾𝐵(𝐾) True if an instantiation of K exists in the KB; False otherwise  

~𝑖𝑛𝐾𝐵(𝐾) True if no instantiation of K exists in the KB; False otherwise    

𝑓𝑖𝑛𝐾𝐵(𝐿) True if ∀ 𝑙 | 𝑙 є 𝐿 and an instantiation of l exists in the KB; False otherwise   

~𝑠𝑖𝑛𝐾𝐵(𝐿) True if ∃ 𝑙 | 𝑙 є 𝐿 and an instantiation of l does not exist in the KB; False otherwise    

5. Task General Control Rules  

The key control rules for goal formation and anomaly management are listed. Predicates start with 
lowercase. Variables start with uppercase. Comma between predicates indicates the and operation.  

1. If the current time is N and current task is T, then note the time that the task started. 

𝑡𝑎𝑠𝑘(𝑇), 𝑛𝑜𝑤(𝑁) → 𝑡𝑎𝑠𝑘𝑆𝑡𝑎𝑟𝑡𝑒𝑑(𝑇, 𝑁). 

2. If the purpose of task T is goal G and success conditions V of goal G are not met, then form goal G 

𝑡𝑎𝑠𝑘(𝑇), 𝑝𝑢𝑟𝑝𝑜𝑠𝑒(𝑇, 𝐺), 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝐺, 𝑉), ~𝑠𝑖𝑛𝐾𝐵(𝑉) → 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐺𝑜𝑎𝑙(𝐺) 

3. Adopt subgoals to accomplish current goal.  
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𝑔𝑜𝑎𝑙(𝐺), 𝑠𝑢𝑏𝑔𝑜𝑎𝑙(𝐺, 𝑆𝐺), 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝑆𝐺, 𝑉), ~𝑠𝑖𝑛𝐾𝐵(𝑉), 𝑝𝑟𝑒𝑟𝑒𝑞(𝐺, 𝑆), 𝑓𝑖𝑛𝐾𝐵(𝑆)
→ 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐺𝑜𝑎𝑙(𝑆𝐺). 

4. If the preconditions for the goal are known, then assert goal. 

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐺𝑜𝑎𝑙(𝐺), 𝑝𝑟𝑒𝑟𝑒𝑞(𝐺, 𝑆), 𝑓𝑖𝑛𝐾𝐵(𝑆) → 𝑔𝑜𝑎𝑙(𝐺). 
5. Attempt actions to accomplish a goal if the agent is not currently doing another action.  

𝑔𝑜𝑎𝑙(𝐺), 𝑎𝑐𝑡𝑖𝑜𝑛(𝐺, 𝐴), ~𝑖𝑛𝐾𝐵(𝑑𝑜𝑖𝑛𝑔(𝐴1)), 𝑝𝑟𝑒𝑟𝑒𝑞(𝐴, 𝑅), 𝑓𝑖𝑛𝐾𝐵(𝑅), 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒(𝐴, 𝑍),
𝑓𝑖𝑛𝐾𝐵(𝑍) → 𝑑𝑜(𝐴))). 

6. Mark goals as fulfilled if their success conditions are met. 

𝑔𝑜𝑎𝑙(𝐺), 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝐺, 𝑉), 𝑓𝑖𝑛𝐾𝐵(𝑉), 𝑛𝑜𝑤(𝑁), ~𝑖𝑛𝐾𝐵(𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝐺, 𝑉, 𝑁1)) → 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝐺, 𝑉, 𝑁). 
7. Drop the goals that have an associated fulfilled goal. 

𝑔𝑜𝑎𝑙(𝐺), 𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑(𝐺, 𝑉, 𝑁) → 𝑑𝑟𝑜𝑝(𝑔𝑜𝑎𝑙(𝐺)). 
8. Once the success conditions of a task are met, note that the task is completed.  

𝑡𝑎𝑠𝑘(𝑇), 𝑝𝑢𝑟𝑝𝑜𝑠𝑒(𝑇, 𝐺), 𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝐺, 𝑉), 𝑓𝑖𝑛𝐾𝐵(𝑉), 𝑛𝑜𝑤(𝑁), ~𝑖𝑛𝐾𝐵(𝑡𝑎𝑠𝑘𝐷𝑜𝑛𝑒(𝑇, 𝑁1))
→ 𝑡𝑎𝑠𝑘𝐷𝑜𝑛𝑒(𝑇, 𝑁).  

9. Drop tasks that are completed. 

𝑡𝑎𝑠𝑘(𝑇), 𝑡𝑎𝑠𝑘𝐷𝑜𝑛𝑒(𝑇, 𝑁) → 𝑑𝑟𝑜𝑝(𝑡𝑎𝑠𝑘(𝑇)). 
10. Once a task deadline has elapsed, no need to hold on to goals associated with that task. 

𝑜𝑣𝑒𝑟𝑡𝑖𝑚𝑒𝐴𝑡(𝑇, 𝑁), 𝑝𝑢𝑟𝑝𝑜𝑠𝑒(𝑇, 𝐺), 𝑔𝑜𝑎𝑙(𝐺) → 𝑑𝑟𝑜𝑝(𝑔𝑜𝑎𝑙(𝐺)). 
11. When actions are initiated, create associated expectations. 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠(𝐴, 𝑈), 𝑑𝑜𝑖𝑛𝑔(𝐴) → 𝑒𝑥𝑝𝑒𝑐𝑡(𝐴, 𝑈). 
12. If an expectation for action fails, then note that the action failed. 

𝑑𝑜𝑛𝑒(𝐴), 𝑒𝑥𝑝𝑒𝑐𝑡(𝐴, 𝑈), ~𝑖𝑛𝐾𝐵(𝑈) → 𝑓𝑎𝑖𝑙𝑒𝑑(𝐴). 

6. Agent Architecture 

This section presents the architecture of an agent based on the framework described above. The 
environment that the agent is situated in has objects and other agents that it can perceive. An agent 
has two methods – do() to perform actions and get() to receive observations. Agent reasoning and 
behavior proceeds by querying and modifying the agent’s current KB as illustrated in Figure 1.  

An agent’s KB has several parts. The Object Knowledge Base (OKB) stores the information 
about the objects that the agent perceives. The Task Knowledge Base (TKB) stores the definitions 
of the tasks that the agent can perform as goal hierarchies using the task specification schema (TSS) 
defined in Section 3. The Rules Knowledge Base (RKB) stores the task general rules of control 
defined in Section 5. In Figure 1, RKB forms the unshaded shapes and arrows. The Derived 
Knowledge Base (DKB) stores formulas that are derived by applying inferences using rules in the 
RKB. The Expectations Knowledge Base (EKB) is a subset of DKB that stores formulas that are 
expected to become true when an action succeeds. The Performance Knowledge Base (PKB) is a 
subset of TKB and it stores optimization parameters that can improve action performance. 

The agent receives a task request through its interface. The agent queries the TKB to determine 
if it knows how to perform the task. A task is mapped to a main goal through the task’s purpose. If 
the TKB contains the goal-hierarchy definition of the task, the agent identifies the purpose of the 
task and applies Rule 2 to initiate a goal. If the TKB does not contain sufficient information about 
the requested task, the agent asks for help. A goal (complex) is composed of other goals and actions. 
The agent consults its TKB and OKB to select appropriate actions to fulfill its goals. An action 
invokes the agent’s do() method with the appropriate action parameter to perform that action. As 
an action is initiated, the agent uses Rule 11 in its RKB to project the expected state of the OKB or 
DKB once the action is done. The expectation is added to EKB at the next time step. The agent’s 
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get() method allows it to perceive the result of an action as a change to one or more objects that it 
keeps track in its OKB. The agent compares its current DKB and OKB contents with that in the 
EKB to note expectation violations and failed actions.  

A learner takes the contents of OKB and optimize templates from the TKB to provide 
optimizing parameters for agent actions. These optimizing parameters that are produced by the 
learner are stored in PKB. The agent uses the information from PKB as it applies Rule 5 in the 
RKB to invoke an action. In this architecture, learning proceeds hand-in-hand with reasoning and 
acting, and hence changes in OKB and DKB can automatically change the optimizing parameters 
for different actions in the PKB.  

Contradictions that occur anywhere in the Active logic KB are immediately noted and the 
corresponding formulas are distrusted. Also, OKB evolves with the agent’s current perceptions by 
removing formulas that no longer hold true. Since all these changes become part of the evaluation 
in Active logic to determine the formulas that hold true in the next time step, the resultant agent 
has the potential to be responsive to real-time changes in the environment. 

7. Conclusion 

Agents need general-purpose methods that can produce real-time behaviors for them to work 
outside of laboratory settings in a variety of environments with different task contexts. We 
discussed an approach to specify task-general control knowledge for managing goals and anomalies 
as well as task-specific hierarchical knowledge in a unified time-sensitive Active logic framework 
that allows easy manipulation of both the control mechanism and task-specific knowledge to 
produce real-time behaviors. The approach also presents preliminary work on how optimization 
templates can be specified to integrate learned parameters with the ongoing reasoning for 
optimizing action performance. The approach provides agents the ability to respond to changes in 

Figure 1: Agent Architecture (Unshaded shapes and arrows form RKB) 
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the environment, integrate new optimizations learned from experience for performing actions, and 
handle contradictory information, in real-time. 
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