Complexity of Agents in Non-stationary Environments:
A Partial Computational Model

Vadim Bulitko BULITKO @UALBERTA.CA
Department of Computing Science, University of Alberta, Edmonton, AB, CANADA

Valeriy K. Bulitko GBOOLY @ GMAIL.COM
Centre for Science, Athabasca University, Athabasca, AB, CANADA

Abstract

There is an ongoing debate on importance of human-inspired problem-solving methods in Artificial
Intelligence. Thus it is of interest to consider problem-solving needs of any intelligent agent. In our
previous work we proposed that agent’s cognitive complexity should rise as the agent’s environment
changes more rapidly. We supported our conjecture with a theory but offered no specific model. In
this paper we follow up with a simple computational which illustrates two lowest cognitive levels
in our theory. To do so we represent agents symbolically as arithmetic formulae. In line with our
previous work, the agents survive by finding a fixed point. We show that while the first cognitive
level of our theory can be reached easily by individual agents. The second cognitive level in the
theory can then be reached by treating the whole population as a single cognitive entity.

1. Introduction

The field of Artificial Intelligence (AI) was once inspired by broadly applicable human problem-
solving techniques yet modern Al techniques tend to be performance-driven and use human-
independent methods (Langley, 2018a). A natural question is thus whether there are any problem-
solving methods needed for any intelligent agent. The answer may depend on the problem an agent
sets out to solve and the context of the said problem. In our previous work (Bulitko & Bulitko,
2019) we narrowed the question by assuming that an agent’s only task is to survive in an Artificial
Life (A-life) style setting (Wilensky & Rand, 2015). We then proposed, in the terminology of Lan-
gley (2018b), a basic theory that linked agent’s survival to finding a steady-state solution which is
a fixed point in the agent-environment interaction (detailed below in Section 2). We argued that a
non-stationary environment changing more rapidly would call for cognitively more complex agents
and described four possible classes of such agents. The conjecture has seen support from biological
evolution leading to emergence of human intelligence (Calvin, 2002).

This paper follows our previous work and proposes a concrete computational model to illus-
trate our abstract theory. The model enables us to conduct computational experiments in which
agents have their control/behaviour policy encoded genetically and evolve over time. To keep our
model and the findings human-readable we chose to use a simple symbolic representation of agent
behaviour policy: a space of arithmetic formulae over a compact context-free grammar. We then

V. BULITKO, V. K. BULITKO

show how a higher cognitive complexity is called for in more rapidly changing environment. In
doing so we see how the first two cognitive levels in the theory can be seen with an A-life evolution.
Furthermore, we demonstrate that a population of simpler agents can be collectively viewed as a
more cognitively complex single agent.

The rest of the paper is organized as follows. First, in Section 2 we briefly recap our previously
proposed abstract theory. We then present the primary contribution of this paper, our computational
model, in Section 3. Empirical results are found in Section 4, followed by a discussion of current
shortcomings and future work in Section 5. The paper is concluded in Section 6.

2. A Recap of Our Theory

We previously considered cognitive agents whose task is to survive in an environment by solving
the problems it presents (Bulitko & Bulitko, 2019). Specifically, at time ¢ the agent ®, perceives
its problem as P; and proposes a solution S;: ®,(F;) = S;. The environment @, then reacts to the
solution by producing the next problem for the agent to solve: ®.(.S;) = P71 and the cycle repeats.
Agent survives if and only if finds a steady-state solution: a fixed point of the composition ®, o O.:

De(®a(P)) = P. (D)

A fixed point of ®, o &, provably exists when ®. and ®, can be represented as enumeration
operators with indecies a and e (Rogers, 1987; Bulitko, 1986). Then problems P; and the solutions
Sy are encoded as sets of natural numbers. Furthermore a fixed point can be computed by the agent.

The environment is substantially non-stationary when ®. depends on t, ®.(S¢,t) = Piy1, and
no single fixed point P exists for all ¢. In that case the agent needs to modify its steady-state solution
as the environment changes. Predicting or even tracking changes in the environment may require
additional cognitive abilities in the agent. Thus depending on how rapidly ®. changes we postulated
the following levels of additional machinery that need to be present in the agent.

Level 1: Stationary Environments. In the simplest case ®.(.S¢,) does not depend on ¢ which
allows the agent to either compute its fixed point during its life time or have the fixed-point solution
encoded in its genes.

Level 2: Slowly Non-stationary Environments. When ®.(S;,t) substantially depends on ¢
the agent can observe a sequence of problems and solutions (P;, S;),7 < ¢ during its lifetime and
use it to derive a model of the environment. In terms of the enumeration operators this means
that the agent maps the sequence (P;,S;),i < t to the current operator index e;. Knowing that
®.(S5,t) = D, (5) allows the agent to compute a steady-state solution for the environment as it
exists at time ¢.

Level 3: Rapidly Non-stationary Environments. Note that it takes agent time ticks to collect
enough observations (P;, S;) so that e; can be derived from them. Additional time ticks are then
needed to compute e; given the observations followed by computing a fixed point for ®,0®,,. Thus
if the environment changes rapidly enough by the time the agent has modeled the environment and
computed a steady-state solution for it, the environment will have already changed. In that case we

COMPLEXITY OF AGENTS IN NON-STATIONARY ENVIRONMENTS

proposed that the agent predicts the environment m steps into the future and computes a steady-state
solution not for the current environment but for what it will be by the time such computation is over.

Level 4: Excessively Non-stationary Environments. As we increase the rate of change in
the environment we can reach the point where the agent cannot predict the environment far enough
into the future and accurately enough to compute a fixed point for it. We proposed that in this
scenario the agent needs to find an ecological niche where the environment changes less rapidly
(i.e., a refugia) so that the agent can survive there.

In our previous paper we illustrated the theory with hypothetical examples but did not present a
computational model to go with it. We do so in the next section.

3. Our Proposed Computational Model

There are numerous possible representations of agent’s behaviour policies, including heuristic-
guided agent-centered search (Koenig, 2001) and neural networks (Silver et al., 2016; Graves et al.,
2014, 2016). Likewise, there are a number of methods of evolving such behaviour policies, includ-
ing evolution of heuristic search agents (Bulitko, 2016), reinforcement learning (Sutton & Barto,
1998; Ackley & Littman, 1991) and neuroevolution (Stanley & Miikkulainen, 2002; Such et al.,
2017; Miikkulainen et al., 2017). We strive for simplicity of both our behaviour representation and
its evolution and thus use techniques from recent work by Bulitko (2020).

3.1 Representation of Agent Behaviour Policies

Our intention was to illustrate the theory with a basic, easily human-readable model. Thus, we
picked a simple representation of the environment and the agents. Each problem P presented to the
agent by the environment is encoded by a real number. The agent’s solution S is also a real number.
The agent’s behaviour policy ®, is a function of the environment’s current problem F;. The value
of Sy = ®,(F;) is calculated with a formula generated by the following context-free grammar:

®, - T|U|B 2)
T - Pn 3)
U > V.| @] -2 | @] |]]])

d,)
B > $,+9,|P,—P,| Py Dy o | max{®,, ®,} | min{®,, ®,} | mod(P,,®,) (5)

Here n € {-5,-4,...,0,...,5}. Parentheses are added as necessary when building a formula and
omitted from the grammar above for clarity. If for a given input P, the formula ®, computes a
complex number then its imaginary component is discarded. If for any input value the formulae is
undefined then S; = 0. If S} exceeds an a priori set maximum Sp,ax then it is set to Shax. Likewise,
we lower bound Sy at Spi,. By convention Y mod(x,0) = z. The grammar above defines a space
of all possible agent behaviour policies ®.

V. BULITKO, V. K. BULITKO

3.2 Agent Evolution

A formula representing the environment is fixed while agents’ formulae are created randomly and
evolve over time in a basic simulated evolution. We use an A-life style evolution (Wilensky & Rand,
2015; Ackley & Littman, 1991) which allows us to simulate a life time of each individual agent as a
sequence of problems (P;) the environment presents the agent with and the solutions (.S;) the agent
responds with. This is a finer temporal resolution than in typical evolutionary algorithms which
operate at the level of whole generations (Eiben & Smith, 2015).

Our A-life evolution is implemented by Algorithm 1. Time ¢ advances in discrete time steps
from 1 to ¢y,ax in line 5. The initial population P; of Ny agents is formed randomly in line 2.* Each
initial agent is formed by starting with a syntax tree of a single terminal node (7" in the grammar
above) and mutating it a random number of times. We keep track of each agent’s @, ; energy € ;
which changes over the agent’s lifetime. At birth each agent gets the amount of energy ¢g.

Algorithm 1: Evolution of Agent Behaviours

input : initial population size Ny, maximum simulation time ¢,,,x, mutation rate z,
regularizer \, environment ®., bounds on agent response [Spin, Smax], desired
problem Pjyegireq, minimum survival energy £min, minimum parenting energy
Eparent> €NErgy at birth g

1t<«1

2 form initial population P; < {®, ;} of size Ny
3 forall 1 <4< Npsetey; < gg

4 Pt <0

5 while P; + @ & t < tpnax do

6 ft(_F(’Pt|7NO)

7 fori=1,...,|Pdo

8 Sti < Pai(Pr)

9 Sti < max{Smin, Min{Smax, St} }
10 P < @c(Sti,t)

1 At < |Pii1,i — Plesired|

12 A;}Z <« At,i +)\|(I>a,i|

13 | G e+ fi - A
14 Py < mean; Py
15 | Pr1 < Pi~{Pai € P | €te1,i < Emin}
16 for ©, € {®Py; € Prs1 | €141,i > Eparent) dO
17 clone parent ®, into child ®/, and mutate the latter
18 Pri1 <~ Py U {(I):z}

19 adjust the child’s and parent’s energy
20 t<—t+1

*A population is a multi-set of agent behaviour policies ®,; thus allowing for multiple copies of the same policy.

COMPLEXITY OF AGENTS IN NON-STATIONARY ENVIRONMENTS

At time ¢ the environment presents the same problem F; to all agents in the current population
P;. Each agent ®,; solves P, in its own way by producing the solution S; ; = ®, ;(F;) in line 8.
The environment reacts to the solution by producing the new problem, Py, ; = ®. (S, 1) specific
to the agent ®,; in line 10. Any agent desires to be presented with a problem Plesired-” Thus the
discrepancy between what an agent gets from the environment in response to its action (i.e., P11 ;)
and what the agent desires (i.e., Pyesired) 1S the agent’s loss A ; calculated in line 11.

An agent’s energy level is adjusted in line 13. Each agent gains f; computed in line 6. The
amount f; increases with smaller populations and decreases with larger populations which imple-
ments the notion of a global resource shared by all agents in the population. The specific depen-
dency F' is detailed in a later section. While the energy gain amount is the same for all agents in
the population, energy loss is linked to the agent’s loss A; ; regularized with agent’s size (line 12).
We refer to it as regularized loss and denote it by A} ; henceforth. The agent’s size |®, | is the
number of nodes in the syntax tree that encodes the formula ®, ;. As with biological agents, larger
formulae/brains give the agent a potential for smarter behaviours (i.e., P11 ; can be driven closer to
Plesireq) but use up more energy.

All agents in the population collectively affect the environment. Specifically, line 14 sets the
new global problem P, as the mean of the environment’s individual responses to each agent. Thus
smarter agents help weaker agents drive the global problem P to the desired state Pyesireq Whereas
weaker agents can counteract such progress. As evolution goes on weaker agents tend to face
larger losses which shrink their energy levels. Once an agent’s energy falls below a pre-determined
threshold ey, the agent dies and is removed from the population (line 15).

Agents whose current energy is at least parene and who have reached a child-bearing age give
birth to other agents in line 17. Each parent asexually produces one child which genetically inher-
its the parent’s formula defining the behaviour policy ®,. The genome representing the parent’s
behaviour policy is a syntax tree, encoding a formula. The child’s syntax tree is then randomly mu-
tated by removing, adding and modifying its nodes. The number of such mutations for each child is
drawn from the distribution [0.1 + £(p)| where £(u) is the exponential distribution with the mean
. The result is a new formula representing the child’s behaviour ®/,. In line 18 the child is added
to the population. The child gets the energy €y which is subtracted from the parent’s current energy
level in line 19. Once all children are added to the population the next time step begins (line 20).

4. An Empirical Illustration

We will first demonstrate how A-life produces better agents when the environment is stationary. We
will then gradually make the environment non-stationary, increasing its rate of change. According
to our theory agents in such an environment will need to model the environment to continuously re-
compute their steady-state solution. Our agents are represented by formulae over a simple arithmetic
grammar and lack building blocks, such as memory, to explicitly model the environment. However,

"The original theory did not distinguish any particular fixed point (Bulitko & Bulitko, 2019). We do so in this paper
to make the computational results easier to analyze. The choice to prefer a problem and not a solution is motivated by the
fact that P; can be viewed as the agent’s state while S; can be viewed as the agent’s action in that state. Then the agent
can prefer to be in certain states (e.g., where it collects a resource in an A-life setting (Bulitko et al., 2017)).

V. BULITKO, V. K. BULITKO

the evolution itself is a fixed point solver. Thus, a population of agents considered as a single
cognitive entity can indeed adapt to a non-stationary environment.

4.1 Stationary Environments and Level-1 Agents

Level-1 agents can be born with formulae that respond to a problem P with a solution S as to drive
the next P towards Plyesireq- In this section we assume that the environment is stationary:

VS, t1,to [Pe(S,t1) = P(S,t2)]. (6)
Then we need to solve:

D (D) (Pesired)) = Plesired (7

for a function @ in order to get to the desired fixed point Pyegireq- This is conceptually simple to do
by first solving @ (z) = Pyesired fOr = € [Smin, Smax | and then solving @ (Pyesired) = « for & € ®.
However, our agents lack means to explicitly solve either equation. So the burden of solving falls on
the evolution. Our A-life evolution is indeed set up to reward agents whose ®, approaches ®;, as the
absolute difference A between the environment’s response to the agent’s solution and the desired
fixed point Pyesireq affects the agent’s energy loss. The closer the agent drives the environment to
Pesired, the less energy it losses on each time step, leaving it more energy to survive and reproduce.

The reasoning is supported by the following computational experiments. Consider the evolution
run in Figure 1. The environment is ®.(.S) = 3 — S which has a steady-state solution Pyesireq = 0
with the agent policy @ (P) = 3:

<I>e(q);(Pdesired)) = (De((l);(())) =3 - (I);(O) =3-3=0= Pdesired- (8)

We set all control parameters as per Table 1. Starting with a random population of agent formu-
lae, the evolution produces the following lowest-A} ; agents: ®,(P) = min {3,[4]} at time ¢ = 1,
®,(P) = min{3,4} at time ¢t = 75, ®,(P) = [3] at time ¢ = 273 and finally ®,(P) = 3 at time
t = 392. The corresponding regularized loss is plotted as the curve labeled “lowest A” (Figure 1,
right). Note that the final agent produced by the evolution is the best possible in terms of incurred
lowest regularized loss: A" = |®. (P, (2)) = Piesired| + A|Pa| = |3 =3 = 0] + X = X as the syntax tree
for ®, = 3 is the smallest allowed, with only a single node.

Not only the final agent produced by the evolution has the lowest possible loss but also the
average regularized loss of the population mean; A} decreases (Figure 1, right). This is because the
mean of the solution produced by agents approaches 3 which drives the global problem P produced
by the environment towards Pyesireq (Figure 1, left).

In summary, for a stationary environment ®. the A-life evolution can solve Equation 7 for an
agent policy @, and indeed does so in the simple example we walked through above.

4.2 Non-stationary Environments and Level-2 Agents

Suppose now that the environment is non-stationary (i.e., Condition 6 does not hold):

3S7t17t2 [(pe(sytl)iq)E(SﬂfQ)]' (9)

COMPLEXITY OF AGENTS IN NON-STATIONARY ENVIRONMENTS

35} st T —lowest A'| |
mean A’
T £ ———— linear fit
AT A -
0 25) Hu%w”w i \/
s Jﬂﬁw :
=] 21/ !
@ ; P
< -—-~P|O i [}
o 15 —— P desired 3
e mean S
[@) 1
Ks
o
a 05
ob - AT
0.5 0 e
0 100 200 300 400 500 0 100 200 300 400 500
Time Time

Figure 1. Left: evolution of environment’s problem P and the agent’s solution S. The line P | 0 represents
the environment problem P when S = 0. Right: mean and lowest regularized losses incurred by the agents.

Table 1. Parameters used for the evolution in Figure 1.

Parameter | Value

initial population size Ny =100
maximum simulation time tmax = 500
mutation rate pw=1

regularizer A=0.1

bounds on S [-10,10]

desired problem Piesirea =0
minimum parenting age 5
minimum parenting energy Eparent = (D
minimum survival energy Emin = 10
energy at birth gp =50

energy gain | F'(N, Ny) :1+20(1—10(N—%)),0(x) =1

Then it may not be possible to solve:
<I>e((I);(Pdesired)a t) = Pdesired (10)

for an agent policy ®; if it lacks as the input.* To illustrate, consider ®(S,t) = sin % — S which

has the period of 1000 with respect to . The dependence on ¢ precludes any constant solution z to

*Note that Condition 9 does not preclude ®. from being time-insensitive for some values of S. For instance,
®.(S,t) = Ssint is insensitive to ¢ when S = 0. Thus, it is possible that @} (Pyesirea) produces such S which makes
Vi, to [Pe(D) (Puesied), t1) = Pe (P} (Puesied), t2)]. We consider this to be a weak non-stationarity of ®. and do not
take advantage of it.

V. BULITKO, V. K. BULITKO

®.(x,t) = 0. Since for any @, € ® the agent’s output P, (Pyesired) = P (0) is a constant no function
&, can make Pyegireq a fixed point of @ (P, (Pesired),t) = Pdesired for all t.

Our theory in Section 2 suggested that non-stationary environments call for at least level-2
agents which can observe the environment and solve for a fixed point needed for the current en-
vironment. As the environment changes a new solution will be needed and so on. This paper’s
computational model confines the agent behaviour to simple formulae which lack any means to ob-
serve the environment and repeatedly solve it for a fixed point. However, an evolving population
of agents can perform the same function. Indeed, as we demonstrated in Section 4.1, the A-life
evolution itself can solve @ (P (Pyesired)) = Plesired for the agent formula @ € ®. If &, changes
over time then the evolution will produce as series of such formulae. Thus, in our computational
model we can view the whole population as a single level-2 agent.

To illustrate this reasoning empirically we will start with a mild non-stationary environment.
There the rate of change with ¢ is low enough that a level-2 agent has enough time to observe the
environment and solve it for a fixed point before it changes again. When our level-2 agent is a
population of level-1 agents then evolution needs to be fast enough to solve for a fixed point before
the environment changes. Consider the non-stationary environment ®(S,¢) = 3round(sin 535) —
S. Tt changes slowly in ¢ (the period is 4000) and it also changes in a step-like manner due to
rounding to an integer. Thus it is constant in ¢ on each of the steps which gives the evolution time
to solve it for a fixed point.

P
3 A et 45t lowest A
PId ired } I\ AHﬂ —mean A’
e esire (YA — ——— linear fit
L I |]
25 mean's " ‘
| |

Problem P / Solution S

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Figure 2. Left: evolution of environment’s problem P and the agent’s solution S. The line P | O represents
the environment problem P when S = 0. Right: mean and lowest regularized losses incurred by the agents.

Figure 2 shows evolution results. The parameters are the same as before (Table 1) but we

doubled the maximum simulation time: ¢y = 1000. The four steps of 3round(sin #50) are

clearly visible as P | 0 (Figure 2, left). For each step the evolution shapes its population towards
driving P to Pyesired = 0 (the curve labeled P in the left subplot). This is achieved by increasing

the agents average response S (“mean S” in the subplot). Correspondingly the average regularized

COMPLEXITY OF AGENTS IN NON-STATIONARY ENVIRONMENTS

loss A’ drops gradually within each step and spikes when the environment abruptly changes at the
beginning of the next step (Figure 2, right). The best linear fit remains approximately flat which
indicates that evolution is able to keep up with the non-stationary environment.

Looking at the lowest-regularized-loss agent formulae found we see that they match the value
of the first term in ®(S,¢) = 3round(sin 5355) — S (i.e., @(0,t)) as shown in Table 2. The best
agentatt =11is ®,(P) = [\/—_3] whose real part is 0, matching the first step of 3 round(sin #50 .
The agent’s regularized loss is |0 — 0| + A|®,| = 0.3. The second step begins at ¢ = 107 when @, (0, t)
switches from 0 to 1. The evolution responds with ®, = \/1 which gives the loss A = 0 and the
regularized loss A’ = 0.2. Evolution improves on it at time ¢ = 320 by getting rid of the unnecessary
square root. The new agent ®, = 1 drives A’ to 0.1 — the best possible value. At time ¢ = 334 the
next step begins with the rounded sine rising to 2. The evolution matches it with ®, = /4 which it is
unable to simplify during the step. The final step begins at ¢ = 628. It is tracked with ®, = |3| which
is improved upon at ¢ = 794 with &, = 3. In summary, the environment changed slowly enough for
the evolution to solve for the desired fixed point and reach the loss of 0 on all steps. Furthermore,
on two out of four time steps the evolution found the most compact formulae for it.

Table 2. Evolution tracking changes in the non-stationary environment ®.(S,¢) = 3round(sin)-S.

i
2000

Timet | ®.(0,t) | Lowest regularized loss agent | Its A’

1 0 [V=3] 0.3
107 1 V1 0.2
320 1 1 0.1
334 2 V4 0.2
628 3 |3| 0.2
794 3 3 0.1

Speeding up the rate of change in ®. gives evolution less time to find ¢, which leads
to the desired fixed point Pjyesireq- Indeed, evolving agents for the environment ®.(S,t) =
3round(sin 2”—&)) — .S which changes 10 times faster tends to keep the lowest regularized loss higher
(Table 3, tmax = 100). This is because the evolution has less time to find more compact formulae.
Note that it still manages to find a fixed point for each of the four steps.

Table 3. Evolution tracking changes in the non-stationary environment ®.(S,t) = 3round(sin 7t&) - S.

Timet | ®.(0,t) | Lowest regularized loss agent | Its A’

1 0 9 0.3
11 1 I[1]| 0.3
34| 2 151 0.6
63 3 -3 0.2

If we make the environment change even faster with ¢ by setting ®. (.5, t) = 3round(sin 2t) -5
then the evolution fails to find a fixed point for each of the steps, let alone a compact formula for it

2
(Table 4, tax = 10). Indeed for the last step, ®.(0,t) = 3 the best agent found was @, = (%) N

9

V. BULITKO, V. K. BULITKO

2
2.78 which does not match the 3 and raises A’ to ‘3 - (%) ‘ + A|®,| ~ 0.622. Note that each

evolution run is based on a random initial population and random mutations when creating children.
Thus different results can be observed on different runs. In this section we presented several single
evolution runs. We did not conduct a statistical analysis but the runs presented appeared typical.

Table 4. Evolution tracking changes in the non-stationary environment ®.(S,¢) = 3round(sin 2£) - S.

Timet | ®.(0,t) | Lowest regularized loss agent | Its A’

1 0 V0 0.2
9 1 1 0.1
4 2 [%ﬂ 0.6
7| 3 (%)2 0.622

One can increase the cognitive ability of the evolution by enlarging its population. That gives
the evolution more agents to choose from and thus a higher chance to find a compact ®, that yields
Pesired as the fixed point before the environment changes again. If we treat the entire population
as a single level-2 agent then enlarging the population can be thought of as increasing the speed of
the agent’s fixed point solver. Naturally to maintain a larger population, the A-life setting has to be
modified accordingly so that the agents do not die out quickly, shrinking the population.

5. Current Shortcomings and Future Work

The simple computation model in which the space of agents is represented by a space of simple
formulae does not enable individual agents to model the environment and solve for a fixed point.
Thus, our individual agents were limited to level 1. We reached level 2 by treating the entire pop-
ulation as a single agent which allowed us to continually re-solve for a fixed point. However, even
treating an evolving population as a single agent does not reach level 3 in which agents predict the
environment. Future work will consider a richer language that can encode standard programming
constructs (e.g., branching, loops, memory). Then one can investigate how a fixed-point solver can
emerge naturally in the course of an evolution. Once an agent with a fixed-point solver emerges, it
can adapt to novel situations in its environment within its lifetime. Here it will be of interest to see
how such lifetime adaptation interacts with adaptation over generations during evolution. Past work
showed such interactions to be non-trivial even in simple environments (Ackley & Littman, 1991).

The theory also postulated level 4 when a non-stationary environment changes so rapidly that
even a level-3 agent is perpetually behind in its predictions and consequently its steady-state solu-
tions. We suggested that such circumstances may give rise to refugia — ecological niches sought
by the agents where the environment changes less rapidly, allowing the agents to keep up and thus
survive. Our computational model presented above does not address this situation since our en-
vironment does not have a spatial localization and thus cannot feature faster and slower changing
areas. Nor can our agents relocate to such areas as they also lack any spatialization. Future work
will employ a richer A-life simulation where the agents can move about a heterogeneous envi-

10

COMPLEXITY OF AGENTS IN NON-STATIONARY ENVIRONMENTS

ronment. Furthermore, machine learning methods can then be applied to detecting emergence of
refugia automatically (Soares et al., 2018).

Finally, the idea that more complex cognitive abilities can first emerge at the level of population
and then migrate into individual agents calls for further computational modeling. For instance,
an individual agent can first run an evolution of behaviour policies ®, € ® in its mind and then
implement the best policy in the environment. While such simulation of control policies in the
agent’s mind has been manually implemented in game-playing agents in the form of lookahead
search since the early days of Artificial Intelligence, it is of interest to consider how the cognitive
ability to conduct such an internal policy simulation can transition from a population into individual
agents, in the course of an evolution.

6. Conclusions

The primary contribution of this paper is the proposal of a simple computational model to partially
illustrate an existing abstract theory on the rise of cognitive complexity in agents as a response to
more rapidly changing environments. The model represents agent behaviour policies as arithmetic
formulae over a compact context-free grammar. We then run an A-life-style evolution of such for-
mulae and observe individual agents reaching the preferred fixed point emerge in the evolution.
When the environment becomes non-stationary our space of agent’s behaviour policies is insuffi-
ciently rich for a single agent to track changes in the environment and re-compute a fixed point.
However, treating the whole population as a single agent enables us to do so. This prompts the
question of whether higher cognitive functions first emerged in a distributed form in a population
before embedding themselves in individual agents.

References

Ackley, D., & Littman, M. (1991). Interactions between learning and evolution. Artificial life I,
10, 487-500.

Bulitko, V. (2016). Evolving real-time heuristic search algorithms. Proceedings of the International
Conference on the Synthesis and Simulation of Living Systems (ALIFE) (pp. 108-115).

Bulitko, V. (2020). Evolving initial heuristic functions for agent-centered heuristic search. Proceed-
ings of the IEEE Conference on Games (COG).

Bulitko, V., & Bulitko, V. K. (2019). Increase in agent complexity in non-stationary environments.
Proceedings of the Annual Conference on Advances in Cognitive Systems (ACS), Poster Collec-
tion (pp. 1-9).

Bulitko, V., Carleton, S., Cormier, D., Sigurdson, D., & Simpson, J. (2017). Towards positively
surprising non-player characters in video games. Proceedings of the Experimental Al in Games
(EXAG) Workshop at the AAAI Conference on Artificial Intelligence and Interactive Digital En-
tertainment (AIIDE) (pp. 34—40).

Bulitko, V. K. (1986). Models of processes in industry, economy and ecology. Naukova Dumka.

11

V. BULITKO, V. K. BULITKO

Calvin, W. H. (2002). A brain for all seasons: Human evolution and abrupt climate change. Uni-
versity of Chicago Press.

Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing. Springer.

Graves, A., Wayne, G., & Danihelka, 1. (2014). Neural Turing machines. CoRR, abs/1410.5401.
From http://arxiv.org/abs/1410.5401.

Graves, A., et al. (2016). Hybrid computing using a neural network with dynamic external memory.
Nature, 538, 471-476.

Koenig, S. (2001). Agent-centered search. Artificial Intelligence Magazine, 22, 109—132.

Langley, P. (2018a). Planning systems and human problem solving. Advances in Cognitive Systems,
7, 13-22.

Langley, P. (2018b). Theories and models in cognitive systems research. Advances in Cognitive
Systems, 6, 3—16.

Miikkulainen, R., et al. (2017). Evolving deep neural networks. CoRR, abs/1703.00548. From
http://arxiv.org/abs/1703.00548.

Rogers, Jr, H. (1987). Theory of recursive functions and effective computability. MIT Press.

Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature, 529, 484-489.

Soares, E. S., Bulitko, V., Doucet, K., Cselinacz, M., Soule, T., Heck, S., & Wright, L. (2018).
Learning to recognize A-life behaviours. Poster collection: The Annual Conference on Advances
in Cognitive Systems (ACS).

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augmenting topolo-
gies. Evolutionary Computation, 10, 99—-127.

Such, F. P,, Madhavan, V., Conti, E., Lehman, J., Stanley, K. O., & Clune, J. (2017). Deep neu-
roevolution: Genetic algorithms are a competitive alternative for training deep neural networks
for reinforcement learning. arXiv preprint arXiv:1712.06567.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. MIT Press.
Wilensky, U., & Rand, W. (2015). An introduction to agent-based modeling. MIT Press.

12

