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Abstract 
This paper presents progress made towards the development of a theory, methodology and 
instructable system for automated analysis in Intelligence, Surveillance and Reconnaissance. An 
intelligence analyst shows the system how to make sense of a suspicious alert by following the 
scientific method of hypothesis generation and testing, and the system learns general rules to make 
sense of similar alerts. We believe that the approach we are developing has several significant 
advantages over the current manual approach to sensemaking in terms of speed, quality, and 
transparency of analysis, which more than compensate for the extra effort needed to train the agent. 
In particular, it significantly improves and accelerates the understanding of the goals and behavior 
of entities of interest, and enables the early identification of potential threats. 

1.  Introduction 

Intelligence, Surveillance, and Reconnaissance (ISR) synchronizes and integrates the planning and 
the operation of collection assets, processing, exploitation, and dissemination systems in direct 
support of current and future operations (JP 1-02, 2010). Sensemaking is the process of situational 
understanding based on data that is sparse, noisy, and uncertain (Moore, 2011). 
 There is a huge gap between the ability to collect information and the ability to analyze and 
make sense of it. Sensemaking in ISR and, in general, in the field of intelligence analysis is 
performed mostly manually by analysts. The prevailing approach is a holistic analysis where the 
analysts, after reviewing large amounts of information and performing all the reasoning in their 
heads, reach a conclusion. 
 A complementary approach uses structured analytic techniques, such as those described by 
Heuer and Pherson (2011) that guide the hypothesis generation and analysis process. Some of these 
methods, as well as more advanced ones based on probabilistic inference networks, such as 
Bayesian networks, are implemented in analytical tools, such as Netica (https://www.norsys.com/).  
 Among the most advanced analytical tools is Cogent, a cognitive agent for intelligence analysis 
(Tecuci et al., 2015; 2018), which is the latest in a series of analytical tools that includes Disciple-
LTA (Tecuci et al., 2007), TIACRITIS (Tecuci et al., 2011), and Disciple-CD (Tecuci et al., 2016a) 
An analyst collaborates with Cogent to answer an intelligence question by following a systematic 
approach grounded in the science of evidence (Schum, 2009) and the scientific method. First the 
analyst imagines possible answers to the addressed intelligence question in the form of competing 
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hypotheses. Each hypothesis is then analyzed by developing a Wigmorean probabilistic inference 
network to assess its probability based on the available evidence (Wigmore, 1913). Evidence is any 
observable sign, datum, or item of information that is relevant in deciding whether a hypothesis is 
true or false (Schum, 2009). The hypothesis with the highest probability is proposed as the best 
answer to the intelligence question asked. 
 Building on Cogent, we proposed a logic and probability-based concept for how a cognitive 
agent for intelligence analysis could be connected to a real-time persistent processing system to 
enable automatic analysis. We developed a preliminary prototype system, called CAPIP (Cognitive 
Agent for Persistent Intelligence Processing), directly interacting with MITRE’s Integrated 
Environment for Persistent Intelligence software (Tecuci et al. 2019). In this paper we present 
research that builds on CAPIP to develop a methodology and an instructable system for 
sensemaking in ISR. First we briefly introduce the Multi-Agent System for Sensemaking through 
Hypothesis generation and analysis (MASH), and summarize the methods it implements. Then we 
illustrate and discuss the experience with instructing MASH to make sense of complex situations. 

2.  Overview of MASH 

The architecture of MASH is presented in Figure 1. MASH communicates with a set of 
Surveillance Agents developed to detect certain types of events, called alerts, such as the following 
one: 

According to thermal imagery sensor using heat detection, several areas of 
the Destructville uranium enrichment plant are emitting heat as of 3/5/2020.  

This is an alert because it may indicate a situation of interest, such as: 
Shamland is producing centrifuge-enriched uranium at Destructville uranium enrichment plant 
as of 3/5/2020. 

 

 
Figure 1. MASH, multi-agent system for sensemaking in ISR, learns to generate hypotheses 

from alerts, to discover evidence, and to test the hypotheses based on the discovered evidence. 

Collection and
Monitoring 

Manager

Collection
Agent

Collection
Agent

Collection
Agents

Surveillance
Agent

Surveillance
Agent

Surveillance
Agents

Simulated ISR 
Environment

(Sensors and Sources)

Surveillance
Manager

Knowledge Base

New Evidence

Hypotheses

Alert 

Probabilities

Learning to 
generate 

hypotheses

Learning to 
discover and 

monitor evidence

Learning to 
test 

hypotheses 

Mixed-Initiative 
Learning and 

Reasoning Assistant

Multi-Agent 
Autonomous 

System



 INSTRUCTABLE AGENT FOR SENSEMAKING  

Through abductive reasoning (which shows that something is possibly true) MASH generates other 
competing hypotheses that may explain the alert: 

An explosion has occurred at the Destructville uranium enrichment plant as of 3/5/2020. 
An attack against the Destructville uranium enrichment plant has occurred as of 3/5/2020. 

To determine which of the competing hypotheses is true, MASH uses each hypothesis and 
deductive reasoning (which shows that something is necessarily true) to discover new evidence. It 
first identifies sufficient conditions or indicators that favor or disfavor the hypothesis and then, 
through the Collection and Monitoring Manager, invokes specialized Collection Agents to look 
for evidence in the ISR environment. 

 Once additional evidence is discovered, MASH uses inductive reasoning (which shows that 
something is probably true) to test each hypothesis and determine whether Shamland is producing 
centrifuge-enriched uranium. 
 MASH is not connected to a real ISR environment. Instead we developed a Simulated ISR 
Environment that enables the testing of automatic sensemaking and also facilitates the transition 
to real data sources and real ISR environments. 

 Conventionally, a knowledge-based system like MASH is developed by a knowledge engineer 
who encodes the knowledge of an expert ISR analyst into the system’s knowledge base. This is a 
difficult, time-consuming, and error-prone process, well-known as the knowledge acquisition 
bottleneck of the knowledge based systems development process (Feigenbaum, 1993; Buchanan 
and Wilkins, 1993; Tecuci et al., 2016a). Instead, MASH is an instructable system that is directly 
taught by an expert ISR analyst (with limited support from a knowledge engineer), in a way that is 
similar to teaching a student or collaborator, by demonstrating and explaining to the system how to 
generate and analyze hypotheses in a given situation. Successive versions of the instructional 
approach were presented in (Tecuci, 1998; Tecuci et al., 2000; 2002, 2005, 2008, 2016b). In the 
case of MASH, the expert ISR analyst demonstrates to the Mixed-Initiative Learning and 
Reasoning Assistant what hypotheses to generate from a specific alert, how to use each hypothesis 
to discover relevant evidence, and how to test each hypothesis based on the discovered evidence. 
Generalizing from the demonstrated reasoning example, MASH learns explicit abductive rules to 
generate competing hypotheses from alerts, collection rules to discover and collect relevant 
evidence, and analysis rules to test the hypotheses, as shown at the bottom of Figure 1. These rules 
are stored in the Knowledge Base. 

The Multi-Agent Autonomous System uses this knowledge base to automatically make sense 
of new situations. It includes several specialized autonomous agents, such as the Hypothesis 
Generation Agent, which generates competing hypotheses from the alerts received from the 
Surveillance Manager, and the Hypothesis Analysis Agents, which analyze the competing 
hypotheses and generate evidence collection requests. The Collection and Monitoring Manager 
identifies which of the available Collection Agents can process a collection request, forwards it to 
those agents, and returns any discovered evidence to the corresponding Hypothesis Analysis Agent.  
 MASH can be instructed to perform a wide variety of simulated ISR tasks, such as:  

• Automatically monitor plants and facilities on a global basis to determine construction or 
operating status, including production facilities as well as transportation infrastructure, 
such as pipelines, ports, and loading terminals. 

• Automatically assess the intended purpose of facilities under construction worldwide as 
new information comes in and construction advances. 

• Automatically assess indicators for determining the likelihood of whether an attack or 
explosion occurred at plants and facilities on global basis. 
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• Automatically monitor changes in security at industrial and military facilities on global 
basis. 

• Automatically assess country capability to support production of various weapon systems. 
• Automatically assess indicators of threat perceptions for multitude of countries. 

In the next section we present MASH’s hypothesis generation and analysis methods.  

3.  Hypothesis Generation and Analysis 
3.1  Abduction-Based Hypothesis Generation 

For thousands of years, the greatest human minds, including Aristotle (384BC–322BC), Galileo 
Galilei (1564–1642), Isaac Newton (1642–1727), John Locke (1632–1704), and William Whewell 
(1794–1866) considered that the only inferences governing hypothesis generation and analysis 
were deduction and induction.  Only relatively recently Charles Peirce (1898; 1901) suggested that 
new ideas or hypotheses are generated through a different form of inference than deduction or 
induction, which he called abduction and associated with imaginative reasoning: 
          The surprising fact, C, is observed;  
          But if A were true, C would be a matter of course, 
          Hence, there is reason to suspect that A is true. 
Table 1 provides brief definitions of the deductive, inductive, and abductive inferences. 

Table 1. Types of inferences.  

 
Automatic hypothesis generation through abductive reasoning is computationally-intensive 
because there are numerous hypotheses that can be abduced from an observation (Josephson and 
Josephson, 1994; Schum, 2001a; Walton, 2005; Forbus, 2015; Langley, 2019). 

We have developed an approach to hypothesis generation as a multi-step abductive process where 
each abductive step involving the generation of competing hypotheses is followed by evidence 
collection and testing of these hypotheses, to significantly reduce the hypothesis space. This 
approach is illustrated in Figure 2.  

 If we were to perform a single-step abduction, from evidence E to a hypothesis of interest that 
would explain it, we would obtain a huge number of hypotheses represented as dots at the top of 
the figure. We would then need to investigate each of these competing hypotheses to find the most  

Deductive 
Inference

∀x, U(x) V(x) Whenever U(x) is true, V(x) is also true
UU(a U1) U(a1) is true
Necessarily V(a1) Therefore V(a1) is necessarily true

Inductive 
Inference

U(a1) and V(a1) When U(a1) was true, it was observed that V(a1) was also true
U(a2) and V(a2) When U(a2) was true, it was observed that V(a2) was also true

… …
UU(a Un) and V(a Un) When U(a Un) was true, it was observed that V(a Un U) was also true
∀x, U(x) Probably V(x) Therefore, whenever U(x) is true, V(x) is also probably true

Abductive 
Inference

U(a1) V(a1) If U(a1) were true then V(a1) would follow as a matter of course
UV(a U1) V(a U1 U) is true
Possibly U(a1) Therefore U(a1) is possibly true
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likely explanation. Now contrast this process with multi-step abduction. From E, one may abduce 
F, Fi, and Fj. At this point, we would search for evidence relevant to these three hypotheses and we 
would test them based on the discovered evidence concluding, for example, that F is the most likely. 
Then we would continue the abduction from F, abducing G, Gm, and Gn, testing these hypotheses, 
and concluding, for example, that G is the most promising. Finally, from G, we would abduce the 
hypotheses of interest H, Hp, and Hq, and test them.  This approach to hypothesis generation based 
on spiral hybrid reasoning, where small abductive, deductive, and inductive steps feed each other, 
significantly reduces the hypothesis space.  

Figure 3 illustrates the multi-step abduction process in the case of the Shamland situation 
discussed in Section 4. 

3.2  Hypothesis-Driven Evidence Discovery 

Evidence to test the generated hypotheses is discovered by using the hypotheses themselves. The 
question is: What evidence would favor or disfavor hypothesis H? H is decomposed into simpler 
hypotheses by considering both favoring arguments (supporting the truthfulness of H), under the 
left (green) square, and disfavoring arguments (supporting the falsehood of H), under the right 
(pink) square, as represented in Figure 4. Each argument is an independent strategy that shows that 
the H in question is true or false, and is characterized by a specific relevance or strength. The 
argument consists either of a single sub-hypothesis (e.g., H3) or a conjunction of sub-hypotheses 
(e.g., H1 & H2). The sub-hypotheses in an argument may represent necessary and sufficient 
conditions, sufficient conditions, or only indicators of the hypothesis above them. The sub-
hypotheses from these arguments are further decomposed through other arguments, leading to 
simpler and simpler (sub-sub-)hypotheses  until these (sub-sub-)hypotheses are simple enough to 
show what evidence may favor or disfavor them. At this point corresponding evidence collection 
agents are invoked .  
 Consider the following hypothesis from the Bogustan situation that will be discussed in Section 
4: 
 Plumes have been observed at the Tanan chemical plant as of 2/25/2020. 

 
Figure 2. Multi-step abduction where each abduction of hypotheses is followed by  

deduction and induction to determine the most promising of the abduced hypotheses. 
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Figure 4. Hypothesis-driven evidence discovery: The top hypothesis is successively reduced to  

simpler and simpler sub-hypotheses and evidence is collected for the simplest sub-sub-hypotheses. 
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Figure 3. Multi-step abduction in the Shamland situation.  

The generated hypotheses that lack evidentiary support are eliminated from the search space. 
 
 



 INSTRUCTABLE AGENT FOR SENSEMAKING  

Evidence collection requests corresponding to this hypothesis include: 

Collect evidence from optical imagery sensor using plumes detection to determine whether 
plumes have been observed at the Tanan chemical plant as of 2/25/2020. 

Collect evidence from reporting source using collateral reporting to determine whether plumes 
have been observed at the Tanan chemical plant as of 2/25/2020. 

3.3  Wigmorean Argumentation for Evidence-based Hypothesis Assessment 

Once evidence relevant to a hypothesis is discovered, it can be used to test the hypothesis, as 
illustrated in Figure 5 that represents a Wigmorean argumentation. Wigmorean argumentations 
were initially introduced a century ago by Henry John Wigmore, a famous American jurist, as a 
graphical representation of how evidence supports or refutes claims in a court of law (Wigmore, 
1913; 1937). They were resurrected by David Schum, who promoted their application both in law 
and in intelligence analysis (Schum, 1987; 2001b). Their logical structure was augmented with 
Baconian probability (Cohen, 1977; 1989) and Fuzzy qualifiers (Zadeh, 1983), such as ‘likely’ or 
‘almost certain’ (Tecuci et al., 2016a, pp. 159-172). Consider, for example, sub-sub-hypothesis 
H2b. There are two items of evidence relevant to this hypothesis, the favoring evidence item E1, 
and the disfavoring evidence item E2. Each item of evidence has three credentials that need to be 
assessed: credibility, relevance, and inferential force. The credibility of evidence answers the 
question: “What is the probability that the evidence is true?” The relevance of evidence to a 
hypothesis answers the question: “What is the probability of the hypothesis being true if the 
evidence were true?” Based on these two credentials, MASH computes the inferential force or 
weight of the evidence on the hypothesis that answers the question: “What is the probability of the 

 
Figure 5. Wigmorean argumentation for evidence-based hypothesis assessment: The leaf hypotheses  

are assessed based on evidence and these assessments are combined to assess the top hypothesis. 
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hypothesis, based only on this evidence?” This is computed as the minimum between the credibility 
and relevance. For example, the inferential force of E1 is ‘almost certain’ and that of E2 is ‘barely 
likely.’ 
 The probability of sub-sub-hypothesis H2b is determined by balancing the inferential force of 
the favoring evidence with that of the disfavoring evidence. Once the probabilities of the bottom-
level hypotheses have been determined based on evidence, the probabilities of the upper level 
hypotheses are computed based on the logical structure of the Wigmorean argumentation 
(conjunctions and disjunctions of hypotheses), using min-max probability combination rules 
common to the Fuzzy probability view (Zadeh, 1983; Negoita and Ralescu, 1975; Schum 2001b) 
and the Baconian probability view (Cohen, 1977; 1989; Schum, 2001b). These rules are much 
simpler than the Bayes rule used in the Bayesian probability view (Schum, 2001b), or the 
Dempster-Shafer rule used in the Belief Functions probability view (Shafer, 1976). 
 Such Wigmorean argumentations are easy to develop and understand, and an intelligent 
software system, such as MASH, can learn to generate them, as discussed in the next section.  

4.  Mixed-Initiative Teaching and Learning 

4.1  Training Scenario 

We will present the process of instructing MASH to automatically detect when a country is 
producing weapons of mass destruction at a certain plant. We will start with the following specific 
situation, referred to as “Bogustan:” 

• The country Bogustan was building a new chemical plant at Tanan that was nearing 
completion; the plant’s purpose was not known. 

• Bogustan was suspected of harboring weapons of mass destruction ambitions.  
• A reconnaissance asset conducting a routine quarterly overflight detected heat signatures 

at the Tanan facility in late February.  
The expert analyst will demonstrate the analysis to answer the question 
  Is Bogustan producing chemical warfare agents at the Tanan chemical plant as of 2/25/2020?  
and MASH will learn general rules for answering questions of the type: 
  Is country producing weapons of mass destruction at plant as of date?  
While developing the analysis, the expert analyst (with support from a knowledge engineer) will 
also extend the agent’s ontology with the instances and concepts used in the analysis. 
 The expert analyst will then present MASH with the “Shamland” situation: 

• The country Shamland was building a large plant at Destructville, whose purpose was not 
known. 

• Shamland was suspected of wanting to develop nuclear weapons. 
• A reconnaissance asset conducting a routine quarterly overflight detected heat at the 

Destructville facility in early March.  
MASH will automatically generate hypotheses, collect evidence, and test the hypotheses to answer 
the question: 

Is Shamland producing Destructville centrifuge-enriched uranium at the Destructville uranium 
enrichment plant as of 3/5/2020?  

The expert analyst will then check the analysis generated by MASH, correct the mistakes made in 
the argumentation (if any), and complete the analysis (if necessary). 
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4.2  Expert-Provided Demonstration of Sensemaking 

MASH does not start with an empty knowledge base. It starts with a knowledge base containing 
general evidence-based reasoning (EBR) knowledge, including an ontology of evidence and 
general rules for assessing the credibility of evidence. It also starts with general ISR knowledge in 
the form of an ontology of sensors that are useful in any ISR application.  
 The ontology language is an extension of RDFS (W3C, 2004) with additional features for 
learning and evidence representation. The rules are IF-THEN structures with first-order logic 
applicability conditions expressed using the concepts from the ontology (Tecuci et al. 2016b). 
 Table 2 summarizes this initial ontological knowledge. 

Table 2. Knowledge base before agent instruction. 
Evidence-based reasoning ISR 

Instances Concepts Features Rules Instances Concepts Features 
17 72 76 7 7 6 1 

Figure 6 shows the top-level of the analysis demonstrated by the expert ISR analyst who builds it 
by using the modeling editor of MASH. Table 3 summarizes the corresponding knowledge 
elements in this analysis and in the knowledge base. 

 
Figure 6. The top hypothesis has two favoring sub-hypotheses under the left (green) square, and a 
disfavoring evidence under the right (pink) square. The second sub-hypothesis has three indicators. 
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Table 3. Knowledge elements used in the demonstrated analysis. 
Hypotheses Reductions Evidence items Scenario instances Domain concepts Domain features 

44 24 29 9 26 6 
 
The left-hand side of Figure 7 shows a fragment of the ontological description of the Bogustan 
situation that includes information such as:  

Bogustan has Halifaza as enemy.  
Tanan chemical plant belongs to Bogustan and may produce chemical warfare agents. 

 

 
Figure 7. Ontology-based rule learning: MASH uses the ontology in the left-hand side to learn  

the three rules in the right-hand side by generalizing the hypotheses reduction provided by the expert. 
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As shown in the right hand side of Figure 7, from each demonstrated argument, MASH learns 
general analysis rule. In particular, it learns Rule 1, Rule 2, and Rule 3 as ontology-based 
generalizations of the demonstrated arguments.  The next sections discuss the rule learning process. 

4.3  Rule Learning 

Figure 8 illustrates the learning of Rule 1 from the argument summarized as:  
Bogustan has national security reasons to produce chemical warfare agents 
because it believes it needs them to counter an existential threat from Halifaza. 

 
The expert ISR analyst browses the ontology and selects the fragment that justifies the argument, 
that is: Bogustan has as enemy Halifaza .  We call this an explanation of the argument. Using it, 
MASH automatically generates the analysis rule from the right-hand side of Figure 8, as follows: 

• It generates a general argument by replacing each instance in the example argument with a 
different variable (i.e., Bogustan with ?O1, Tanan chemical warfare agents with ?O2, 
Halifaza with ?O3, and 2/25/2020 with ?S1). 

• It uses the ontology to compute the applicability condition of the general argument that 
shows the possible values that these variables may take. 

 
Figure 8. Mixed-initiative rule learning: The ISR analyst provides the hypothesis reduction and selects the 

ontology fragment from the left side as explanation; MASH generates the rule from the right-hand side. 
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Notice however that, instead of a single applicability condition, MASH learns a lower bound for 
this condition and an upper bound, by using two complementary learning strategies: 

• The upper bound of the condition is generated by employing the strategy of an agressive 
learner that wants to maximize the opportunities of employing the learned rule. For 
example, the upper bound of ?O1 is obtained as the maximal generalization of Bogustan. 
According to the generalization hierarchy represented by the ontology in Figure 7, the 
maximum generalization of Bogustan is object. However, Bogustan is also the value of the 
feature “has an enemy” whose range is actor, a sub-concept of object. Therefore, ?O1 in 
the upper bound of Rule 1 can be instantiated by any instance of actor. This strategy 
increases the number of situations where Rule 1 can be applied, but in some of these 
situations the reasoning may not be correct.  

• The lower bound of the condition is generated by employing the strategy of a cautious 
learner that wants to minimize the chances of making mistakes when employing the 
learned rule. In this case the lower bound of ?O1 is obtained as the minimal generalization 
of Bogustan, which is country. This strategy increases the confidence of the agent in the 
correctness of its reasoning, but the agent may fail to apply the reasoning rule in situations 
where, in fact, it is applicable.  

The two bounds may be refined, and may even become identical, based on additional examples 
encountered by the agent and their explanations.  
 Rule 2 and Rule 3 are learned in a similar way, both based on the following explanations: 

Tanan chemical plant belongs to Bogustan 
Tanan chemical plant may have as product Tanan chemical warfare agents 

The vast majority of the current machine learning approaches are heavily statistical and learn single 
functions from a large number of examples. Such approaches are not applicable for learning to 
generate and analyze hypotheses in the ISR  domain because such sets of examples do not exist and 
would be very difficult to create. Instead, the expert analyst just shows the agent how s/he analyzes 
the current situation and the agent learns rules as ontology-based generalizations of the 
demonstrated reasoning steps, as discussed above. The explanations that point directly to the 
relevant features of the individual examples enable rapid learning. Thus, these features do not need 
to be discovered through the statistical comparison of a large number of positive and negative 
examples (that are not available anyway), as done in the inductive learning methods (Witten et al. 
2011; Flach, 2012; Alpaydyn, 2020). 

4.4  Automatic Analysis 

From the demonstrated analysis, a fragment of which was shown in Figure 6, MASH learned 24 
analysis rules. These rules enabled the system to automatically generate the analysis of the 
following hypothesis: 

Shamland is producing Destructville centrifuge-enriched uranium 
at Destructville uranium enrichment plant as of 3/5/2020. 

Figure 9 shows a fragment of the generated analysis. While most of this reasoning is correct, the 
analyst judges that the instance of Rule 1 is incomplete, and will interact with the agent to refine it 
as explained next. 
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4.5  Rule Refinement with a Negative Example 

The incomplete reasoning from Figure 9 is shown again in the middle of Figure 10. The analyst 
considers that this reasoning step is incomplete because it should contain an additional sub-
hypothesis: 

 

 
Figure 9. Automatically generated analysis: MASH generated this analysis  

fragment by applying the rules learned from the analysis fragment shown in Figure 7. 
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Shamland judges that it needs Destructville centrifuge-enriched uranium 
to assert political dominance over Agressia.  

The corresponding explanation for the omitted sub-hypothesis is: Shamland seeks political 
dominance over Agressia 
 As a result, MASH refines Rule 1 by adding an Except-When applicability condition, as shown 
in the right-hand side of Figure 10. Now Rule 1 is applicable if the Main Condition is satisfied and 
the Except-When Condition is not satisfied. Therefore it no longer applies to the Shamland situation. 
 Thus, through a few simple expert-agent interactions, the agent learns a complex reasoning 
rule. In conventional agent development approaches, such rules have to be manually defined by a 
knowledge engineer. 

After Rule 1 is refined, the expert extends the incomplete reasoning step with the additional 
sub-hypothesis and the agent learns a new rule for situations where an actor seeks political 
dominance over another actor. 
 Of the 24 analysis rules learned from the Bogustan situations, 20 were correctly applied in the 
Shamland situations, 4 (including Rule 1) were incorrectly applied, and 4 new rules were learned. 
 

 
 

Figure 10. Rule refinement based on a negative example: The ISR expert indicates 
that  the instance of Rule 1 from the middle of the figure is incomplete because of  

the ontological relationship shown below it. As a result, MASH specializes Rule 1 by  
adding an Except When condition, to no longer generate the incomplete reasoning step. 
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5.  Conclusions 

The presented approach to automated analysis in ISR has several very significant advantages over 
the current manual approach in terms of speed, quality, and transparency of analysis. Over time, as 
the knowledge base is developed and refined for different situations, the gain in terms of speed, 
quality, and consistency will grow at an increasing rate.  
 As summarized below, the extra effort needed to train the agent is very limited when compared 
to the advantages of automated ISR and the significant expected reduction in the overall workload 
of the ISR analysts. 
Automation of ISR Analysis 
Hypothesis generation and analysis in ISR are not currently automated. These tasks have to be 
performed by the ISR analyst repeatedly for each new situation.  
 This same ISR analyst instructs MASH how to reason by developing the analysis for a given 
situation. In this case, however, MASH also supports the analyst in developing a more 
comprehensive, defensible, and persuasive analysis by following the approach introduced in 
Section 3. 
 Thus, the ISR analyst needs to manually perform the original analysis to answer the relevant 
question but  when using MASH, the analyst is developing a more complete and systematic analysis 
that is also used to train the system. Our approach to learning analytic rules from this example 
analysis also reduces this effort as compared with having a knowledge engineer manually define 
the rules, as is the case in a conventional agent development approach. Moreover, the additional 
effort for instructing MASH is dwarfed by the effort saved in performing future analyses which are 
entirely or at least partially generated automatically. 
Early and Continuous System Use Due to Incremental Training 
MASH does not need to be fully trained before being used. We are developing a flexible control 
structure, enabling the system to operate with different levels of autonomy.  
 At the beginning, MASH may operate under the full control of the analyst, who will not only 
use it to make sense of a situation, but also to train it based on the developed analysis.  
 As MASH learns, the control changes to a mixed-initiative one, where some parts of the 
analysis are generated by MASH and the entirely new parts are developed by the analyst. For 
example, certain basic components of many analytic problems, such as intent, could be 
automatically generated and then modified to take into account unique differences related to the 
decision maker. Thus, analysis of information related to a particular problem helps to inform 
analysis in other related problems. Analysis in this manner systematically builds upon itself. A 
complete set of potential indicators can be developed for a wide range of intelligence questions, 
such as the operating status of industrial facilities or the intended purpose of a plant under 
construction.  
 MASH continuously learns from the analyst, and its contribution to the analysis process 
continuously increases, enabling it to operate autonomously in more and more situations. 
Automated Hypothesis Generation, Evidence Collection, and Hypothesis Testing 
MASH automatically generates a comprehensive and transparent analysis by producing a schematic 
diagram that completely lays out the underlying analytic framework for every hypothesis. This 
includes the connection between the evidence and various intermediate conclusions in the analysis, 
the evaluation of the credibility of evidence and its strength in supporting a conclusion, and the role 
of any assumptions in addressing missing information.  



G. TECUCI, D. MARCU, M. BOICU, AND L. KAISER 

 MASH will almost instantaneously generate the hypotheses explaining an ambiguous alert and 
their argumentation structures, incomparably faster than the current manual process, due to: 

• Synergistic integration of abduction, deduction, and induction operations that feed each 
other, as discussed in Section 3.1; 

• Use of learned hypothesis analysis rules with applicability conditions. 
The overall duration of hypothesis testing will depend almost entirely on the speed with which the 
sensors/information sources return the requested information. But even this process is much faster 
because, instead of searching through a huge amount of information in the hope of finding 
something useful, as is done in the current manual approach, MASH uses the hypotheses 
themselves to guide the evidence search, and very rapidly discover the useful evidence, as discussed 
in Section 3.2. 
Rapid Adaptation to Changes in the Situation 
A significant challenge of ISR is that sensemaking must be made in a continuously changing world. 
An explanation for some pattern of past events previously regarded as correct may now become 
less persuasive in light of new evidence just discovered today. A prediction regarded as highly 
likely yesterday may be overtaken by today’s events. In fact, the very questions asked yesterday 
may need to be revised or may even seem unimportant in light of what is learned today.  
 MASH continuously monitors and automatically detects new or changed evidence, and rapidly 
regenerates the analysis. Thus, new developments are processed and assessed quickly, reducing the 
chances of surprise.   
More Fruitful Coordination and Focused Analytic Review 
MASH, with its explicit argumentation and explicitly justified assessments, will enable analysts to 
zero in on where in the analysis they agree and disagree. As a result, less time will be spent on areas 
where analysts agree, and more time can be spent on more fruitful discussions of analytic 
differences. New information can be more efficiently discussed within this existing framework of 
agreement and disagreement. 
 The system significantly improves the transparency of the analytic process. The automated 
analysis builds an explicit and intuitive argumentation that shows very clearly how the conclusions 
emerge from evidence. The argumentation also includes justifications for any assumptions made, 
the assessments related to the credibility of the evidence, and the relevance of the evidence and 
sub-hypotheses to higher-level hypotheses. Managers can use the systematized argumentation that 
illustrates the analytic path to the main judgments in their review of analytic products. 
 The automated analysis allows for real-time adjustments to various assumptions to determine 
their impact on the analysis’ main judgment. This capability, in turn, provides a basis for analysts 
to assess their confidence level in the main judgment. For example, analysts’ confidence in 
judgments that vary significantly with only small changes in their assumptions would be lower than 
their confidence in judgments that vary only slightly. Moreover, the automated, systematized 
analysis will allow analysts to highlight in their finished reports those assumptions that are critical 
to their main judgments. 
More Systematic Record Keeping and On-the-Job Analyst Training 
The automated system will create an archive of analyses that will facilitate the training of new 
analysts as well as facilitate post-mortem analyses of controversial analytic judgments. Analyst 
training on specific issues will be less ad hoc and less dependent on the specific tendencies of 
individual analysts. The automated system creates an extensive and complete record of the basis 
for various analytic judgments that will allow mentors to spend less time on one-on-one training 
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for newly assigned analysts. Analysts assigned to new teams can first review this database of 
analyses to understand (as well as question) how the team’s analytic judgments were reached. This 
will allow new analysts to more quickly assimilate the basis for the teams’ analyses and to allow 
more fruitful and focused discussions between mentors and new analysts.  
 In cases where the analysis turns out to be wrong, the automated system can provide a specific 
blueprint to facilitate the identification of where in the analysis faulty assumptions and sub-
judgments were made, or the credibility of information was not assessed properly. Lessons learned 
through such reviews can be quickly and systematically transferred to existing knowledge bases to 
address similar issues. 
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