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Abstract
Language-capable interactive robots participating in dialogues with human interlocutors must be
able to naturally and efficiently communicate about the entities in their environment. A key aspect
of such communication is the use of anaphoric language. The linguistic theory of the Givenness
Hierarchy (GH) suggests that humans use anaphora based on the cognitive statuses their referents
have in the minds of their interlocutors. In previous work, researchers presented GH-theoretic
approaches to robot anaphora understanding. In this paper we describe how the GH might need to
be used quite differently to facilitate robot anaphora generation.

1. Introduction

For language-enabled collaborative robots to be effectively introduced into human society, they must
be able to communicate about the objects, locations, and people in human environments and must
be able to understand and use pronominal forms like it, this, and that just like humans. According to
the theory of the Givenness Hierarchy (GH) (Gundel et al., 1993), when humans use anaphora rather
than definite description, they signal their subconscious assumptions about the cognitive status their
target referent has in the mind of their interlocutor. Thus, for robots to understand and generate
human-like language they must be able to model the cognitive status of their referents.

Previously, Williams & Scheutz (2018) (see also Williams et al. (2016)) presented the first full
computational implementation of the GH for the purpose of robotic natural language understanding
(NLU), using a set of hand-crafted rules informed by the GH literature. Specifically, while Williams
& Scheutz (2018) demonstrated that for anaphora understanding what is needed is only a set of
searchable GH-theoretic data structures, as we will show in this paper, efficient anaphora generation
requires these data structures to be augmented with a model that directly maps (some limited set of)
entities to their presumed cognitive status.

In previous work (Pal et al., 2020), we proposed a statistical per-entity model of cognitive status
in which a Cognitive Status Engine comprised of per-entity Cognitive Status Filters is used to main-
tain a distribution over cognitive statuses for each entity the robot believes to be at least familiar
to all parties within the conversation. In this paper, we describe how this model can be used in
conjunction with data structure oriented methods to facilitate efficient and effective algorithms for
deciding when and how to use anaphora.

1



P. PAL AND T. WILLIAMS

2. Related Work

2.1 Cognitive Status

The Givenness Hierarchy, originally presented by Gundel et al. (1993), is comprised of six hi-
erarchically nested tiers of cognitive statuses: in focus, activated, familiar, uniquely identifiable,
referential, and type identifiable, associated with each of which is a set of referring (or pronominal)
forms that can be used when referring to an entity with that status (Gundel et al., 2006; Hedberg,
2013). The GH coding protocol, presented by Gundel et al. (2006), provides guidelines as to what
features of linguistic and environmental context can be used to determine the cognitive status of a
given entity. Since the GH has been shown to be well validated across a wide variety of languages
beyond English (Gundel et al., 2010), many researchers such as Kehler (2000); Chai et al. (2004,
2006); Williams et al. (2016) and Williams & Scheutz (2018) have sought to computationally im-
plement it for the purposes of reference resolution. These approaches use the GH to (1) justify sets
of data structures that hold representations of candidate referents with different presumed cognitive
statuses, and (2) determine how to use those data structures when resolving referring expressions.

While this data structure-oriented approach facilitates the efficiency of NLU by providing re-
stricted subsets of candidates to be considered, during referring expression generation, the speaker
already knows what entity they wish to refer to, and needs to determine what cognitive status that
entity likely has in order to determine how to refer to it. Thus, what is needed, during natural lan-
guage generation (NLG) (in addition to these data structures, as we will later describe) is a means
of quickly determining not what entities have a given cognitive status, but what cognitive status is
most likely for a given entity. Accordingly, the first contribution of this paper is to fill this gap in
the literature by proposing a technique for jointly maintaining GH-theoretic cognitive status buffers
needed for efficient language understanding and per-entity cognitive status models needed for NLG.

2.2 Referring Expression Generation

A key task in NLG is referring expression generation (REG): deciding how to refer to an entity so as
to disambiguate it from a contrast set. Recent work in robot dialogue systems has sought to extend
classic REG algorithms to handle the knowledge constraints imposed in realistic robotic domains
and by realistic robotic architectures (Williams & Scheutz, 2017). Central to these algorithms is
identification of the set of distractors that must be eliminated by a generated referring expression.
Critically, while these algorithms may naively use as a set of distractors all objects that the speaker
knows of, this is typically unneccessary, due to the way that attentional focus, and discourse context
often work together to constrain the set of reasonable referents (Grosz & Sidner, 1986).

We argue that the GH stands to play a critical role in mediating the interaction between low-
level dialogue features and the set of distractors that must be ruled out by REs. For example,
when a speaker uses “this NP ", it indicates that the speaker assumes their target referent to be
“Activated" to the listener; a GH-theoretic inspired REG algorithm could thus determine that only
entities assumed to be at least Activated must be ruled out in the generated NP . However, to the
best of our knowledge, the GH has not previously been used to inform REG algorithms in any way.
Accordingly, the second contribution of this paper is to fill this gap in the literature by proposing a
technique for using the GH to inform the set of distractors to be eliminated by REG algorithms.

2



TOWARD GIVENNESS HIERARCHY THEORETIC NATURAL LANGUAGE GENERATION

2.3 Anaphora Generation

While much research has been performed on referring expression generation, relatively little atten-
tion has been paid to anaphora generation Gatt & Krahmer (2018). Previous work on anaphora
generation has explored factors such as discourse structure, coherence, and salience (Poesio et al.,
2004; McCoy & Strube, 1999; Kibble & Power, 2004; Ge et al., 1998; Callaway & Lester, 2002;
McCoy & Strube, 1999), but these works directly associate these low-level features with pronoun
use, rather than using cognitive status as a mediating factor as suggested by the linguistics literature.

The GH’s claim that choice of referring form depends on presumed cognitive status Rosa &
Arnold (2011) suggests that the GH should be a powerful tool for deciding when and how to use
anaphoric expressions. Naively, one might assume the straightforward use the fact that each tier
of the GH is associated with a different set of referring forms that can be used to refer to objects
assumed to have that status (or higher). However, because progressively lower tiers become asso-
ciated with progressively greater numbers of possible referring forms, and because forms like "it",
"this", and "that" can be ambiguous, these tier-form associations are not sufficient on their own
for language generation. Indeed, although the knowledge of cognitive status affects language un-
derstanding and generation, no significant linguistic work exists that identifies the mechanisms by
which it is actually used for selection of referring forms Arnold (2016). Accordingly, the third con-
tribution of this paper is to fill this gap in the literature by proposing a GH-theoretic model of NLG
that leverages the GH-theoretic cognitive status modeling and REG capabilities described above.

3. Cognitive Status Estimation and Memory Modeling

As described in Pal et al. (2020), we formulate cognitive status modeling as a Bayesian filtering
problem. Let a dialogue consist of a set of utterances U0, ..., Un. For object o, let St

o ∈ {I, A, F}
denote the cognitive status of o at a particular timestep t after utterance Ut (either In Focus, Activated
or Familiar), and let Lt

o ∈ {N,M, T} denote the linguistic status of o in utterance Ut (either not
mentioned in the utterance, mentioned in the utterance in a non-topic role, or mentioned in the
utterance in a topic role). Using this formalism, our goal is to recursively estimate, for a given
object, the probability distribution over cognitive statuses for object o at time t:

p(St
o) = p(St−1

o )p(Lt
o)p(S

t
o | St−1

o , Lt
o) (1)

Algorithm 1 GetStatus(O)
1: CSE: Cognitive Status Engine comprised of Cognitive Status Filters {CSF0 . . . CSFn}
2: if ∃(CSF ∈ CSE | CSF.entity = O) return argmax

S
P (S|O)

3: else return UID
4: endif

We define a Bayesian filter of this form as a Cognitive Status Filter (CSF) for a given object o.
Given a set of known objects, O = {o1, ..., on}, our goal is then to estimate this distribution for each
o ∈ O at each time step (Pal et al., 2020). We maintain distributions over cognitive statuses for each

3



P. PAL AND T. WILLIAMS

object presumed to be Familiar or higher through a Cognitive Status Engine (CSE) comprised of
CSFs for each such object (if an entity is not tracked by a CSF, it is assumed to be at most Uniquely
Identifiable (UID)). We also propose to maintain a set of data structures associated with each tier of
cognitive status, each of which contains pointers to the objects assumed to have (at most) that status.
Whenever the most probable cognitive status for an object changes, this reference is updated. The
GetStatus(O) function (Algorithm 1) takes an object O and returns its most likely cognitive status.
If no CSF exists for O within the CSE, “UID” is returned; otherwise the most probable cognitive
status for O (as determined by the distribution maintained by O’s CSF) is returned.

Algorithm 2 Describe (O)
1: S = GetStatus(O)
2: D = GetDistractors(O,S)
3: if S == “UID" then
4: return “the" + REG(O,D)
5: else if S == “FAM" then
6: return “that" + REG(O,D)
7: else if S == “ACT" then
8: if D == ∅ then
9: if dist(O) == close return “this” else return “that”

10: else
11: return DREG(O,D)
12: end if
13: else if S == “IF" then
14: if D == ∅ return“it" else return DREG(O,D)
15: end if

4. Algorithmic Approach

We now propose the Describe algorithm (Alg. 2). Our ultimate goal is to decide how to refer to a
target O based on its cognitive status (Line 1). We do so using the concept of a Cognitive Status
Engine (Sec. 3, Alg. 1). Once we have determined the cognitive status of O, we use it to decide
how to refer to O. Each tier of cognitive status is associated with a set of referring forms. One
might thus naively assume that to decide how to refer to O, one could simply use a referring form
associated with O’s presumed cognitive status. While we may do so when O is at most Familiar
or Uniquely Identifiable (Lines 3-6), when O is In Focus or Activated, this is infeasible for two
reasons. First, there may be multiple candidate referents that could plausibly be referred to using
that referring form (e.g., when a form like “this” is used to cue an activated object, and more than
one activated object exists). Accordingly, when this type of ambiguity is identified (i.e., when the
set of status-sensitive distractors for an object are non-empty )1 (Lines 8 and 14), it may be avoided

1. To construct a status-sensitive distractor set, we must identify all objects with at least the same status as our target.
The cognitive status of the target can be quickly retrieved from the CSE (Section 3). The distractors to be ruled out
are then the union of the data structures associated with the target’s current most probable cognitive status and higher.
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by selecting a referring form that involves a definite description at either the same level or a lower
level of cognitive status, e.g. selecting “this NP ” rather than "it". Second, some referring forms
(e.g., "this" and "that") are only appropriate for objects that are physically (or cognitively2) close.
When this type of conflict is identified3, it may be avoided by selecting a referring form that does not
violate such constraints at either the same level or a lower level of cognitive status, e.g., selecting
"that N" rather than "this N", as shown by the distance-sensitivity displayed both in Alg. 2 and
Alg. 3.

Once we have determined what referring form to use, if that form includes a constituent NP , we
must generate that referring expression using an REG algorithm such as the Incremental Algorithm
(Dale & Reiter, 1995) or DIST-PIA (Williams & Scheutz, 2017), which require (1) a target referent,
and (2) a set of distractors that must be ruled out. Critically, because we are using a cognitive status
theoretic approach, once we decide what referring form to use for an object, we can intelligently
identify a reduced set of distractors to rule out, as we can expect that the listener will not even
consider objects of lower cognitive status than that cued by the chosen referring form (Alg. 3).

Algorithm 3 DREG(O,D)
1: if dist(O)== close return “this" + REG(O,Dthis)
2: else if dist(O) == far return “that" + REG(O,Dthat)
3: else return “the" + REG(O,D)
4: endif

5. Conclusion

We have presented techniques for: (1) jointly maintaining GH-theoretic inspired data structures
required for effective NLU and the statistical per-entity cognitive status models for NLG, (2) using
the GH to identify distractors to be ruled out during REG, and (3) GH-theoretic NLG. In future work
we plan to integrate and evaluate all described elements that are not yet implemented within our
robotic architecture, to enable effective and efficient anaphora generation in realistic HRI scenarios.
We will evaluate our algorithm using a human subject experiment where we will judge human
preference for referring forms generated by the algorithm (and presented through a robot) and assess
the accuracy and efficiency of those referring forms.
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