
Proceedings of the Eighth Annual Conference on Advances in Cognitive Systems Submitted 5/2020; published 8/2020

A Cognitive Task Analysis of Rapid Procedure
Acquisition from Written Instructions

Pat Langley PATRICK.W.LANGLEY@GMAIL.COM

Institute for the Study of Learning and Expertise, Palo Alto, California 94306 USA

Howard E. Shrobe HES@CSAIL.MIT.EDU

Boris Katz BORIS@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

Abstract
In this paper, we examine the problem of learning complex procedures from instructional text.
We present a cognitive task analysis that introduces theoretical constraints, considers candidate
representations for activities, and decomposes the problem into subtasks that involve syntactic pro-
cessing, semantic interpretation, and procedure construction. We also discuss possible uses for the
acquired knowledge and outline some approaches to the empirical evaluation of cognitive systems
that learn procedures from text. We do not present an implemented system, but we analyze the task
in enough detail to guide future research on this important topic.

1. Background and Motivation

Many technical activities require execution of complex procedures, which people have traditionally
had to learn through long, arduous training. Artificial intelligence has great potential for developing
systems that assist humans in carrying out such procedures and even for automating them entirely,
but their content must first be acquired. There have been two classic responses to the latter challenge.
One involves encoding the necessary knowledge bases manually; this has produced many successes,
from expert systems for diagnosis to intelligent agents used in air-combat exercises, but the approach
is time consuming and expensive. Another involves learning control policies from traces of expert
behavior or trial-and-error runs in simulators; this has generated robust controllers for land and air
vehicles, as well as impressive game players, but this scheme requires far too many training cases
and usually produces uninterpretable expertise. We need a more effective approach to overcoming
the knowledge acquisition bottleneck.

Because many procedures are already described in manuals and other written documents, a nat-
ural response is to acquire knowledge about them by reading and interpreting these sources. There
has been considerable work on learning by reading, but it has focused on extracting simple facts and
concepts from texts, not on mastering procedural content. We want to extend this idea to acquiring
complex procedures from instructional text. For example, the US Navy puts substantial resources
into training personnel on the maintenance and repair of many types of complex equipment. One

c© 2020 Cognitive Systems Foundation. All rights reserved.



P. LANGLEY, H. E. SHROBE, AND B. KATZ

worthwhile objective is an intelligent system that reads the manual for each such device, extracts and
stores the procedures it describes in a standard format, and later accesses this knowledge as needed
to assist engineers in their maintenance activities. Similar examples abound in everyday settings,
from following cooking recipes to operating microwave ovens to repairing outboard motors.

In this paper, we present a cognitive task analysis (Newell & Simon, 1972) of this problem,
identifying the main representational and processing issues but not reporting an implemented sys-
tem. Task analyses occur before one collects observations about the behavior of human subjects and
typically examines different ways that one might tackle the problem at hand, including which prob-
lem space to search and ways to explore it effectively. In the next section, we review previous AI
work on expert-level behavior, after which we discuss theoretical constraints that guide our analysis.
We then propose hierarchical task networks as a representation for procedures and consider three
stages involved in extracting such cognitive structures from instructional text. After this, we outline
a performance component that could use this acquired knowledge and suggest some approaches to
empirical evaluation. We will see that each stage of the learning task has been studied separately,
so the paper’s main contribution is to clarify how an integrated cognitive system can address them
in tandem to acquire and use procedural knowledge efficiently and effectively.

The sections that follow make a number of theoretical contributions to the literature on cognitive
systems. These include postulates about the representation of complex procedures, the intermediate
structures that lead to them, and the mechanisms that underlie their acquisition from text, including
syntactic analysis, semantic inference, and procedure construction. We also present empirical claims
about the ability to learn such content from text, including robustness to the omission of omitted
actions, conditions, and effects, to the presence of extraneous steps not relevant to goals, and to
different levels of abstraction in the instructions. Because we do not present an implemented system,
we cannot yet test these hypotheses, but they offer clear priorities for future research.

2. Prior Research on Expert Behavior

Artificial intelligence and cognitive systems have demonstrated repeatedly their ability to automate
complex activities that humans find difficult to master. Moreover, there is general agreement that
this ability depends centrally on storing and accessing expertise about the application domain. Dif-
ferences of opinion have arisen primarily about how AI systems should encode this expertise and
how to acquire such content. It is worth reviewing briefly two competing responses to these issues
and some examples of their successful application.

The first approach, which rose to prominence during the 1970s and 1980s, is commonly known
as expert systems (Giarratano & Riley, 2018; Waterman, 1986). These typically express expertise
as a collection of rules that codify explicit knowledge about the domain. After interviewing ex-
perts or reading documents, human ‘knowledge engineers’ create domain content manually, much
as a traditional programmer but using modular formalisms that map well onto human knowledge
elements. The expert systems paradigm has led to many fielded artifacts that have improved produc-
tivity or replaced humans. Prototypical applications have dealt with classification tasks, but others
have involved complex procedural knowledge. Examples of the latter include interactive tutors for
mathematics (Anderson et al., 1995), synthetic pilots for tactical air combat (Jones et al., 1999), and
compelling virtual characters for interactive drama (Mateas & Stern, 2005). The main drawbacks

2



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

of this approach are that construction and maintenance of knowledge bases can be time consuming,
error prone, and expensive, much as with traditional software development.

These difficulties led directly to research on machine learning, which initially attempted to au-
tomate the creation of knowledge bases, usually sets of rules, from a moderate number of training
cases. However, despite early successes at producing fielded systems (Langley & Simon, 1995),
the research community gradually turned to statistical methods that required large training sets.
The increased availability of such data has led to compelling applications, especially ones that in-
volve classification. The absence of large data sets for action-oriented domains has caused some
researchers to use simulated environments for learning reactive policies by massive trial and error.
This approach has produced impressive results in game playing (Clark & Storkey, 2015) and phys-
ical control (e.g., self-driving vehicles), but the induced expertise has generally been difficult to
interpret and it has made little contact with human knowledge about the domains.

Recent research on interactive task learning has explored a middle path that tackles expertise
acquisition by tutoring AI systems in natural modalities like language and sketches.1 For example,
Hinrichs and Forbus (2014) describe a system that learns concepts and moves for games from a
combination of natural language and sketches. Similarly, Kirk and Laird (2014) report a program
that acquires game knowledge from a sequence of text instructions and examples, while Sarathy
et al. (2018) combine spoken language and video to learn skills for using everyday objects. More
recently, MacLellan et al. (2018) offer an analysis of the paradigm that covers a wide range of
instructional types, interaction patterns, and communication modalities. Interactive task learning
has given impressive results on the incremental acquisition of procedural knowledge, but it relies on
explicit tutoring that often starts at a high level and works its way downward, which can make the
paradigm tedious and time consuming for human instructors.

An alternative approach, far more scalable, would take advantage of procedural content that has
already been described in detail within technical manuals and similar documents. There has been
some work on learning by reading (e.g., Friedman et al., 2017), but this has focused on extracting
concrete facts from text rather than acquiring complex procedures. Moreover, most such techniques
require training on a corpus of documents before they can be applied to new material (e.g., Liang,
2016; Mitchell et al., 2015). There have been some efforts on extracting procedures from text using
statistical methods (e.g., Kiddon et al., 2015; Park & Nezhad, 2018), but they require thousands of
examples to produce only simple structures, so we do not consider them a viable response to the
problem. Nevertheless, there is clear potential for combining the rich representations of activity as-
sociated with interactive task learning and mechanisms for natural language processing to automate
the acquisition of complex procedural knowledge from instructional text.

3. Theoretical Constraints on Procedure Acquisition

In later sections, we provide a cognitive task analysis of learning complex procedures from instruc-
tional text. However, such an analysis should not occur in a vacuum; it should take into account
widely adopted theoretical postulates about representation, performance, and learning in cognitive
systems. These assumptions will serve constraints on the design of any computational artifact that

1. This emphasis distinguishes it from earlier work on programming by demonstration (Lieberman, 2001).

3



P. LANGLEY, H. E. SHROBE, AND B. KATZ

addresses the task. The ideas we present will be familiar to many readers, but taken together, they
serve as the foundation for an integrated approach to procedure learning that has never been tried.

We will start with postulates about representation, since any tenets about cognitive structure are
logically prior to ones about the processes that operate on them.

• Procedural knowledge consists of modular elements, only some relevant to particular problems.

That is, knowledge about a complex activity is not a black box or opaque mathematical function,
but rather a set of cognitive structures that can be composed as needed. These may take the form of
rules, frames, skills, or graphs, but they are encoded as distinct modular elements. Moreover, only
a subset of these structures will be needed for any given task.

• Procedural knowledge is relational in that each element describes a configuration of entities.

In other words, procedures typically involve multiple objects (e.g., an agent and a manipulated
entity), and they incorporate details about those objects’ configuration. A classic example is a
spatial relation that must hold before one carries out an action (e.g., a compartment’s door must be
open before inserting an object) or that becomes true after application (e.g., the object is inside it).

• Procedural knowledge is causal in that it describes effects of activities under certain conditions.

Procedures specify how to alter the world, typically in terms of changes between relations that hold
before their execution and ones that hold afterward. For example, an object will be outside a com-
partment before taking the action of inserting it and the same object will be inside the compartment
afterwards. This maps directly onto everyday notions of action-oriented causality.

• Procedural knowledge is hierarchical in that it decomposes complex activities into simpler ones.

Humans do not view procedures as simple sequences of actions; they divide them into components
that abstract away from details at high levels, yet can expand them further as needed. The language
used to describe procedures reflects their hierarchical nature and simplifies their acquisition.

• Procedural knowledge is disjunctive in that it specifies different ways to address the same task.

Many procedures include alternative means to achieve the same ends. These may involve genuine
choice or they may be appropriate under different conditions. Such disjunctions offer procedures
substantially greater flexibility than is possible for simple sequences of actions and, when combined
with hierarchical decomposition, they even support recursion.

• An important source of domain content for procedural learning is instructional text.
Despite the current popularity of statistical induction from large data sets, this scheme bears little
resemblance to human learning (Langley, 2016), which benefits greatly from explicit instruction.
Written manuals are a key source of such input and can serve as a repository of procedural informa-
tion for intelligent systems to acquire and then carry out complex activities.

• Syntactic processing of instructional text uses grammatical knowledge to parse sentences.

Most AI research on language processing assumes that documents follow the grammatical rules of
the language in which they are written. The parsing process associates parts of speech and lexical
features with words, as well as identifying phrases that organize them into constituent structures.
There is general agreement on this idea, but it is worth stating explicitly.

4



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

• Semantic processing of such text uses domain knowledge and common sense to extract meaning.

The purpose of reading is not to parse sentences but to infer their meanings, which are encoded
in terms of case frames (e.g., agent, action, object) or a similar structural formalism. A typical
assumption is that meaning extraction operates on the results of syntactic processing, which greatly
constrains the possible interpretations. Some approaches handle syntax and semantics in parallel
(e.g., Jackendoff, 2007), but we will adopt the more common sequential framework.

• Procedure learning acquires cognitive structures incrementally from successive experiences.

Most work on machine learning depends on batch processing of large training sets, often by modi-
fying weights on statistical models. In contrast, we assume that the knowledge acquisition process
is incremental, with each training experience leading to creation of new, modular mental structures,
much as appears to happen in human learning.

• Procedure learning is abductive, explaining training items by linking them to existing structures.

Incremental learning does not create new cognitive structures in isolation. The acquisition process
connects them to elements acquired previously, using stored contents to make sense of the later
experiences. This involves a variety of abduction that reasons over individual training cases to
produce plausible candidates for addition to the knowledge base.

• Procedure learning is cumulative, in that later acquisition builds on structures created earlier.

Just as abductive learning draws on existing knowledge to explain new experiences, so do the ac-
quired structures build on these background elements in a cumulative manner. For instance, a high-
level procedure might refer to low-level ones that were learned previously, using them as scaffolding
to make the acquisition process more tractable.

• Learning is rapid, in that it acquires complex procedures from reasonably few training items.

Unlike the statistical methods that dominate the literature on machine induction, human learning
occurs very rapidly. As noted earlier, each training experience leads to new cognitive structures,
especially when these are directly stated in written instructions. This is a crucial feature for AI
systems that aim to learn complex procedures from text in an effective and scalable manner.

None of these theoretical ideas will be contentious to the cognitive systems community, but
they are rare enough in the recent AI literature that it seems important to state them explicitly and to
clarify the reasons for adopting them. Taken together, they place strong constraints on approaches
to learning procedural knowledge from textual instructions. In addition to these theoretical commit-
ments, we will also adopt a number of simplifying assumptions to make our analyis more tractable.
These include premises that the learner knows the:

• Goals or objectives for each top-level procedure that it is asked to acquire;
• Actions to which the instructions refer, including their effects under particular conditions;
• Relational concepts used to describe the states that arise during the procedure’s execution;
• Syntactic knowledge relevant to the instructions, which include grammatically correct sentences;
• Case frames that describe possible semantic relations and the constraints on these structures.

5



P. LANGLEY, H. E. SHROBE, AND B. KATZ

We will also posit that the learned procedures are primarily qualitative in character, being appro-
priate to guide physical actions but not to automate them fully, as would be necessary in robotic
settings. Moreover, we will limit each set of instructions to a few paragraphs that exclude surround-
ing material, rather than attempting to automatically segment extended documents that describe
many distinct activities. These assumptions further constrain the problem of acquiring procedures
from written instructions and suggest promising avenues to approach this objective.

4. Representing Complex Procedures

Before we can describe our approach to learning procedures, we should first explain their represen-
tation, which must satisfy a number of constraints. The formalism must specify sequential behavior
over time, possibly with some type of parallelism, and procedures must accept arguments or param-
eters that support generality. These structures must also satisfy the representational principles given
earlier. They must be relational, in that they describe configurations of entities, and causal, in that
they specify the effects of activities under given conditions. Procedural knowledge must also be
organized in hierarchical terms to support levels of abstraction and allow conditional disjunctions
that state different ways to handle the same task. Most important, the notation must be modular,
encoding procedures as a collection of elements that can be acquired separately. Classical program-
ming languages satisfy some of these criteria, but they are not inherently relational or causal, they
are not sufficiently modular, and their complicated syntax does not make them easily learnable.

For this, we need a formalism that supports small, modular elements that can be composed into
larger structures. A natural choice is a hierarchical task network or HTN (Nau et al., 2003), which
comprises a set of methods, each of which specifies a task, conditions under which the method ap-
plies, and a sequence of subtasks or primitive actions. Some variants associate effects with each
method, giving a causal interpretation. Each task and condition consists of a predicate and zero or
more arguments, such as (unscrew ?cap ?body) and (screwed-on ?cap ?body). These relational pred-
icates may primitive or defined elsewhere in rules similar to Prolog clauses. The ability of methods
to invoke subtasks leads directly to hierarchical programs. Different clauses may share a task name,
thus supporting disjunctive behavior, and a method may call on itself, giving recursion. Despite this
power, HTNs specify complex procedures in a modular way that encourages incremental learning
(e.g., Langley et al., 2009). They are typically used for knowledge-guided plan generation (Nau
et al., 2003; Shrobe, 2002), but also support hierarchical reactive control (Choi & Langley, 2018).

Nau et al. (2003) have shown formally that hierarchical task networks have greater expressive
power than classical plans, but we will not claim they are the only representational framework that
meet our criteria. For example, production systems (Klahr, Langley, & Neches, 1987) offer equiva-
lent representational power, appear to map well onto human knowledge structures, and are modular
enough to support incremental learning. The main difference is that they require multiple rules to en-
code a single HTN method, but research with ACT-R (Anderson, 1993) and Soar (Laird, 2012) has
shown they can encode complex procedures. Other frameworks are less appropriate for our needs.
Declarative representations, such as knowledge graphs and logic programs, emphasize monotonic
inference rather than activities that alter the environment to achieve goals. They can be adapted to
procedural settings, but do not lend themselves to them in the same way as HTNs and production

6



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

systems. Dynamic Bayesian networks, partially observable Markov decision processes, and proba-
bilistic programs support action over time and offer modularity, but their emphasis on uncertainty
would be a distraction for our needs, as such details rarely arise in instructional documents.

For these reasons, we propose to adopt hierarchical task networks for our work on rapid proce-
dural learning, although we will draw on a number of useful extensions. These include augmenting
the notation for methods to include expected effects (Li et al., 2012), associating methods with goals
they achieve (Shivashankar et al., 2012), and specifying temporal constraints on subtasks (Stracuzzi
et al., 2009). The latter provides support not only for hierarchical physical activities, but for ones
that involve coordination among multiple agents who must time their actions to achieve joint goals,
which can be especially important in applied settings. Hierarchical task networks have also been
extended to include probabilistic outcomes, but, again, these are not required to specify the basic
structure of procedural knowledge and we will not focus on them here.

5. Learning Complex Procedural Knowledge

Our cognitive task analysis of learning procedures from documents decomposes the problem into
three subtasks. These include parsing text to produce a syntactic analysis of its content, transforming
these structures into semantic representations, and using the results to extend an existing hierarchical
task network. In this section we examine each of these subtasks in turn, including possible ways
to address them. After this, we consider how we could combine them to learn complex procedures
from instructional text.

5.1 Syntactic Processing

Because we want to learn procedural knowledge from instructional documents, the first step is to
process that text syntactically. We can start this parsing task as:

• Given: Sentences that describe complex procedures and associated concepts;
• Given: Grammatical knowledge about the structure of sentences in a language;
• Given: Lexical knowledge about the words that appear in the language’s sentences;
• Generate: Grammatical parses of these sentences that specify their syntactic structure.

A typical parse assigns a part of speech (e.g., adjective, noun, verb) to each word, associates fea-
tures with them (e.g., singular, past), and groups words into constituent phrases (e.g., noun, verb,
and adjectival phrases). The standard unit of syntactic processing is a single sentence, so that pars-
ing instructional text requires interpreting a sequence of connected sentences. Written text differs
substantially from everyday speech because it generally follows the rules of grammar and lacks the
disfluencies that occur in spoken language.

Consider the instructions in Table 1 for preparing hard boiled eggs, which are paraphrased
slightly from the Web site https://www.allrecipes.com/, This simple recipe not only specifies a se-
quence of steps, but also includes conditional statements about when to halt subactivities. The text
does not explain the details of peeling the eggs after they have been cooked, but it clarifies the
character of typical procedural instructions. Syntactic processing would produce a parse for each
sentence in this paragraph. For example, it would identify the second line as a conjunction of two

7



P. LANGLEY, H. E. SHROBE, AND B. KATZ

Table 1. A simple recipe for preparing hard boiled eggs, which we have paraphrased slightly from the version
at the Web site https://www.allrecipes.com/.

To make Hard Boiled Eggs,
Place eggs into a saucepan and pour cold water to cover the eggs.
Place the saucepan over high heat.
When the water just starts to simmer, turn off heat.
Cover pan with a lid, and let the pan rest for 17 minutes.
Drain the hot water and pour cold water over eggs.
Drain the cold water.
Refill the saucepan with additional cold water.
Allow the eggs to stand until they are cool.
Wait for 20 minutes.
Peel eggs under running water.

clauses connected by ‘and’. The fourth line specifies a condition, ‘When the water just starts to
simmer’, which refers to an event that follows placing the pan over high heat. The conditioned
passage, ‘turn off heat, cover pan with a lid, and let the pan rest’, is an imperative statement, with
the reader as its elided subject and a conjunctive verb phrase in which ‘turn off’, ‘cover’, and ‘let
rest’ are the verbs. Other sentences have similar complexity. The instructions follow the rules of
English grammar and contain few ambiguities.

Syntactic parsers have a long history in AI, dating back to the 1960s (e.g., Green et al., 1961).
Over five decades of research have produced many different approaches to this task, but the most
popular current methods rely on statistical models that are trained on a large corpus of annotated
sentences. Although these are prevalent in the academic community and dominate the recent lit-
erature, training corpora can take considerable time to collect and substantial effort to annotate.
Moreover, this process must be repeated each time one encounters a new application domain. A
promising alternative is to use a broad-coverage English parser that relies on hand-entered gram-
matical and lexical knowledge. Despite widespread rhetoric about the benefits of statistical parsers
that require training, such non-statistical manually-created systems are competitive and they have
been used in successful applications (e.g., McShane, Nirenburg, Beale, & Johnson, 2012).

One such system is START (http://start.csail.mit.edu/), a mature syntactic parser developed by
Katz (1988, 1990, 1997) and his colleagues over three decades, that covers a wide range of English
constructions and that includes a very broad lexicon. For a given sentence, the system generates a
set of nested triples of the form [subject relation object], where the subject and object may them-
selves be triples (e.g., [John drove [car in garage]]. These ternary expressions provide a versatile
syntax-oriented notation for language that encodes syntactic and lexical features and that highlights
significant relations. These compact structures support the efficient storage, matching, and retrieval
of linguistic content. START handles reference resolution within and across sentences, but it delays
decisions about prepositional phrase attachments for later processing. The default system produces

8



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

Table 2. Syntactic triples generated by the START system from the first three sentences in the sample recipe.
Each triple encodes a pairwise relation between items, with the numbers denoting instances of generic types.
We have not included any triples that describe number, tense, or similar syntactic details.

1. Place eggs into a saucepan and pour cold water to cover the eggs.
[you place-4 eggs-1]
[place-4 into-6 saucepan-1]
[pour-5 has_purpose-7 cover-6]
[you pour-5 water-1]
[you cover-6 eggs-1]
[water-1 has_property-8 cold]

2. Place the saucepan over high heat.
[you place-7 saucepan-1]
[place-7 over-9 heat-1]
[heat-1 has_property-10 high]

3. When the water just starts to simmer, turn off heat.
[turn_off-1 when-1 start-2]
[you turn_off-1 heat-1]
[water-1 start-2 simmer-3]
[water-1 simmer-3 null]
[start-2 has_modifier-2 just]

a single parse, but it can be tuned to generate multiple interpretations if desired. START incor-
porates substantial knowledge about English grammar and it has been used in many applications,
from mobile phone interfaces (Katz et al., 2007) to question-answering systems (Katz et al., 2006)
to design assistants (Shrobe et al., 2015). Moreover, the software does not require training on an
annotated corpus for new domains, which makes it a natural choice for our research effort.

Table 2 shows the syntactic triples generated by START from the first three sentences of the
recipe in Table 1. Most terms come directly from the text, but a few are inferred from grammatical
knowledge. For instance, some of the triples include you as their first element because it can be
assumed when a sentence lacks an explicit subject. Similarly, the third triple states that the purpose
of the pour activity is to cover the eggs, since this is a natural interpretation of to in the first sentence.
However, these are shallow inferences that remain closely tied to the sentence, and we intend this
only as an illustrative example. START is certainly not the only parsing system that we might use
to process instructional text, but we favor ones that already have broad coverage of English and that
do not require training on a large corpus of sentences. Nevertheless, any parser will occasionally
encounter unfamiliar words and constructions that its knowledge base does not encompass. We
should extend the system so that, in such cases, it asks a human to provide details about parts of
speech or elements of grammar that will let it complete the parse. START makes it reasonably

9



P. LANGLEY, H. E. SHROBE, AND B. KATZ

easy to enter new syntactic constructions and lexical items needed for a particular application. This
approach is similar in spirit to work on interactive task learning, but focuses on local repairs to
syntactic knowledge rather than the acquisition of entire procedures.

5.2 Semantic Processing

Parsing is merely the first step in learning procedural knowledge from instructional text, as it pro-
vides only the grammatical structures of sentences. We must still transform these into a semantic
representation that encodes their meanings. We can state this problem as:

• Given: Parses of sentences about complex procedures and associated concepts;
• Given: Knowledge that maps syntactic structures onto meaning representations;
• Given: Knowledge about relations between words and their connection to concepts;
• Generate: A set of linked semantic structures that specify the sentences’ meanings.

As with parsing, the typical unit of meaning extraction is a single sentence, but this is complicated
by the fact that later passages refer to entities or activities introduced in earlier ones. Resolving
synonyms for the same object is an obvious example, but other cross-sentence connections are
important as well. Another key challenge is that text seldom makes everything explicit, so that
semantic processing must fill in the gaps using some form of plausible inference.

Let us return to the earlier instructions for cooking hard boiled eggs specifically first half of the
second line. Here semantic processing should infer ‘place’ is an action, the reader is its agent, ‘eggs’
is its object, and the ‘saucepan’ is the destination. One must also realize that the location of the
second action, ‘pour’, is also the saucepan. Some passages map onto descriptions of states that occur
during the procedure, while others correspond to activities that transform these states. Fillmore-style
(1968) case frames (e.g., with roles for agent, instrument, object, destination) are natural candidates
for encoding larger-scale structures. Different frames can share arguments to provide a connected
network of states and activities, similar in spirit to an abstract plan. Table 3 shows some case
frames that might result from the first of the parsed sentences in Table 2. Generating such structures
requires knowledge about the types of relations and actions available, as well as constraints on their
arguments. For example, the action place includes an animate agent (you), an inanimate object
(eggs), and a target destination (the pan). Such frames can also introduce details that were implicit
in the text, such as that the eggs had a location before being moved into the pan.

Semantic interpretation has been studied less extensively than parsing, but there has been con-
siderable work on the topic for at least four decades. One example is Winston and Holmes’ (2018)
Genesis, a story understanding system which they have already integrated with START. Genesis
invokes the parser to determine the grammatical structures for sentences, then transforms the re-
sults into semantic representations that specify categories, relations, actions, and events. The latter
process relies on generic rules that match against patterns of syntactic forms (encoded as START
triples) and translates them into Fillmore-style (1968) case frames (e.g., agent, beneficiary, instru-
ment, object) that group the triples’ contents into larger-scale structures. Moreover, the system
uses WordNet (https://wordnet.princeton.edu/) to map synonyms onto canonical encodings, giving
the same internal representation for different sentences with equivalent meanings. Together, these
mechanisms turn the syntactic structures produced by START into semantic ones that can be used

10



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

Table 3. Semantic case frames for relations and actions that might be inferred from a subset of the syntactic
triples in Table 2. These do not include start and end times for relations that change during the activity.

(eggs ^id eggs-1) (saucepan ^id saucepan-1) (person ^id you)
(place ^id place-4 ^agent you ^object eggs-1 ^source ?f ^destination saucepan-1)
(pour ^id pour-5 ^agent you ^object water-1 ^destination saucepan-1)
(cold ^id property-8 ^object water-1)
(covers ^id covers-1 ^container water-1 ^object eggs-1)
(in ^id in-1 ^object eggs-1 ^location saucepan-1)

for summarization, question answering, and other language-related tasks. Recent work by Yang and
Winston (2018) has even extended the framework to acquire constrained procedures from stories
that describe how people repair malfunctioning phones.

Genesis is not the only semantic interpreter that we might use to transform parses into meaning
structures, but it offers the clear advantage of already being linked to START.2 Even so, the existing
system will sometimes encounter words or syntactic outputs for which it lacks case frames, and
we should extend it to handle such situations by asking a human to provide the missing translation
rules. We should also augment the representation of case frames that describe activities to incor-
porate conditions and effects, which can then serve in the specification of procedures. This should
include generic knowledge about common physical processes, such as opening containers, filling
them, and heating them, as analyzed by Schmolze (1986) for many everyday activities. Finally,
despite the availability of semantic constraints, there will reman instructions that have ambiguous
meanings (e.g., where to attach prepositional phrases), so we should extend Genesis to support
multiple interpretations that it resolves later as more information becomes available.

5.3 Constructing Procedures

Once the learner has generated a semantic interpretation of an instructional unit like a sentence or
short paragraph, it can transform this meaning into one or more cognitive structures that encode
procedural knowledge. We can specify this problem as:

• Given: A description of some procedure’s initial conditions, sequential steps, and final effects;
• Given: Existing knowledge about primitive actions, other procedures, and associated concepts;
• Generate: A set of HTN methods that encode this procedure and relate it to existing knowledge.

The simplest training items will contain content about individual HTN methods or conceptual def-
initions. However, instruction manuals present a sequence of statements that, together, specify a
complex set of linked procedures. The learner must deal with these incrementally, producing new
cognitive structures that serve as background knowledge for later training elements. Any system

2. Of course, some theories of language understanding (e.g., Jackendoff, 2007) assume a deeper integration of syntactic
and semantic processing. These suggest an alternative approach to extracting meaning from instructional text.

11



P. LANGLEY, H. E. SHROBE, AND B. KATZ

that learns hierarchical task networks or equivalent representations must address three issues. First,
it must determine the hierarchical structure of the network, i.e., how to decompose high-level tasks
into subtasks, subsubtasks, and so on. Second, it must identify the conditions and (optional) effects
for each method, that is, when the method applies and what results it produces. Third, it must decide
when distinct methods provide alternative solutions to the same high-level task. Research on HTN
learning has always addressed these three challenges, although responding in different ways.

Fully explicit instruction makes these issues much simpler, in that it states directly the subtasks
for a method M, the conditions and effects for M, and the task that M accomplishes. This is the
approach taken by recent work on interactive task learning (MacLellan et al., 2018), which specifies
each procedural element in such terms. This paradigm typically assumes that hierarchical activities
are specified from the top down, but one could use similar techniques to communicate procedures
from the bottom up. Either way, the result is a hierarchical but grounded set of methods for carrying
out complex tasks. We will support such explicit instruction, which basically involves direct trans-
lation from a semantic representation extracted from text to a hierarchical task network that can be
used for planning, execution, or other activity. Most of this ability should be handled by Genesis or
an analogous module for meaning interpretation.

However, instructional documents are seldom so precise and complete. They may specify a
sequence of actions without indicating how to organize them into a hierarchy, as in many recipes.
They may omit essential conditions for a method’s application, they may fail to mention some
effects, and descriptions of initial situations or goals may be incomplete. Real-world instructions,
like those in equipment manuals, may even leave out key steps that the writer believes will be
obvious to readers. Finally, when a document presents descriptions for different methods, they may
not state that they are relevant to carrying out the same high-level task. The recipe discussed earlier
is explicit about major steps, but it also leaves out details about intermediate situations and about
actions’ conditions and effects. We need a system for learning complex procedures that handles
each of these types of omissions in a robust manner.

One relevant approach, involving the ICARUS architecture (Choi & Langley, 2018), learns HTN
methods from knowledge about primitive actions and from sample solutions which transform an
initial state into another that satisfies a goal specification (Nejati et al., 2006; Li et al., 2009). This
uses a version of means-ends analysis to reason backward from the goal description G, showing
how each step either achieved some aspect of G or enabled another action that ultimately led to G.
Because means-ends decomposes a problem into subproblems recursively, it produces a hierarchical
breakdown of the task, with each subtree of this decomposition producing a new method. The
method’s conditions include those state elements needed to apply its component actions and its
effects combine the effects of these components; two methods are given the same task name when
they achieve the same subgoal. ICARUS creates new hierarchical methods as needed from each
sample solution, so learning is incremental, cumulative, and rapid. The architecture can execute
these structures reactively or use them for planning on novel problems.

Again, ICARUS’ mechanism is not the only approach to constructing hierarchical task networks
from sequences of steps, but some form of analytic or abductive learning seems necessary for rapid
acquisition. Nevertheless, the existing approach requires a number of extensions to make it more
robust, including the addition of new abilities for:

12



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

• Inferring omitted actions by using means-ends analysis, with limited search, to fill in the gaps
between disconnected portions;

• Imputing missing conditions on high-level methods or primitive actions in an instructional se-
quence by noting that a previous step has no other purpose;

• Filling in the effects of high-level methods or primitive actions that were omitted from instruc-
tions but that are needed for the conditions of later steps;

• Ignoring incidental or irrelevant actions in the instructional text that do not contribute to achiev-
ing the goal description; and

• Handling instructions that refer to abstract methods rather than concrete actions by expanding
the former if already defined or delaying learning until they have been acquired.

We can view each of these extensions in terms of constrained search to links disconnected portions
of solution traces, for which means-ends analysis offers direct support. Augmenting the ICARUS

learning module along these lines would complement the extensions to START and Genesis that we
outlined earlier to let them jointly acquire complex procedures from realistic textual instructions.

5.4 System-Level Issues

Recall that our objective is a computational artifact that reads instructional text, extracts its proce-
dural content, and encodes the latter in a hierarchical task network for later use. We have decribed
the component subtasks that arise in this setting, but we will also need to combine them into an inte-
grated cognitive system for learning procedures from documents. Fortunately, previous research has
already accomplished some of this integration. We have seen that Genesis inputs parses of text from
START and transforms them into frames that describe situations, events, and activities, some of
which characterize multi-step procedures. However, integrating an HTN learning mechanism with
such modules seems more challenging. Work in this area assumes that training cases specify an
initial situation, a sequence of primitive actions, and one or more goals they achieve. Information
about the component actions’ conditions and effects must be available as background knowledge
that goes considerably beyond traditional case frames, so we must find some way to connect the
two notations. This linkage appears to be a key step in the incremental acquisition of hierarchical
procedures from written instructions.

We also want an approach to procedural learning that is flexible. If the instructions make explicit
the hierarchical structure of some activity, then it should translate this content directly into new HTN
methods. If the text instead presents only example sequences of low-level actions, then the system
should use means-ends analysis to infer and create the hierarchical structure. The same should hold
for methods’ conditions and effects, which may be described explicitly, remain implicit in the text,
or be specified only partially. Nevertheless, the system will sometimes lack the knowledge about
state predicates, primitive actions, or high-level tasks on which analysis depends. In such cases,
it should ask a human for clarification about the meaning of terms or the conditional effects of an
activity, although this should happen only as a last resort, as we want to avoid the detailed tutoring
associated with the paradigm of interactive task learning. These requirements suggest that the inte-
grated system include a number of distinct modes from which it selects depending on instructional
content and its prior knowledge.

13



P. LANGLEY, H. E. SHROBE, AND B. KATZ

6. Using Learned Procedures

Procedural knowledge does not exist for its own sake. Intelligent agents, human or otherwise, draw
on cognitive structures to perform some task, and showing use of knowledge in this manner is the
standard way to demonstrate the benefits of learning, regardless of its details. To show that an
approach to learning complex procedures is effective and useful, we must commit to a particular
performance task and provide a corresponding performance system that can draw upon the acquired
knowledge to address this problem. Only then can we show empirically that learning produces a
desirable impact on behavior.

Procedural knowledge has many potential applications. The one receiving the most attention
currently is reactive execution of physical devices like self-driving cars and autonomous drones.
However, this would require linking hierarchical procedures with techniques for low-level sensing
and control that are challenging in their own right. We might connect autonomous agents to sim-
ulated environments for urban driving, which would bypass the need for physical platforms, but
the natural performance measures would still focus on fine-grained control, which is not our main
objective. Another important application is training, since instruction depends on stored content to
share with students, but this would require construction of an interactive tutoring system that raises
other issues off the main line of our research. Similarly, we might use learned procedural knowl-
edge to monitor human behavior to detect when personnel diverge from established practices, but
this would again depend on low-level processing of video or other sensor streams that would delay
progress on our core concerns.

A more promising approach is to focus on high-level execution of acquired procedures. Al-
though most work on hierarchical task networks addresses plan generation (e.g., Nau et al., 2003),
some research has used them for reactive execution (e.g., Choi & Langley, 2018), in some cases
over learned knowledge. In this setting, we could provide the performance element with an initial
situation, including objects and resources, and a task or set of objectives. The system would then
retrieve relevant methods, decompose them as needed, and, upon reaching primitive actions, declare
it was carrying them out, checking the situation that results in each case. Rather than interacting
with a physical simulator, it would receive state information from a human overseer. This arrange-
ment would support scenarios that involve unreliable actions and information-gathering activities,
thus demonstrating the reactive character of procedure execution while avoiding the need to handle
low-level perception and control required in other contexts.

7. Evaluation of Procedural Acquisition

We should also consider ways to evaluate the effectiveness of a system that acquires complex proce-
dures from instructional text. One issue concerns candidate testbeds that we might use to this end.
Ideal domains would include a variety of distinct procedures, each of which already has accompa-
nying instructions. Two promising domains include:

• Meal preparation, for which written recipes are readily accessible (e.g., https://sites.google.com/
site/kzhaigh/dinner-co-op) and which often require substitutions because specified ingredients
are unavailable. This application offers a good starting point, not only because recipes are brief,
simple, and self contained, but also because they are familiar to people throughout society.

14



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

• Repair of shipboard equipment, such as the engine, bilge pumps, and drive trains, for which
written manuals are available and for which the possibility of different malfunctioning compo-
nents requires testing and conditional response. This testbed is more challenging than the first
domain, with longer and more complex procedures.

Access to subject matter experts is also important, both for access to relevant technical manuals
and for the background knowledge needed to interpret them. Fortunately, many people are highly
skilled in cooking, and there are enough who have experience with shipboard repair that finding
them should pose little problem.

We can evaluate the learned procedures in two complementary ways. First, we would manually
develop, with advice from subject matter experts, hierarchical task networks from a representative
sample of instructions for each domain. As described earlier, these would specify complex proce-
dures as a set of methods, each comprising a task, conditions, subtasks, and effects. Dependent
measures for these basic studies would include precision and recall over the learned procedural
steps, both primitive and higher level, for each document as compared to the target knowledge base.
The aim would be to demonstrate the ability to reconstruct known procedures from instructions
with high precision and recall of their elements. We would compare not only the hierarchical or-
ganization of learned procedures with target structures, but also the accuracy of their arguments,
conditions, and effects. Moreover, for each document, we would record the number of times the
system required human intervention (e.g., asking questions about missing syntax or case frames),
along with both human and CPU time required to process the instructions.

Second, we can devise a suite of test scenarios, again with input from subject matter experts,
for each domain. Each test problem would include an initial situation, a task or set of goals, and,
optionally a set of facts that would remain unobserved until appropriate tests are carried out. For
example, scenarios for meal preparation would specify a set of available ingredients, cooking uten-
sils, and the type and amount of dish to be prepared. For repair of shipboard equipment, they would
describe initially known behavior (e.g., water is collecting in bilge), a set of goals (e.g., no water in
bilge), available spare parts and test devices, and hidden malfunctions that testing can reveal. The
performance measure here would be whether the execution module can use the learned knowledge
to achieve the goals for given scenarios, as reported by Nejati et al. (2016) in their work on HTN
learning. Incorrect or incomplete knowledge can lead to false steps or dead ends that fail to solve
the problem at hand. Typically, the system would either succeed or fail on a given task, although we
could award partial credit for those with multiple goals.

Such experiments would test a number of empirical claims by examining the effect of indepen-
dent factors on task performance. These might involve testing hypotheses about graceful degrada-
tion of learned behavior as one increases the:

• Number of component actions that are omitted from the text but that are needed to achieve the
associated goals, which will reveal the ability to leap over instructional gaps;

• Number of conditions and effects that are omitted from methods or actions mentioned in the
instructions, which will indicate the learner’s robustness to such elisions;

• Frequency of extraneous actions that appear in the text but that are not necessary to achieve
goals, which will measure the system’s capacity to determine relevance; and

15



P. LANGLEY, H. E. SHROBE, AND B. KATZ

• Level of detail at which methods are described, which will demonstrate the learner’s ability to
process instructions at different degrees of abstraction.

These are all examples of scaling studies (Langley, 1996) that vary some factor which seems likely
to affect task difficulty. We might also collect learning curves that report the rate of performance
improvement as a function of the number of instructions processed. Early runs would focus on
simple documents with paraphrased sentences to reduce the need for extensions to modules, while
later ones would use longer sources with unmodified contents. Together, these studies should both
demonstrate the ability to learn correct complex procedures from written text and to execute this
knowledge to achieve goals in the domain.

8. Concluding Remarks

In the previous pages, we specified the task of learning complex procedures from instructional doc-
uments and presented a cognitive task analysis of this challenging problem. We proposed a number
of theoretical constraints to guide research on the topic. These included the importance of represent-
ing activities in a modular, relational, causal, and hierarchical manner, which suggested hierarchical
task networks as a promising formalism. After this, we examined three component tasks: syntac-
tic processing of instructions to generate parses, semantic interpretation of these parses to produce
case frames, and knowledge-guided transformation of these meaning structures into procedures. In
addition, we reviewed three existing artifacts that address these subtasks and that could serve as
elements in an integrated system. Furthermore, we considered some performance settings in which
to demonstrate the learned knowledge, along with issues related to the experimental evaluation of
implemented systems. The latter included likely dependent measures and some independent factors
that would let us test hypotheses about the robustness of procedure acquisition.

Although a task analysis is the natural first step in tackling any difficult problem, we must also
build on this start by implementing a computational artifact, demonstrating its behavior on illustra-
tive scenarios, and running controlled experiments to test claims about its abilities. To this end, we
plan to combine and extend existing software for syntactic parsing, meaning extraction, and analyt-
ical learning – specifically START, Genesis, and ICARUS – into an integrated cognitive system that
acquires hierarchical procedures from instructional text. This new approach to knowledge acquisi-
tion provides an approach to creating content about goal-directed activities that is more automated
than recent, complementary work on interactive task learning. Moreover, it offers an important
and practical alternative to the two extremes of handcrafted knowledge bases and data-intensive
induction, letting us sail safely between the Scylla and Charibdis that have dominated the straits of
artificial intelligence for many years.

Acknowledgements

This research was supported by Grant N00014-20-1-2643 from the Office of Naval Research, which
is not responsible for its contents. We thank Patrick Henry Winston, Zhutian Yang, Dylan Holmes,
and Sue Felshin for useful discussions that influenced the ideas reported here.

16



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons

learned. The Journal of the Learning Sciences, 4, 167—207.
Choi, D., & Langley, P. (2018). Evolution of the ICARUS cognitive architecture. Cognitive Systems

Research, 48, 25–38.
Clark, C., & Storkey, A. (2015). Training deep convolutional neural networks to play Go. Proceed-

ings of the Thirty-Second International Conference on Machine Learning (pp. 1766–1774). Lille,
France.

Fillmore, C. J. (1968). The case for case. In E. Bach & R. T. Harms (Eds.), Universals in linguistic
theory. New York: Holt, Rinehart, & Winston.

Friedman, S., Burstein, M., McDonald, D., Plotnick, A., Bobrow, R., Cochran, B., & Pustejovsky,
J. (2017). Learning by reading: Extending and localizing against a model. Advances in Cognitive
Systems, 5, 77–96.

Giarratano, J. C., & Riley, G. D. (2018). Expert systems: Principles and programming (4th Ed.).
Pacific Grove, CA: Brooks-Cole Publishing.

Green, B. A. Wolf, A. K., Laughery, K., & Chomsky, C. (1961). Baseball, an automatic question-
answerer. Proceedings of the Western Joint Computer Conference (pp. 219–224). Los Angeles.

Hinrichs, T. R., & Forbus, K. D. (2014). X goes first: Teaching simple games through multimodal
interaction. Advances in Cognitive Systems, 3, 31–46.

Jackendoff, R. (2007). A parallel architecture perspective on language processing. Brain Research,
1146, 2–22

Jones, R. M., Laird, J. E., Nielsen P. E., Coulter, K., Kenny, P., & Koss, F. (1999). Automated
intelligent pilots for combat flight simulation. AI Magazine, 20, 27–42.

Katz, B. (1988). Using English for indexing and retrieving. Proceedings of the First RIAO Confer-
ence on User-Oriented Content-Based Text and Image Handling (pp. 313—333). Paris.

Katz, B. (1990). Using English for indexing and retrieving. In P. H. Winston & S. A. Shellard
(Eds.), Artificial intelligence at MIT: Expanding frontiers (Vol. 1). Cambridge, MA: MIT Press.

Katz, B. (1997). Annotating the World Wide Web using natural language. Proceedings of the Fifth
RIAO Conference on Computer Assisted Information Searching on the Internet (pp. 136–159).
Montreal, QC.

Katz, B., Borchardt, G., & Felshin, S. (2006). Natural language annotations for question answer-
ing. Proceedings of the Nineteenth International FLAIRS Conference (pp. 303–306). Melbourne
Beach, FL.

Katz, B., Borchardt, G., Felshin, S. & Mora, F. (2007). Harnessing language in mobile environ-
ments. Proceedings of the First IEEE International Conference on Semantic Computing (pp.
421–428). Irvine, CA: IEEE Press.

Kiddon, C., Ponnuraj, G. T., Zettlemoyer, L., & Choi, Y. (2015) Mise en Place: Unsupervised
interpretation of instructional recipes. Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (pp. 982–992). Lisbon, Portugal: ACL.

Kirk, J. R., & Laird, J. E. (2014). Interactive task learning for simple games. Advances in Cognitive
Systems, 3, 13–30.

17



P. LANGLEY, H. E. SHROBE, AND B. KATZ

Klahr, D., Langley, P., & Neches, R. (Eds.) (1987). Production system models of learning and
development. Cambridge, MA: MIT Press.

Laird, J. E. 2012. The Soar cognitive architecture. Cambridge, MA: MIT Press.
Langley, P. (October, 1996). Relevance and insight in experimental studies. IEEE Expert, 11–12.
Langley, P. (2016). The central role of cognition in learning. Advances in Cognitive Systems, 4,

3–12.
Langley, P., Choi, D., & Rogers, S. (2009). Acquisition of hierarchical reactive skills in a unified

cognitive architecture. Cognitive Systems Research, 10, 316–332.
Langley, P., & Simon, H. A. (November, 1995). Applications of machine learning and rule induc-

tion. Communications of the ACM, 38, 55–64.
Li, N., Stracuzzi, D. J., Langley, P., & Nejati, N. (2009). Learning hierarchical skills from prob-

lem solutions using means-ends analysis. Proceedings of the Thirty-First Annual Meeting of the
Cognitive Science Society. Amsterdam.

Li, N., Stracuzzi, D. J., & Langley, P. (2012). Improving acquisition of teleoreactive logic programs
through representation extension. Advances in Cognitive Systems, 1, 109–126.

Liang, P. (2016). Learning executable semantic parsers for natural language understanding. Com-
munications of the ACM, 59, 68–76.

Lieberman, H. (Ed.) (2001). Your wish is my command: Programming by example. San Francisco,
CA: Morgan Kaufmann.

MacLellan, C., Harpstead, E., Marinier, R., & Koedinger, K. (2018). A framework for natural
cognitive system training interactions. Advances in Cognitive Systems, 6, 177–192.

Mateas, M., & Stern, A. (2005). Structuring content in the Façade interactive drama architecture.
Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment (pp. 93–98).
Marina del Rey, CA: AAAI Press.

McShane, M., Nirenburg, S., Beale, S., & Johnson, B. (2012). Resolving elided scopes of modality
in OntoAgent. Advances in Cognitive Systems, 2, 95–112.

Mitchell, T. M., et al. (2015). Never-ending learning. Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (pp. 2302–2310). Austin, TX: AAAI Press.

Nau, D., Au, T., Hghami, O., Kuter, U., Murdock, J., Wu, D., & Yaman, F. (2003). SHOP2: An
HTN planning system. Journal of Artificial Intelligence Research, 20, 379–404.

Nejati, N., Langley, P., & Könik, T. (2006). Learning hierarchical task networks by observation.
Proceedings of the Twenty-Third International Conference on Machine Learning (pp. 665–672).
Pittsburgh, PA.

Park, H., & Nezhad, H. R. M. (2018). Learning procedures from text: Codifying how-to procedures
in deep neural networks. Proceedings of the 2018 World Wide Web Conference (pp. 351–358).
Lyon, France.

Sarathy, V., Oosterveld, B., Krause, E., & Scheutz, M. (2018). Learning cognitive affordances for
objects from natural language instruction. Advances in Cognitive Systems, 7, 135–156.

Shivashankar, V., Kuter, U., Nau, D., & Alford, R. (2012). A hierarchical goal-based formalism
and algorithm for single-agent planning. Proceedings of the Eleventh International Conference
on Autonomous Agents and Multiagent Systems (pp. 981–988). Valencia, Spain.

18



ACQUIRING PROCEDURES FROM WRITTEN INSTRUCTIONS

Shrobe, H. (Winter, 2002). Computational vulnerability analysis for information survivability. AI
Magazine, 23, 81–81.

Shrobe, H. E., Katz, B., & Davis, R. (2015). Towards a programmer’s apprentice (again). Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 4062–4066). Austin,
TX: AAAI Press.

Schmolze, J. G. (1986). Physics for robots. Proceedings of the Fifth National Conference on Artifi-
cial Intelligence (pp. 44–50). Philadelphia, PA: Morgan Kaufmann.

Stracuzzi, D. J., Li, N., Cleveland, G., & Langley, P. (2009). Representing and reasoning over
time in a cognitive architecture. Proceedings of the Thirty-First Annual Meeting of the Cognitive
Science Society. Amsterdam.

Waterman, D. A. (1986). A guide to expert systems. Reading, MA: Addison-Wesley.
Winston, P. H. & Holmes, D. (2018). The Genesis enterprise: Taking artificial intelligence to

another level via a computational account of human story understanding (CMHI Report No. 1).
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA.

Yang, Z., & Winston, P. H. (2018). The Genesis enterprise: Learning by asking questions and
learning by aligning stories (CMHI Report No. 3). Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

19


