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1. Introduction

One hallmark of human cognition is our ability to function in an open-world. People navigate
to previously unseen places, perform new tasks, and integrate new technology into their lives. In
games, human flexibility supports inventing new strategies along with adapting to changing rules
(e.g., consider chess players who play bughouse!). While current Al systems perform superhuman
in many game domains, each of these domains is a closed-world, and minor perturbations of the
game can lead to significant drops in performance. Witty et al. demonstrated that even changes
which made the game easier could cause catastrophic results for superhuman performing deep Q-
learning agents (Witty et al., 2018). This mismatch between human cognitive abilities and machine
capabilities indicates that adapting to novelty is a cognitive systems problem.

In this paper, we introduce Hypothesis-Guided Model Revision over Multiple Aligned Represen-
tations (HYDRA), our approach to model-based novelty response. We take the cognitive systems
view that learning is a goal-oriented activity undertaken when predictions from models differ from
observations in the environment. We define the novelty problem in the Science Birds domain and
outline our system design. Central to our design is the use of mixed continuous-discrete planning
formalism, namely PDDL+ (Fox & Long, 2006), to model the Science Birds domain. We demon-
strate how this enables HYDRA to play the game as well as adapt to many types of novelty by
making localized modifications to the domain theory. Next, we present a case study demonstrating
how HYDRA adapts its domain theory to changing dynamics in ballistic flight. We close with a
discussion of different issues we expect to address in the course of this project.

2. Problem Definition

Science Birds is a freely-distributable version of the popular Angry Birds game. The player launches
birds in sequence at a structure made out of different material blocks with the goal of destroying the
pigs inside. Different birds and structures have different actions (e.g., yellow birds accelerate when
the player taps the screen during flight) and properties (e.g., TNT objects explode when damaged

1. https://en.wikipedia.org/wiki/Bughouse_chess
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by birds or other falling objects). Science Birds is a challenging domain for Al agents due to
the continuous action space and the large state space of resulting block configurations, and has
maintained a yearly competition since 2012 (Renz et al., 2019).

Our agent interacts with the game through a server with the following API. After the level
is loaded, the agent is given a list of objects with their outer hull polygons and a color-map that
specifies the amount of each color in inside the polygon?. The agent specifies shots by providing an
(X,Y) position to launch from and a time ¢ to tap the screen. The screen tap initiates actions based
on bird type (e.g., a bomb bird will explode a few seconds after it is tapped). After each action, the
score is updated.

We are studying novelty as something that is introduced into the environment while an agent is
performing tasks. In the context of Science Birds, the agent plays a sequence of levels. At some
point in the sequence, novelty is introduced and all subsequent levels behave with the novelty. An
example of novelty is the introduction of a new bird type with different dynamics and actions that
would be available in future levels. Our objective is to play the game, detect the novelty when it
occurs, and respond to it. The result of this learning will enable our agent to mitigate the effects of
the novelty on its performance and, when possible, take advantage of new opportunities available
due to the change in the environment on future problems in the sequence. Figure 1 illustrates this
process and how we intend to measure performance against a state-of-the-art Al system that is not
designed to respond to novelty.
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Figure 1. A sample Science Birds problem (left) and relevant metrics (right). While we expect that a SOTA
agent will outperform novelty responsive Al systems (e.g., HYDRA) as it is would be tailored to the particular
domain, we expect HYDRA to recover more quickly after novelty is introduced.

3. Proposed Approach

Figure 2 shows an overview of our proposed approach. Science Birds provides the score for the
level and a description of the objects. HYDRA classifies these objects into types in its domain the-
ory, and assesses if they have behaved consistently with the domain theories expectations. These
expectations could be driven by quantitative or qualitative composable models. Any inconsistencies
are localized to model components using model-based diagnosis and learning problems are formu-

2. Raw pixels for the entire image are also available, but we do not use them in our system.
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Figure 2. The HYDRA architecture draws on multiple model representations to plan actions, observe their
effects, and focus learning.

lated. For example, if HYDRA does not understand why a structure has not fallen over, a possible
explanation is that there is an unseen rigid object supporting it. Then, HYDRA may generate a
plan to satisfy the learning goal by shooting a bird in that area and look for evidence of rigid object
mechanics.

4. Adapting to Novelty with PDDL+

HYDRA’s approach is centered around a planning module tasked with solving Science Birds lev-
els. Science Birds is an interesting planning problem containing non-linear dynamics as well as
both discrete and continuous behaviour. Unlike many other planning problems where most world
changes are the direct result of agent actions, Science Birds dynamics are governed by chains of
reactions triggered by agent actions. These reactions are difficult to predict without modeling the
physics of the Science Birds world.

Due to these properties, we chose PDDL+ (Fox & Long, 2006) as the planning formalism for
HYDRA. PDDL+ allows modelling of the environment, its dynamics and behaviour, as well as the
agent’s interactions with the environment. The defining characteristic of PDDL+ is the ability to
model exogenous behaviour with discrete events and continuous processes. Events apply discrete
effects instantaneously, whereas processes apply changes continuously while their preconditions
hold. The agent has no direct control over processes and events, and can only interact with exoge-
nous activity indirectly. As noted above, Science Birds is overwhelmingly governed by processes
and events. Thus, PDDL+ is an attractive language for the Science Birds domain theory.

To date, we have created a PDDL+ model that solves a variety of Science Birds levels. However,
planning in PDDL+ can result in search space explosion due to the tight integration of planning
and scheduling over a continuous timeline. To improve the performance, our Science Birds model
relies heavily on the Theory of Waiting (McDermott, 2003) and currently employs only one action
responsible for the release of the bird from the slingshot. This reduces the number of decision points
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Novelty types PDDL+ domain adjustment Novelty example in Science Birds
Spatio-temporal Transformation | Fluent changes Increased the force of gravity
Structures Transformation New objects and fluents Introduced new type of bird
Processes Transformation New and/or changing existing processes Introduced wind

Constraints Transformation New preconditions and/or changed events | Only explosions can kill pigs

Table 1. Description of example novelties that can be encountered in Science Birds, changes to the PDDL+
model required to accommodate them, and their corresponding novelty types defined by Langley (2020).

in the search, which significantly reduces the branching factor. For the dynamics, events represent
collisions between birds, pigs, blocks, platforms, TNT blocks, and the ground, whereas processes
capture the ballistic motion of birds under gravity and changing the possible angle of launch. When
our agent receives a Science Birds level to play, it automatically translates it to a PDDL+ planning
problem under our Science Birds PDDL+ model. Then, we use an off-the-shelf PDDL+ planner,
UPMurphi (Della Penna et al., 2009), to obtain a plan.

4.1 Hypothesis-Guided Model Revision

An advantage of having a PDDL+ model is that it enables simulating the expected state of the
world over time after an action is performed. HYDRA leverages this capability to detect novelty, as
follows. After HYDRA performs an action, it observes the game and collects periodic states from
the game API. Then, HYDRA checks if this sequence of states is consistent with the sequence of
states it expected to observe according to the model. A novelty is detected when the discrepancy
between the observed and expected sequence of states exceeds a predefined threshold.

Following Langley’s recent Theory of Environmental Change (Langley, 2020), we view novelty
as a transformation of the underlying world model. To adapt to novelty, HYDRA must update
its domain model. To accomplish this, it searches for a hypothesis about the transformations that
would be consistent with the observations. HYDRA uses a set of Model Manipulation Operators
to transform the PDDL+ domain theory. To check if a sequence of MMOs is consistent with the
observations, we apply them to the current PDDL+ model, simulate the expected sequence of states
according the modified model, and check if this sequence of states is consistent with the sequence
of states observed in the game. After a consistent model has been found, it is used by HYDRA to
generate future plans.

There may be multiple models consistent with the current observations. Also, new novelties
may occur over time. Therefore, the process of detecting novelties and adapting HYDRA’s PDDL+
model to them is continuous: after every action HYDRA performs, it checks if the current observa-
tion is consistent with its model. If it is not, it searches for a sequence of MMOs that would yield a
model that is consistent with the current and previously collected observations.

4.2 Searching for Consistent PDDL+ Models and Applicable MMOs

A future objective of this work is to characterize the necessary and sufficient types of MMOs that are
needed to adapt to different types of novelties. In our current implementation, we focused in simple
MMOs that modify the value of constant fluents in the PDDL+ model such as the force gravity ap-
plies on flying objects, the size of the birds, and the speed in which the slingshot’s angle is adjusted.
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Figure 3. Example of automated model-repair with HYDRA.

Table 1 maps possible types of MMOs to types of novelties as defined by Langley (Langley, 2020)
along with examples from Science Birds.

The number of MMOs may be very large and thus finding a sequence of MMOs that may yield
a consistent model is a challenging combinatorial search problem. We expect to need heuristics to
guide the search in an efficient manner. In our current implementation, we run a Greedy Best-First
Search algorithm that uses a heuristic that prefers shorter sequences of MMOs that yield models
that are more consistent.

4.3 Case Study: Auto-Tuning Gravity

To demonstrate how HYDRA works, we performed the following case study. The agent is given
a simple Science Birds level shown in Figure 3, in which it needs to hit a pig that is elevated on
some platform. We intentionally set the agent’s PDDL+ model to be incorrect by setting the force it
assumes gravity applies on objects to be significantly higher than its real value. Using this incorrect
PDDL+ model, the agent fails to create a plan that hits the pig, since it cannot throw the bird strong
enough to overcome the force of gravity it assumes. In such a case, the agent chooses an arbitrary
action, which in this case was to throw the bird at a very high angle. The resulting trajectory is
shown in Figure 3 (left). Then, HYDRA uses the observed trajectory of the bird to correct its
PDDL+ model. Specifically, the MMOs we used were to modify the gravity parameter by either
adding or subtracting 30 from its value. HYDRA uses these MMOs to search for a PDDL+ model
that is consistent with the observed trajectory. In this case, HYDRA is able to find such a model,
modifying its gravity parameter to a value that is much closer to the correct value. Using the revised
model, HYDRA is now able to create a plan that accurately shoots the pig and wins the game, as
shown in Figure 3 (right).

5. Discussion
This early stage work opens up a number of research questions:

1. Are MMOs and search heuristics domain independent? That is, as we transition the technique
to other domains (e.g., Minecraft, inverted pendulum control, and simulated driving) will the
MMO’s change?

2. How much of the domain revisions will be done within the PDDL+ model versus in other
models in the system? For example, while the classification task of mapping observations to
types is not performed in PDDL+, the types themselves are.
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3. How to incorporate agent experience in the model revision decisions? Since our model is an
approximation of the world, constantly revising it due to noise would not make sense.

4. How to account for other agents? We propose to modeling the behavior of other agents
through their changing configurations with other objects in the environment, a model repre-
sentation we call comic graphs (Klenk et al., 2017).

5. How to integrate PDDL+ planning with reinforcement learning techniques? Parameterized
skills (Rostami et al., 2020) provide a method for learning detailed action models that may be
organized using planning.

As part of the DARPA SAIL-ON effort, we will explore these questions over the next three years.
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