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Abstract
For robots to successfully operate as members of human-robot teams, it is crucial that they correctly
understand the intentions of their human teammates. For reasons of social courtesy, people typically
employing polite utterance forms such as Indirect Speech Acts (ISAs). It is thus critical for robots
to be capable of inferring the intentions behind their teammates’ utterances based on both their
interaction context and their knowledge of the sociocultural norms that are applicable within that
context. The work described in this extended abstract, originally presented at AAAI 2020, builds
off previous research on understanding and generation of ISAs using Dempster-Shafer Theoretic
Uncertain Logic, by showing how Dempster-Shafer Theoretic rule learning can be used to learn
appropriate uncertainty intervals for robots’ representations of sociocultural politeness norms.

1. Introduction

For robots to successfully operate as members of human-robot teams, it is crucial that they cor-
rectly understand the intentions of their human teammates. This is especially important in contexts
that have strong sociocultural norms, conventions, and contracts, since, in such contexts, humans
typically phrase their language in the form of Indirect Speech Acts (ISAs) (Searle, 1975), in which
the speech act’s literal meaning does not match its intended meaning. For example, in a restaurant
context, even though servers are in some sense functioning as subordinates to clients, it would be
considered rude for restaurant-goers to say, for example, “Get me some water". Instead, restaurant-
goers typically use indirect requests, such as “Could I have some water?". While this utterance may
literally be a request for information, listeners effortlessly and instinctively infer the speaker’s true
intent, i.e., for the listener to bring them some water. Accordingly, so too must robots be able to
infer the intended meanings behind their teammates’ utterances according to their current context.

In previous work, we presented a Dempster-Shafer theoretic approach to ISA understanding
(and generation, see Williams et al. 2015), which we argued increases the robustness of ISA in-
ference. This approach leverages a set of Dempster-Shafer Theoretic uncertain logical rules that
map utterances to inferable intentions within specified contexts. These rules are annotated with
Dempster-Shafer theoretic uncertainty intervals, denoting the amount of evidence for and against
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(and the degree of ignorance with respect to) each rule. But while we provided mechanisms for
online adaptation of these rules when corrections are explicitly provided, we did not provide any
mechanisms for initially learning these intervals from observation, requiring AI practitioners to ini-
tially handcraft rules’ uncertainty intervals based on their own intuitions. In this work (originally
presented at the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) (Wen et al.,
2020)), we show how recent work on Dempster-Shafer Theoretic rule learning, originally devel-
oped and applied in the context of social and moral norm learning, can also be applied to learn
Dempster-Shafer theoretic sociocultural politeness norms.

2. Dempster-Shafer Theortic Norm Representation and Norm Learning Problem

Dempster-Shafer theory is a belief-theoretic uncertainty-processing framework (Shafer, 1976), which
has notions of belief and plausibility that are close to the inner and outer measures in probability
theory (Fagin & Halpern, 2013). It is often interpreted as extending traditional Bayesian frame-
works (e.g., Pearl 2014) with the ability to directly express both uncertainty, which is represented
in the mass function, and ignorance, which is represented in the amount of evidence not assigned to
elementary events.

We leverage DS Theory to enable uncertainty- and ignorance-sensitive representations for prag-
matic rules: sociocultural linguistic norms usable for both ISA understanding and generation. A
Norm N is an expression of the form:

N := u ∧ C ⇒ i

where u represents an utterance, C represents a possibly empty set of contextual conditions and i
represents a possible intention that can be inferred from utterance u and contextual conditions C.

A sociocultural linguistic Belief-Theoretic Norm (cf. Sarathy et al., 2017)N is an expression of
the form:

N := u ∧ C ⇒[α,β] i

where each norm is associated with a Dempster-Shafer theoretic uncertainty interval [α, β] (0 ≤
α ≤ β ≤ 1).

To learn these uncertainty intervals for sociocultural linguistic norms, we use the Dempster-
Shafer theoretic norm learning algorithm presented by Sarathy et al. (2017). This algorithm takes
as input a finite set of data instances, and updates the beliefs and plausibilities of candidate norms
as it iterates over each data instance. While Sarathy et al. (2017) originally present this algorithm in
the context of learning context-sensitive social and moral norms from human data, their approach
is sufficiently general that we can easily apply it to our own norm learning problem. To do so, we
begin by gathering data in a two-stage experimental process similar to that used by Sarathy et al.
(2017).

3. Experiments

Our first experiment was used to identify candidate ISA understanding norms. In this experiment,
each participant was shown a sentence and asked to write down everything they could think of
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that the speaker might have meant by that sentence. 19 sentences in conventionalized ISA form
were used in this experiment, chosen according to the taxonomies given by Briggs et al. (2017)
and Searle (1975), and phrased to evoke a context in which speakers regularly expect sociocultural
politeness norms to be used when interacting with robots (Williams et al., 2018; Foster et al., 2012).
163 U.S. participants were recruited for this experiment, yielding an average of 11.4 responses
(min=7, max=17) and 4.89 unique intentions (min=3, max=7) per sentence. Across all utterances,
we collected 178 total responses, comprising 25 unique intentions. Table 1 shows data collected for
the sentence “Could I have some noodles?”.

Could I have some noodles?
Response Logical Interpretation Frequency
“The speaker wants the hearer to get them some noodles” want(S,get_for(H,S,noodles)) 5
“The speaker wants to order noodles from the hearer" want(S,order_from(S,H,noodles)) 4
“The speaker wants the hearer to share noodles with them" want(S,share_with(H,S,noodles)) 2
“The speaker wants the hearer to believe that the speaker is hungry" want(S,believe(H,hungry(S))) 2

Table 1. An example of results from our first experiment.

Our second experiment collected training data that could be used to learn uncertainty intervals
for the norms identified in the previous experiment. Specifically, in this experiment, we collected
human judgments as to whether different intentions were appropriate for different utterances in dif-
ferent scenarios. These scenarios were generated based on the sentences used in the first experiment
and each scenario was a combination of an environmental context and a social context. This experi-
ment was conducted as a live, in-person laboratory study. The participant was first introduced to an
experimental context, in which they were either working as a waiter, or not, and in which they were
either situated in a restaurant, or at a friend’s house. We presented a different experimental context
in each of the two rounds for every participant. Each participant was then shown five sentences, each
of which was followed by six candidate interpretations of that sentence from the first experiment.
Participants were asked to select all interpretations from among those options that they believed to
be interpretations of the presented sentence. Table 2 shows the six possible intentions presented for
the utterance “Can you get some noodles?". 37 participants were recruited for our second experi-
ment. We collected 74 data points in total, with an average of 18.5 data points (min=17, max=20)
collected in each context.

4. Learning Norms from Human Data

To use the data collected in Experiment Two, we began by categorizing the data into subsets reflect-
ing different norm frames. Specifically, four different types of norm frames were created based on
the experimental contexts used in the detection experiment.

Type 1: Norm frames containing norms mapping utterance forms directly to intentions regardless
of context. These rules’ parameters can be learned from all data collected with respect to
utterance u.
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Candidate Intention Logical Interpretation
The speaker wants the hearer to get them some noodles. Int1 = want(S,get_for(H,S,noodles))
The speaker wants the hearer to buy them some noodles. Int2 = want(S,buy_for(H,S,noodles))
The speaker wants to order noodles from the hearer. Int3 = want(S,order_from(S,H,noodles))
The speaker wants the hearer to believe that the speaker is hungry. Int4 = want(S,believe(H,hungry(S)))
The speaker is asking the hearer for permission whether they can have noodles. Int5 = ask(S,permission(H,have(X,noodles)))
The speaker wants the hearer to cook them some noodles. Int6 = want(S,cook_for(H,S,noodles))

Table 2. Candidate intentions presented for the utterance “Can you get some noodles?" in the detection ex-
periment, along with the logical representations of those candidate intentions.

Type 2: Norm frames containing norms mapping utterance forms to intentions under particular
environmental contexts (e.g., being in a restaurant). These rules’ parameters can be learned
from all data collected with respect to utterance u under that particular environmental context.

Type 3: Norm frames containing norms mapping utterance forms to intentions under particular
social contexts (e.g., the listener is a waiter). These rules’ parameters can be learned from all
data collected with respect to utterance u under that particular social context.

Type 4: Norm frames containing norms mapping utterance forms to intentions under particular
combinations of environmental and social context. These rules’ parameters can be learned
from all data collected with respect to utterance u under that particular combination of envi-
ronmental and social context.

Under the above criteria, we gathered 5 Type 1 subsets (corresponding to the five utterances)
with 74 data instances for each norm frame, 10 Type 2 subsets (corresponding to the five utterances
and two environmental contexts) with 37 data instances for each norm frame, 10 Type 3 subsets (cor-
responding to the five utterances and two social contexts) with an average of 37 (min=35, max=39)
data instances for each norm frame, and 20 Type 4 subsets (corresponding to the five utterances, two
environmental contexts, and two social contexts) with an average of 18.5 (min=17, max=20) data
instances for each norm frame. Note that as we progress through these types of norm frames, we
attempt to learn increasingly context-specific norms from increasingly limited datasets. For each
of these norm frames, we provided the data commensurate with that norm frame to Sarathy et al.
(2017)’s rule learning algorithm in order to learn uncertainty intervals for each norm in that frame.

After learning uncertainty intervals for each candidate norm, we must next select a subset of
“justifiable” norms that should be included in the final norm system. This can be achieved by only
accepting norms that reflect a sufficient level of confidence in the consequent given the antecedent.
In this paper we will examine the effects of selecting only the subset of norms for which the center
of the norm’s learned uncertainty interval (i.e., α+β

2 ) is above some threshold τ . The left side of
Figure 1 shows how the number of accepted norms declines as this threshold is reduced from 115
with threshold τ = 0.5 to 6 with threshold τ = 0.81. If a lower value of τ is chosen, a greater num-
ber of norms will be learned, but the agent may need to generate a greater number of clarification
requests in the future; if a higher value is chosen, fewer norms will be learned but the agent may
need to generate fewer clarification requests in the future. The right side of Figure 1 shows how
Sarathy et al. (2017)’s norm learning algorithm converges to different uncertainty intervals for one
of the norms selected with a threshold of τ = 0.81.
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N1 QuestionY N(S,H,will(H, get(X) ∧ noodles(X)))⇒[0.88,0.96] want(S, get_for(H,noodles)
N2 QuestionY N(S,H,will(H, get(X) ∧ noodles(X))) ∧ ¬waiter(H)⇒[0.73,0.97] want(S, get_for(H,noodles)
N3 Stmt(S,H, need(H, get(S, noodles))) ∧ waiter(H)⇒[0.70,0.99] want(S, get_for(H,noodles)
N4 QuestionY N(S,H,will(H, get(X) ∧ noodles(X))) ∧ ¬in(H, restaurant)⇒[0.70,0.97] want(S, get_for(H,noodles)
N5 Stmt(S,H, should(H, get(S, noodles)))⇒[0.79,0.87] want(S, get_for(H,noodles)
N6 Stmt(S,H, need(H, get(S, noodles))) ∧ in(H, restaurant)⇒[0.68,0.95] want(S, get_for(H,noodles)

Table 3. Six learned norms N1...6 selected by our approach when a threshold of τ = 0.81 was used. The
convergence trajectories for N1 is shown below in Fig. 1.

Figure 1. Left: Results from the norm learning algorithm, shows how the total of accepted norms decreases
as the threshold τ increases. The red dot shows that with threshold 0.5 (selecting norms whose uncertainty
intervals are centered at a point greater than 0.5) 115 total norms are selected for adoption; the yellow dot
shows that when a threshold of 0.81 is used, only 6 are selected for adoption. Right: Results from the norm
learning algorithm, showing convergence to different uncertainty intervals for N1 from Table 3. The dots
represent the mean norm endorsements by experimental participants.

5. Discussion and Conclusion

We have presented the first approach to automatically learning confidence intervals for Dempster-
Shafer theoretic pragmatic norms, by applying recent work on Dempster-Shafer Theoretic rule
learning (Sarathy et al., 2017) to learning appropriate uncertainty intervals for robots’ represen-
tations of sociocultural politeness norms. We show how this algorithm can be used with rules
whose antecedents contain logically specified context descriptions of varying levels of specificity.
We also demonstrated how sets of candidate norms can be selected based on the characteristics of
their learned confidence intervals and how this selection process can be used to select norms that
have an appropriate level of contextual specificity.

Two key challenges for future work are how to identify and generate candidate ISA understand-
ing norms, and how to adapt those norms to facilitate lifelong learning. In this work, we selected a
relatively narrow domain along with utterances that we explicitly expected to be generated due to
sociocultural linguistic norms relevant to that domain. In the future it will be important to extend
the methods presented in this paper to work online for long timescales over the utterances that oc-
cur naturally in human-robot dialogue, and to develop mechanisms for proposing candidate norms
based on salient aspects of the robot’s context. Furthermore, in future work, we plan to encode our
learned norms within the pragmatic norm base (cf. Williams et al. 2015) used by the Distributed
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Integrated Affect, Recognition and Cognition (DIARC) architecture (Schermerhorn et al., 2006;
Scheutz et al., 2013, 2019) and assess the fluidity and task success of robots interacting with users
under norm systems selected with different thresholds.
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