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Abstract

We present a novel implementation of analogical structural alignment as constraints in an abduc-
tive inference problem where one structured representation is justified by its alignment to another.
Following Inoue & Inui (2011), we implement this solve as a 0-1 integer linear programming prob-
lem. We call our approach the Constrained Abductive Mapping Model of Analogy (CAMMA), and
demonstrate how our formulation facilitates experimentation with both hard structural constraints
and possible non-structural constraints. As a proof of concept, we use our CAMMA implementa-
tion to model results from Gentner & Ratterman (1991) who found that young children exhibited
a bias towards matching objects based on shared attributes rather than shared relations, and further
found that additional relational structure facilitated relational mapping.

1. Introduction

There is ample psychological evidence that analogy, and structural similarity more broadly, play
an important role in core cognitive processes ranging from visual perception (Sagi et al., 2012) to
higher-level reasoning and decision making (Markman & Medin, 2002). As such, computational
models of structural alignment are valuable as research tools and as a component in applied compu-
tational agents. Indeed, existing models have demonstrated utility in and provided insight on many
cognitively challenging tasks (Forbus et al., 2017).

Two prominent models of analogy are Falkenhainer et al’s (1989) Structure Mapping Engine
based on Gentner’s (1983) Structure Mapping Theory (SMT) and Holyoak and Thagard’s Analogi-
cal Constraint Matching Engine (ACME) (1989).

Both claim analogical mappings are subject to structural constraints. However, SME uses these
constraints to limit initial mapping hypotheses and guide a greedy search for a global solution,
while ACME encodes both structural and non-structural (e.g. pragmatic) constraints as excitatory
and inhibitory connections among a larger hypothesis network.

One benefit of SME is that it allows missing structure to be projected across a mapping as a novel
candidate inference (CI). ACME can fill in structure from a suggestion but did not produce spon-
taneous inferences. Furthermore, SME can generate multiple alternative analogies, which ACME’s
"winner-take-all" algorithm did not allow. There is also evidence that SME’s stricter structural
constraints better align with human judgements. (Forbus et al., 2017; Markman, 1997).

At the same time, Holyoak and Thagard’s constraint based approach is alluring because it fa-
cilitates modeling interactions between structural similarity and other softer influences such as pre-
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existing biases. While extensions to SME do allow a modeler to apply declarative match filters on
viable matches, only a few kinds of filters are allowed and they do not include soft biases (Forbus
et al., 2017).

One candidate for such a bias in cognition comes from Gentner’s (1988) "relational shift hypoth-
esis" which proposes that a shift occurs from alignment based on on shared attributes (e.g. color,
shape) to a preference for relational matches (e.g. a shared spatial layout) throughout maturation
(Gentner, 1988; Gentner & Ratterman, 1991; Hespos et al., 2020). This could be the result of an
evolving bias, though, Gentner and colleagues also argue that this "relational shift" is facilitated by
the acquisition of relational schemas which facilitate richer encoding.

These accounts need not be mutually exclusive, and it seems likely that as children gain re-
lational schema, they also learn to attend to relations. Exploration of these and other hypotheses
would be facilitated by a common framework that easily allows experimentation with both hard
structural constraints (like SME) as well as soft biases (like ACME), and that generates testable
SME-like inferences.

To that end we introduce a novel implementation of structural alignment called the Constrained
Abductive Mapping Model of Analogy (CAMMA) which formulates structural alignment as a
weighted abductive inference problem, the goal of which is to justify an observed propositional
structure through its alignment to another. Following Inoue & Inui (2011), we ground the abduc-
tive problem as an integer linear programming problem which makes it easy to add declarative hard
structural constraints as well as soft scoring biases. A CAMMA model can be solved by any existing
ILP solver (we use the commercial solver Gurobi).

While we do not claim that our axiomatic implementation of structural alignment or ILP it-
self is a process level cognitive model, we do argue that implementing structural alignment in this
way creates a convenient single framework for quickly testing predictions of competing theories of
analogy (e.g. SME’s hard vs ACME’s soft 1-1 mapping constraint) and exploring how the princi-
ples of structural alignment may interact with constraints from other cognitive processes. We also
believe that grounding structural alignment in ILP could have practical benefits because it allows
the application of mature optimization technologies to the alignment problem while also bringing
psychologically motivated constraints to optimization.

As a proof of concept, we use the CAMMA implementation to investigate the relational shift
hypothesis by simulating Gentner and Ratterman’s (1991) cross-mapping experiment which found
an inhibitory effect of object attribute similarity on structural alignment. We model this experiment
with opposing relational and attribute soft biases, compare predictions generated by a hard vs soft
implementation of SMT’s 1-1 mapping principle, and examine how the addition of relational schema
facilitates relational mapping even in the absence of an explicit relational bias.

2. Background
2.1 Structure Mapping Theory and SME

Gentner’s (1983) Structure Mapping Theory (SMT) proposes that analogical comparison, and simi-
larity more broadly, result from the alignment of a base and target set of structured representations.
Table 1 provides an overview of structure mapping theory’s structural alignment constraints which



STRUCTURAL ALIGNMENT AS ABDUCTIVE ILP

Table 1. SMT Constraints

Constraint Description

1-1 Each base item may match to at most one target item.

Mapping

Parallel Expressions only align if their children align.

Connectivity

Identicality Non-identical predicates align only if they are arguments of
aligned higher-order expressions.

Systematicity | Alignments that contain higher-order (nested) structure are pre-
ferred.

Table 2. ACME Constraints

Constraint Description

Isomorphism | Prefer isomorphic matches (i.e. ones that obey 1-1 and parallel
connectivity).

Similarity Prefer predicates and constants to map to similar predicates and
constants. Not necessarily inheritance.

Pragmatic Pragmatically important mappings (e.g. goals) or salient mappings

Centrality are preferred.

define a valid mapping. For a comprehensive discussion of these constraints and their psychological
validity, see the analysis in Forbus et al. (2017).

SMT has been implemented computationally in the Structure Mapping Engine (SME) (Falken-
hainer et al., 1989; Forbus et al., 2017) which has been used to model a wide array of cognitive
phenomena including geometric analogies, grammatical coercion, and intent recognition. (Lovett
& Forbus, 2012; McFate & Forbus, 2016; Rabkina & Forbus, 2019)

In SME, identicality is used to constrain the initial space of match hypotheses which are then
coalesced into kernels that abide by 1-1 and parallel connectivity. Systematicity acts as a scoring
function that guides a greedy process of merging structurally consistent kernels. Matches that vio-
late the principles are not allowed. SME is able to produce alternative consistent analogies, and can
generate inferences based on aligned structure.

CAMMA will also use predicate identity to constrain an initial set of match hypotheses. Parallel
connectivity will be encoded in our axiom generation procedure, and 1-1 mapping can be encoded
as either a hard constraint that makes a mapping infeasible or as a soft constraint that is allowed
at a cost. Because CAMMA is implemented as an ILP solve, it is also able to consider alternative
consistent mappings, and we will generate cadidate inferences as a part of mapping.
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2.2 Constraint Satisfaction and ACME

Holyoak and Thagard’s (1989) ACME both expands and weakens SMT’s principles, modeling them
in competition (or cooperation) with other constraints (see Table 2).

ACME constructs an initial network of match hypotheses between same arity concepts. Each
hypothesis is linked to others by excitatory and inhibitory edges. For example, isomorphism would
be enforced with inhibitory edges between alternative matches for the same entity. The matches are
also connected to a semantic and a pragmatic unit which excites or inhibits the match based on a pre-
defined function(s). Given an initial activation, the score of each node (MH) is iteratively updated
given the links to its neighbors. The final alignment can be read from the state of the network.

Like ACME, CAMMA allows additional constraints to impact mapping, and it is capable of
loosening the 1-1 mapping constraint. However, our approach treats identity and parallel connectiv-
ity like SME, using them to constrain the initial match hypothesis space. ACME treats inferences
like goals (external) whereas SME generates novel inferences by alignment. Like SME, we gener-
ate inferences without external goals, but like ACME, we are capable of using desired inferences to
guide our solution.

2.3 Weighted Abduction and ILP

Abductive inference seeks the best explanation of an observation given background knowledge.
Formally, given a set of background rules B, and a set of observed literals, O, the goal of abduction
is to find a hypothesis H where:

* B}~ O: The rules do not already entail the observations
* HU B |= O: The hypothesis and rules entail all observations

e HU B ~1: They do not entail something false

Integer Linear Programming is an optimization paradigm which finds an assignment of integers
to a set of variables given constraints on variable values and variable coefficients (Papadimitriou
& Steiglitz, 1998). As a simple example, you must invest 10 dollars. Investment x; returns twice
the input, but is limited to a 5 dollar investment. xg returns half and has no limit. This could be
formulated as:

Maximize: 2x7 + 0.5x9

Subject to: x; <=5 and 2x; + 0.5x0 <= 10

The answer is x; = 5 and x3 = 5. You should put the maximum, 5 dollars, into investment 1
and the rest into investment 2. There exist a wide array of optimization techniques and commercial
solvers for integer linear problems. Our approach further limits variables to boolean values (0 or 1)
making it a 0-1 ILP problem, a well studied subclass of ILP.

Inoue & Inui (2011) represent an abductive solve as a 0-1 ILP problem where B is a set of first-
order Horn clauses and O and H are conjunctions of ground literals. They refer to each hypothesis
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H that may justify the observations O as a candidate hypothesis and refer to each literal 4 € H as an
elemental hypothesis. We use this terminology here. In weighted abduction each literal 7 € H has
a real valued cost. The goal is to find the least cost candidate hypothesis H.

To build the ILP problem, chains of elemental hypotheses are enumerated by back-chaining
over B given O. The least cost hypothesis in the chain is paid (assumed). Hypotheses can be unified
to pay only the cost of one. As an example, consider the following simple set of rules B that define
unsafe driving conditions. A road is unsafe if it is wet and obscured, both of which are caused by
snow. Assume each rule has a cost of 10.

unsafe (?road) < wet (?road) A obscured (?road)
wet (?road) < snow (?road)

obscured (?road) < snow (?road)

Given an observation O that the road, 195, is unsafe unsafe (I195), we back-chain to generate
the hypothesis space. The ground axioms are shown below.

unsafe (I95) < wet (I95) A obscured(I95)
wet (I95) <= snow (I95)
obscured (I95) < snow (I95)

Any literal can be assumed at cost. Here, the observation can be assumed directly at the high
cost of 40. Figure 1 shows the hypothesis space for this problem. Using the terminology from Inoue
and Inui, the rows are candidate hypotheses and the columns are the elemental hypotheses. For each
candidate hypothesis, an elemental hypothesis can be derived true, assumed (assm), or not included.
Note that snow (I195) appears twice. In their approach, the elemental hypotheses resulting from
different rule applications remain separate but can be unified to pay their cost only once.

unsafe(195) | wet(195) | obscured(195) | snow(I95) | snow(I195) | Cost
H1 assm 40
H2 true assm assm 20
H3 true true assm assm 20
H4 true true assm assm 20
H5 true assm true assm 20
H6 true true true assm assm 20

Figure 1. Propositional Hypothesis Space

We can leave 195’s unsafe conditions unexplained by just assuming unsafe (I195) ata cost of
40. Alternatively we could assume its causal antecedents, that I95 is unsafe because it is presumably
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wet and obscured. FEither of these conditions can be caused by snow, and so in the lowest cost
solution, we unify the shared cause into a single expression snow (I195), thus paying its cost only
once. Given that 195 is unsafe, in this model it is most reasonable to assume it has snowed.

Inoue & Inui (2011) transform this hypothesis space in to a 0-1 ILP problem by assigning the
following variables for each elemental hypothesis 4 € H:

* h{0, 1} 1 if elemental hypothesis is a part of a candidate hypothesis
* r{0,1}: 1if cost of elemental hypothesis is NOT paid

* upq{0,1}: 1if elemental hypotheses p and g unify

In ILP, the parameters of a valid solution are defined by constraints. Inoue & Inui (2011) define
several such constraints for abduction. We summarize the relevant constraints for our problem
below and illustrate the ILP problem space for the unsafe roads example in Figure 2

* hp{1} for p € O: Observations must be in a candidate hypothesis.

o rp{1} 1££ hypi{1} and p <= pI or uy1 p{1}: cost of elemental hypothesis is not paid only if
it is unified with or justified by another elemental hypothesis.

* up1p{1} 1££ hy{1} and hy1{1}: literals can unify only if they are both in the candidate
hypothesis.

w Do |To|hsy |Fa [hsa | Fs2 | Usysa | Cost
H1I |1|0|0|O|O|O|lO|O|O0|O| O |40
H2 |1|1|1}0|2(0O|lO|0O|O0|O0O| O |20
H3
H4
H5
H6

Figure 2. ILP Hypothesis Space

In Figure 2 each variable is sub-scripted by first letter of the literal it applies to(e.g. h,, corre-
sponds to including the elemental hypothesis unsafe (I195)). In the final solution, we pay only
the cost of one of the snow (I95) assertions because they unify. Inoue & Inui (2011) extend their
approach to allow axioms with existentially quantified variables by introducing a substitution ILP
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variable and corresponding constraints. In our model, we will treat unbound variables resulting from
back-chaining as inferred entities that can be "bound" through proposition unification as above. See
Figure 3, our analogical mapping formulation, for an example.

This approach also makes it easy to declaratively define hard and soft constraints in background
knowledge. A hard constraint, if violated, results in an infeasible solution. A soft constraint, if
violated, instead adds a penalty to the overall cost. We can implement both through axiom genera-
tion. For example, to implement 1-1 mapping as a hard constraint we can add the following to our
background knowledge:

0 < align(?z,?y) A align(?x,?2)
Whereas a soft constraint could conclude a cost modification.

cost(10) <= align(?x, 7y) A align(?z,?z)

3. Analogy as Weighted Abduction

Abstractly, the goal is to treat a mapping as a solution that justifies the base and target observations.
Therefore, each expression in the base and target can be justified by an alignment that holds be-
tween them, and each expression alignment is justified by the alignment of its arguments. Figure 3
illustrates an example analogy between a base and target case.

3.1 Phase 1: Calculating Match Hypotheses and Potential Candidate Inferences

CAMMA begins like SME, creating match hypotheses (MH) between pairs of expressions that
meet the identicality function. It then recursively generates match hypotheses for each argument,
discarding those that violate parallel connectivity.

Unlike SME, CAMMA also pre-generates candidate inferences (CI) that justify an unmapped
expression through the alignment of its arguments (see phase 2). Inferences will be generated
through unification as a part of the abductive solve.

Figure 3 illustrates a simple alignment where the base consists of a conjunction of propositions,
P (a) and Q (a), and the target consists of the proposition P (c). P (a) in the base will align with
P (c) in the target based on identity, and so they form a match hypothesis.

3.2 Phase 2: Axiom Generation

The initial set of match hypotheses is used to construct the set of ground axioms for the solve.
For each match hypothesis, the base and target observations are justified by the assumption of an
ExpAlign proposition representing their alignment. In Figure 3, the observations P (a) and P (c)
can be derived true (justified) if their ExpAlign proposition is assumed true (at a cost of 10).
CAMMA justifies each such proposition by the alignment of it arguments ultimately grounding out
in a set of entity alignments (EntAlign). We can conclude that P (a) and P (c) are aligned if a
and c align (at a lower cost of 1).

An expression can also be justified by a candidate inference proposition (CI). A candidate
inference is justified by the alignment of its child entities to unbound variables. These variable
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Hypothesis Space Propositional

P(a a) | Exp(P,,P, Cl Ent(a,c Ent(?a,a Cost
ObSerVatiOnS ( ) Q( ) p( a: c) (Q?a) ( ) ( )
40 |Base:P(a) A Q(a) H, assm | assm 80
40 | Target: P (c) H, true |assm | assm 50
Cost Axioms Hy, | assm | true assm 46
10 |P(@ A P(e) <= Exphlign(P(a),P(c)) H true |assm| true assm 41
4
5 |Q(a) <= CI(Q(?a)) Hg true | true assm assm 15
1 CI(Q(?a))) <= EntAlign(?a, a)
1 ETpAlign(P(a)’P(c)K: EntAlign(a, H,, | true | true true true assm assm 2
Hypothesis Space ILP
hp r‘p hq rq hexp rexp hci r'ci hentl I'entl hentz IPentz Uentl,entz Cost
H1 1 0 110 0 0 0 0 0 0 0 80
H2 1 1 1 0 1 0 0 0 0 0 0 50

Figure 3. Axioms are generated from initial match hypotheses. Note that Q(a) can be justified by the can-
didate inference (CI) that Q(?a) holds in the target with an inferred or unified filler. The hypothesis space

shows the abductive cost for each solution, where an assumption (assm) means the cost of the proposition is

paid. In the lowest cost solution, CAMMA unifies the entity alignment (EntAlign) expression containing the
inferred (variable) entity and the one that aligns a to ¢, thus paying only one cost. This produces a bound
candidate inference: Q(c). In the ILP formulation, h{1} means the elemental hypothesis is included in the
candidate hypothesis, {1} means its cost is paid, and u{1} represents a unification.

entities can be bound to existing entities when the expressions they participate in are unified with
fully bound expressions. If no unification is possible, they become inferred entities. In Figure 3, we
can justify Q (a) with a candidate inference (at a cost of 5). To summarize:

For each MH(by,, t,,)

justify literals with expression alignment

b, < exprAlign(by,t,)
t, < exprAlign(by,ty)

For each exprAlign(by,t,

)

justify with entity alignment of arguments

exprAlign(b(zy...xn), t(yi...yn)) <
entAlign(x1,y1..-Tn,Yn)

For each literal p in CIs
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justify by an entity alignment to variable arguments
p(z1...xn) < CI(T2y...72y,)
CI(?xy...7xy) <

entAlign(?zy, z1...7%n, Ty))

3.3 Phase 3: Model Generation

The first step of model generation is to back-chain from observations using the ground abductive
axioms generated in phase 2 in order to generate the hypothesis space. For analogy, the observa-
tions are the base and target literals. The resulting model consists of a set of elemental hypotheses
(propositions) that can justify the observations connected by the set of axioms invoked when back-
chaining.

Recall that unbound variables will be ground as inferred entities. Inferred entities can become
resolved to existing entities as a result of unification during the solve. Thus candidate inferences
opportunistically reduce cost as a part of a solve.

As described above, a model can also include hard and soft constraints, both represented in
background knowledge and enumerated as axioms. Hard constraints are implemented as Boolean
constraints that are generated given a logical implication. Soft constraints are also implications, but
they result in a modification of the cost function for a hypothesis rather than a Boolean constraint.

3.4 Phase 4: ILP Solve

We use the commercial ILP solver (Gurobi) to produce solutions of our mapping model, though
there are a wide array of commercial and non-commercial solvers available. Following the solve,
the alignment can be read off as the set of assumed entity alignments and candidate inferences. In
Figure 3, the least cost solution assumed an alignment between the entities a and ¢, thus justifying
the expression alignments and candidate inference, and therefore the observations.

4. Proof of Concept: Modeling Attribute vs Relational Biases

Gentner’s (1988) relational shift hypothesis proposes that object/attribute similarity precedes rela-
tional similarity. Formally, object/attribute similarity is similarity on the basis of unary predicates
(e.g. red(ball) whereas relational similarity holds on the basis of shared nary or higher order
predicates (e.g. causal relations). Gentner and colleagues further argue that this "relational shift" is
facilitated by a focus on relations and the acquisition of relational schema which facilitate a richer
relational encoding (e.g. Christie et al., 2007; Loewenstein & Gentner, 2005).

Gentner & Ratterman (1991) provide evidence for this hypothesis in a series of experiments.
In each, a child and experimenter both had a set of three objects that monotonically changed in
size (e.g. Large-Medium-Small). The experimenter placed a sticker under one of their objects, and
asked the child to find a sticker under their corresponding object.

In what we call the "consistent" condition, the child’s occluding objects were identical to the
experimenters. They then introduced a "cross-map" condition where the child’s occluding objects
retained the montonic size change, but started with a larger object (e.g. Large-Medium-Small vs
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Extra Large-Large-Medium). This created a cross-mapping between shared attributes (size) and
shared relations (relative size). The sticker was always under the object that shared the same relation
as the experimenter’s object.

As expected, young children were unable to consistently produce the relational match in the
cross-mapping condition, and further experiments revealed that performance degraded even more
when the simple objects from the first experiment were substituted with feature-rich (e.g. visually
complex) objects. We call this manipulation the "feature-rich" condition (as opposed to the feature-
sparse original objects). The first two columns of Figure 4 graphically depict the feature-sparse
and feature-rich consistent and cross-map conditions. In each condition, the location of the sticker
(object 2) is highlighted with a box.

Consistent Cross-Map Cross-Map with Relational
Schema

Feature Daddy Mommy Baby

1 3
1 3
Daddy Mommy  Baby

E/ﬂ\.)ea.-

Sparse E

Feature

0
Rich E ﬁ
A

.. AR
UL & ca/ﬂ\w
] - v s

Figure 4. Each cell visually depicts an experimental condition. The top row of each condition depicts the
experimenter’s objects. The bottom depicts the child’s objects. The location of the hidden sticker (object 2)
is highlighted in each condition.

To test the hypothesis that relational schema facilitate relational alignment, they provided the
children with familiar relational labels that mirrored the monotonic change relationship (Daddy-
Mommy-Baby). With the relational labels, the children were able to match on the basis of shared
relations rather than attributes. We call this the "cross-map with relational schema" condition as
shown in the last column of Figure 4.

In the following sections, we use the CAMMA model to simulate the judgements in the "consis-
tent", "cross-map", and "feature-rich cross map" conditions from Gentner & Ratterman (1991), with
and without a relational schema. We further show how a cognitive bias (an ILP soft constraint) for
mapping attributes or relations can result in the maturing judgements predicted by the relational shift
hypothesis, and we model the interaction between the strength of that bias and the added structural
support provided by the schema.

10
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4.1 Experiment Setup

We represented the Gentner & Ratterman (1991) experiments as an inference task where the goal
was to infer the location of the target sticker given the base sticker’s location. In our experiments,
a relational response corresponds to a candidate inference that the sticker is under the the median
object (e.g. object 2) on the basis of aligning the shared relations between the base and target.
Each task was represented in predicate calculus; attributes were represented as unary predicates,
and the monotonic increase in size was represented with a binary relation between each container.
To model stimuli in the feature rich condition (e.g. a red flower) we included additional attributes.
For example, the experimenter "feature-sparse consistent” condition base case was represented as:

Jar (objectl), Jar (object2), Jar (object3) Sticker (sticker)
small (objectl), medium(object2), large (object3)
largerThan (object2,objectl), largerThan (object3, object?2)
under (object2, sticker)

In the schema condition, we modeled the Daddy-Mommy-Baby relational schema as a ternary
relation that was the consequent of a causal relation from the 1argerThan relations:

causes (

& (largerThan (object2,objectl), largerThan (object3,object?2))
familySchema (objectl, object2,object3))

4.2 Modeling

CAMMA encodes the identicality principle from structure mapping theory (SMT) into its initial
match hypothesis construction. As discussed above, this differs from ACME which instead uses
excitatory and inhibitory edges to prefer mappings between similar predicates. 1-1 mapping can be
either a hard constraint (makes the model infeasible) or a soft constraint (increases the cost of the
solution). We model both in our experiments. The SMT parallel connectivity constraint falls out of
the justification of expression alignments (they are justified by the alignment of their arguments). We
give expression alignments an overwhelmingly high cost to assume so that they cannot be assumed
in the absence of parallel connectivity.

Systematicity is somewhat enforced as a part of the problem formulation, since expressions that
justify a larger structure will nullify the cost of assuming that structure. However, one could also
add a negative cost soft constraint.

Across experiments we assume a cost of

* 1000 for expressionAlignment
e ] forentityAlignment

e 2 for candidateInference.

11
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Like ACME, we can introduce cognitive (pragmatic) biases. In these experiments we do so
through soft constraints which modify the cost of a solution. To model no bias, a fixed score of
10 is used to assume expressions without alignment. To simulate a relational bias, we assign an
additional penalty of 20 for each argument, thus making relations more costly to leave unaligned.
For an attribute bias, we apply a flat cost of 10 to nary predicates and 20 to unary attributes.

The specific values (2 vs 20) are arbitrary. What matters is the cost relative to other solutions.
Thus in our attribute bias condition, it was twice as expensive to leave an attribute unmatched as it
was to leave a relation unmatched.

4.3 Results

Table 3 shows the modeling results for the sparse "consistent” and "cross-map" conditions as well
as the "feature-rich cross-map" condition. These results do not include the relational schema (e.g.
Daddy-Mommy-Baby). Each condition was modeled with no bias, an attribute bias, and a relational
bias. Assuming a hard 1-1 mapping constraint, our experimental results are consistent with the
human-subjects findings.

Table 3. Results without relational schema: Object2 (the median sized object) is the correct (relational) an-
swer. Objectl in the cross-map conditions reflects a match based on shared attributes. Each condition was
modeled with no bias (None), an attribute bias (Attribute), or a relational bias (Relation). The * indicates a
violation of 1-1 mapping occurred.

1-1 Hard | 1-1 Soft
Consistent: None Object2 | Object2
Consistent: Attribute Object2 | Object2
Consistent: Relation Object2 | Object2
Cross-Map: None Objectl | Object3*
Cross-Map: Attribute Objectl | Object3*
Cross-Map: Relation Object2 | Object3*
Feature Rich Cross-Map: None Objectl | Objectl
Feature Rich Cross-Map: Attribute Objectl | Objectl
Feature Rich Cross-Map: Relation Objectl | Objectl
Feature Rich Cross-Map: 3xRelation | Object2 | Objectl

With no cross-mapping, our model selected object 2, which shared an attribute (e.g. small,
medium, large) and relational (largerThan) mapping. In the cross-mapping condition, the shared
attributes overwhelmed the relational mapping, leading to the selection of object 1 based on shared
size category alone. This could be countered by augmenting the scoring function to reflect a rela-
tional bias as described above.

In the feature-rich cross-mapping condition, the attribute matches were chosen with much lower
costs than the relational matches, so much so that the relational bias multiplier had to be increased
by 3X, penalizing unaligned relations with a cost of 60, in order to prefer the relational match.

12
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When modeling 1-1 as a soft constraint, the results are much the same in the first and third
experiments, but the model predicts object 3 in the cross-map condition. Here, the model found a
cheaper solution by doubly aligning object 2 in the base with the first and third object in the target
and accepting the cost of the 1-1 violation. This is of course nonsensical, providing some evidence
that 1-1 mapping ought to be modeled as a hard constraint.

Consistent with expectations from the human subjects experiment, adding a relational schema
facilitated the relational mapping. Table 4 shows the modeling results for the sparse "consistent"
and "cross-map" conditions as well as the "feature-rich cross-map" condition with the addition of
the relational schema.

With a causal relationship between monotonic-size and the family schema, the hard 1-1 model
now made the relational choice with no bias, and was able to make the relational choice in the
feature-rich cross-map condition with the significantly smaller relational bias. However, the feature
rich cross-map was unsuccessful with no bias, and an attribute bias could still overcome the rela-
tional schema. In short, our model predicts that a relational schema facilitates relational mapping,
but that this effect is relative to the strength of cognitive bias and the complexity of the entities in
the task.

The soft 1-1 mapping model preferred the relational match in the rich condition, but only by
virtue of an unrealistic multiple-mapping, again suggesting 1-1 as a hard constraint.

Table 4. Results with relational schema: Object2 (the median sized object) is the correct (relational) answer.
Objectl in cross-map conditions reflects a match based on shared attributes. Each condition was modeled
with no bias (None), an attribute bias (Attribute), or a relational bias (Relation). The * indicates a violation
of 1-1 mapping occurred.

1-1 Hard | 1-1 Soft
Consistent: None Object2 | Object2
Consistent: Attribute Object2 | Object2
Consistent: Relation Object2 | Object2
Cross-Map: None Object2 | Object2*
Cross-Map: Attribute Objectl | Objectl
Cross-Map: Relation Object2 | Object2*
Feature Rich Cross-Map: None Objectl | Object2*
Feature Rich Cross-Map: Attribute Objectl | Object2*
Feature Rich Cross-Map: Relation Object2 | Object2*
Feature Rich Cross-Map: 3xRelation | Object2 | Object2*

5. Related Work

CAMMA implements structural alignment as constraints in an abductive solve. Prior sections have
discussed how CAMMA relates to its ancestors, SME and ACME (Falkenhainer et al., 1989; Forbus
et al., 2017; Holyoak & Thagard, 1989). Space precludes an exhaustive account of existing similar-
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ity models; instead we classify CAMMA along the dimensions used in Forbus and Gentner’s (2011)
far more complete review of existing approaches.

Like SME, our approach is symbolic, as opposed to connectionist (e.g. ACME or LISA (Hum-
mel & Holyoak, 2005)). Though we note that both CAMMA’s cost function and soft constraint
scorers could incorporate a neural model.

Gentner & Forbus (2011) characterize mapping algorithms as bottom-up, top-down, or local-
global. The first begins with only entity matches, the second with target expressions, and the last
starts with local potential matches and then finds a globally constrained mapping of expressions and
entities.

Like ACME and SME, our approach is local to global. However, we implement the global phase
as a generic optimization problem and can use a variety of ILP strategies. Unlike SME and ACME,
we don’t claim that CAMMA provides a process level account of the global optimization step,
but we do argue that optimization is a useful abstraction for emulating and combining alternative
theories, as we have done.

Gentner & Forbus (2011) also classify models based on whether they generate inferences fol-
lowing alignment or project the base onto the target (e.g. LISA). CAMMA occupies a middle
ground. Inferences are projected during axiom generation, but they are bound as a part of the global
optimization. While we don’t model it in this paper, our approach could allow inference desirability
to effect the final mapping through hard or soft constraints.

Finally, ACRE has been incorporated into the ARCS model of analogical retrieval (Thagard
et al., 1990) and SME has been incorporated as a component in the MAC/FAC model of retrieval
used by the SAGE model of analogical generalization (Forbus et al., 1995; McLure et al., 2010).

Currently, CAMMA is only a mapping model, however it could be a component in existing
retrieval/generalization approaches. Furthermore, since inferences play a role in the solve, there
may be opportunity to encode re-representation and generalization as a part of the hypothesis space.

6. Conclusions and Future Work

In this paper we have presented a novel implementation of analogy as constraints in an abductive
solve, which, following Inoue & Inui (2011), we represent as an ILP problem.

Our resulting framework, called CAMMA, combines elements of two popular analogical frame-
works, ACME and SME, under one paradigm. It further facilitates easy experimentation through
declarative hard and soft constraints, and can use a variety of off the shelf ILP solvers for its global
optimization.

As a demonstration, we used CAMMA to simulate the results of Gentner and Ratterman’s
(1991) classic cross-mapping experiments, finding that shared attributes can overwhelm relational
matches, but that this can be overcome with a bias and/or richer schematic representation.

There are several directions for future work. First, we plan to integrate CAMMA with external
models of biases and entity similarity through soft scoring constraints. We will also further inves-
tigate how world knowledge can be integrated to constrain alignment using background knowledge
axioms. Finally, we will examine how axioms can encode re-representation strategies as a part of
the solve.
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