
Proceedings of the Ninth Annual Conference on Advances in Cognitive Systems Submitted 9/2021; published 11/2021

Hierarchical Problem Networks for Knowledge-Based Planning

Pat Langley PATRICK.W.LANGLEY@GMAIL.COM

Institute for the Study of Learning and Expertise, Palo Alto, California 94306 USA

Howard E. Shrobe HES@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA

Abstract
In this paper, we reconsider the representation and use of expertise about sequential goal-directed
activities. We discuss previous research on this topic, identify its limitations, and present a new
theoretical framework – hierarchical problem networks – that addresses them. The core idea is that
procedural knowledge consists of conditional methods that decompose problems – sets of goals –
into ordered subproblems. Another innovation is that methods incorporate tests that forbid their
use when certain goals are unsatisfied. We state the theory’s key postulates about representation
and processing, after which we describe HPD, a problem-solving architecture that makes these
assumptions operational. Next we report empirical demonstrations of HPD’s behavior in three
planning domains, including studies of the relative importance of different types of conditions on
constraining search. In closing, we review the theory’s main ideas and their intellectual precursors,
along with our plans for future research.

1. Introduction and Motivation

Expertise plays a critical role in both human and machine intelligence. Multi-step reasoning and
heuristic search are essential to handling complex cognitive tasks but, without knowledge to con-
strain and guide them, they lead invariably to undirected, inefficient mental processing. This re-
liance on expertise cuts across all facets of cognition, including language and vision, but here we
will focus on its role in sequential goal-directed activity. The prototypical example of such problem
solving is the generation of action chains that achieve some objective, although similar issues arise
in executing such sequences and even in understanding the actions of others.

The notion of a plan has a long history in artificial intelligence and cognitive science, dating
back at least to Miller, Galanter, and Pribram’s (1960) Plans and the Structure of Behavior. They
used this term to refer to the mental encoding of a general physical procedure, such as hammering
a nail into a board. This sense still appears on occasion in the cognitive systems literature, as in
papers on the Soar architecture (Laird, 2012), but since the 1980s ‘plan’ has more widely been used
to connote a specific sequence of actions that solve a particular problem. We will use the second
sense in this paper, but we will be concerned primarily with how to represent and use generalized
procedures like those that Miller et al. posited in their groundbreaking research.

c© 2021 Cognitive Systems Foundation. All rights reserved.



P. LANGLEY AND H. E. SHROBE

There have been many proposals for how to encode such knowledge, which we review briefly
in the next section along with their limitations. After this, we propose a new theory of procedural
expertise – hierarchical problem networks – that builds on earlier work but also responds to these
drawbacks. We state the theory’s tenets about how goal-indexed procedures are represented and
how they generate hierarchical plans efficiently. In addition, we describe HPD, a problem-solving
architecture that incorporates these postulates, and we report empirical studies on planning tasks
that demonstrate its abilities. We conclude by revisiting the theory’s main commitments, their links
to previous work, and areas in which additional research could extend the framework.

2. Representational Frameworks for Procedural Expertise

To reproduce human-like behavior, formalisms for procedural expertise must satisfy a number of
criteria, only some shared with other facets of cognition (Langley, Shrobe, & Katz, in press). The
most obvious is that they encode generalized knowledge about sequential activity over time. More-
over, a notation should be modular, in that procedures are composed of distinct elements, and it
should support relational descriptions of situations and actions. Other desirable features include the
ability to specify conditional and disjunctive behavior, decompose complex behaviors into simpler
ones, and even handle recursive invocations. These are shared with formalisms for other cognitive
abilities, but another element is distinctive to procedural expertise: causal links between activities
and goals they achieve.

Frameworks for sequential behavior vary in the extent to which they emphasize search vs.
knowledge. At one end of the continuum lie classic planning systems (Kambhampati, 1997), which
specify minimal domain content (as operators that describe conditional effects of actions) but oth-
erwise rely on heuristic search. These produce causally-connected action sequences that achieve
goals, but they do not store or access explicit procedural knowledge structures. At the other end
are traditional programming languages, which let one specify general procedures that include argu-
ments, conditional and iterative statements, subroutines, and recursion. However, these formalisms
seldom support relational descriptions, causal links, or explicit reasoning about goals. We desire a
representation for procedural expertise that falls midway between these two extremes.

Research on learning for planning and problem solving has produced a variety of ways to en-
code such knowledge. Search-control rules1 for selecting, rejecting, or preferring alternatives are
highly modular and can influence decisions about which operators, goals, or states to choose during
problem solving (e.g., Laird, 2012; Minton, 1988). Macro-operators offer a more procedure-like no-
tation that specifies effects of a sequence of operators when applied under certain conditions (e.g.,
Iba, 1989). Extensions to this framework support disjunctive, iterative, and recursive constructs
(e.g., Shell & Carbonell, 1989), bringing them into even closer alignment with classic notions of
procedures. A third paradigm, analogical planning, stores even larger structures that are retrieved
and adapted to new situations (e.g., Veloso & Carbonell, 1993). These lack explicit notations for
conditional and iterative behavior, but the adaptation process can produce similar effects.

1. One can also encode search-control expertise in terms of numeric evaluation functions, but we will limit our treatment
to symbolic structures that describe the organization of procedures.

2



HIERARCHICAL PROBLEM NETWORKS

The closest relatives of procedural formalisms in the planning literature are hierarchical task
networks (e.g., Nau et al., 2003) or HTNs. These retain modular, relational, and sequential con-
structs, but they specify expertise as a set of methods, each of which indicates how to accomplish a
named task by decomposing it, under certain conditions, into ordered subtasks. Different methods
may address the same task, thus supporting disjunction and recursion. Hierarchical goal networks or
HGNs offer an important variation on this idea (Shivashankar et al., 2012). These replace tasks and
subtasks with goals and subgoals that methods achieve, providing direct support for goal-directed
processing. This framework also simplifies the challenge of learning hierarchical procedures (Lan-
gley & Choi, 2006; Marsella & Schmidt, 1993; Reddy & Tadepalli, 1997). Both HTNs and HGNs
mimic traditional procedures while offering modular, relational encodings. The tasks and subtasks
of HTNs, which accept arguments, map onto routines and subroutines in standard programming
languages, but they make only indirect contact with goals through primitive operators. In contrast,
HGN methods are indexed by the goals they achieve while retaining HTNs’ other desirable features.

However, both frameworks have limited ability to specify search-free procedures that take goal
interactions into account. For instance, a standard HTN procedure for building towers in the Blocks
World requires a separate method for each number of blocks in the target tower and, moreover, that
method must specify the blocks as ordered arguments in its head.2 In other words, it would include
one decomposition rule with the head (build-tower ?X ?Y), another for (build-tower
?X ?Y ?Z), and so forth, which is neither concise nor general. One can specify more general
methods, but the HTN solver would then need to carry out search for a plan that achieves all of the
goals. Classic HGNs also require one method for each tower configuration, as they have no way
to encode knowledge about goal ordering. This drawback suggests the need for a new formalism
for procedural expertise that indicates not how to decompose individual tasks or goals, but how to
decompose problems stated as sets of goals, which in turn lets one encode relations among them. In
the next section, we present a framework that incorporates this insight.

3. Hierarchical Problem Networks
Most research on cognitive systems aims to reproduce key phenomena associated with intelligence
(Langley, 2018). In this case, we desire a computational theory of procedural expertise that repli-
cates the major characteristics of human problem solving. These include cognitive abilities for:

• Generating novel sequences of actions that achieve sets of goals;
• Taking both goals and situations into account when selecting actions;
• Decomposing complex activities into simpler ones when appropriate;
• Using domain knowledge to guide or constrain search when available; and
• Carrying out search through a problem space to solve problems when necessary.

Each of the frameworks just reviewed supports these five abilities, but we have also seen that they
have limits. In this section, we present a new theory – hierarchical problem networks or HPNs –
that incorporates many of their ideas but also extends them in new directions.

2. This holds for the most commonly used HTN formalisms, like SHOP2 (Nau et al., 2003). As we discuss later, various
extensions have addressed this limitation. Another approach, used in Prolog (Clocksin & Mellish, 1981), encodes
arguments as lists with variable length, but these lists specify the solution rather than placing constraints on it.

3



P. LANGLEY AND H. E. SHROBE

3.1 Representational Postulates

Theoretical accounts of cognitive systems typically begin by discussing representations, as they
constrain the mechanisms that operate on them. Many of our representational statements will take
the form of definitions, but they have implications for system behavior when they are combined
with claims about processes. We can further distinguish between short-term structures that change
rapidly over time and long-term elements that remain reasonably stable. We will start by character-
izing the former class of mental entities.

We are focused on tasks that involve sequential activity, in particular the generation of plans
that comprise an ordered set of actions. Like other work in this area, our framework must represent
situations that arise during the course of a sequential plan. Thus, we say that:

• A state is a conjunctive set of relational facts that describe a situation.

For example, a common modular encoding for the Blocks World relies on the relations on, ontable,
clear, holding, and hand-empty. Each predicate takes one or more arguments, which may
be shared across different facts to specify a physical configuration. We must also specify the purpose
or objective of the sequential activity. To this end, we say that:

• A goal is a desired relation, possibly with variables, and a problem is a set of goals that describe
a class of desired states.

This description is also modular and relational, and it uses the same formalism as states, but it can
omit some elements, which means that it can specify a set of desirable situations. Note that our
formulation differs from some earlier ones in that a problem does not refer to an initial state.

The aim of planning is to find solutions to a problem that achieve its goals. Each action changes
some elements of the current state to produce a successor state. For a plan to be successful, its
actions must produce a state that satisfies all the problem’s goals. In some cases, these actions may
be only partially ordered, although we will focus on total orderings here. However, we are especially
interested in a particular class of plans that provides additional structure to the solution:

• A hierarchical plan is a recursive decomposition of a problem into subproblems in which oper-
ator instances serve as terminal nodes.

This idea is well established, dating back to some of the earliest AI work on problem solving (e.g.,
Newell, Shaw, & Simon, 1960). Of course, it has also played a central role in more recent research
on HTNs, HGNs, and kindred approaches to plan generation.

Our theoretical framework also assumes that a problem solver stores long-term structures about
how to generate plans. We refer to this as procedural knowledge because it encodes strategies or
‘programs’ for classes of problems. We can make statements about the form of this content:

• Procedural knowledge is encoded as a set of methods, each of which decomposes one of a
problem’s goals into a set of ordered subproblems.

This postulate is shared with the HTN and HGN frameworks, and even with logic programs, but
these classic approaches decompose goals into subgoals or tasks into subtasks. We maintain instead
that each method decomposes a problem (a set of goals) into ordered subproblems (also sets of
goals), which imposes a very different organization on candidate solutions.

4



HIERARCHICAL PROBLEM NETWORKS

Each HPN method indicates how to break down a goal in the current problem, but a given
decomposition may only be appropriate in some situations. Thus, we also posit that:

• A method specifies the state-related conditions under which a decomposition is acceptable.

Such conditions on the state are standard in existing frameworks like HTNs and HGNs, so our
theory is not distinctive on this front. However, we further postulate that decomposition rules can
include a second type of condition which serves a different purpose:

• A method specifies goal-related conditions under which a decomposition is not acceptable.

For instance, in the Blocks World, if one has goal for A to be on B, then one should not apply a
decomposition rule to achieve this aim if there exists an unsatisfied goal for B to be on C. The reason
is straightforward; if we place A on B before putting B on C, then we must undo the first in order
to achieve the second. The HTN and HGN frameworks do not incorporate such constraints in their
methods, although they can appear in search-control rules.

However, hierarchical methods with state and goal conditions are not by themselves sufficient
to specify solutions for planning tasks. For this reason, the HPN framework also includes long-term
cognitive structures that make contact with executable or observable actions:

• An operator is a special type of method that specifies the conditional effects of an action.

As we have seen, operator instances serve as terminal nodes in hierarchical plans, but we must
specify their effects on states to make them operational. In the Blocks World, there is an operator
for stacking A on B when the hand is holding A and when B is clear. The effects under these
conditions are that A is on B and that the hand is no longer holding B.

Finally, the theory of hierarchical problem networks specifies an important connection between
such domain operators and the form taken by the elements of procedural expertise. More precisely,
it claims that this knowledge takes a particular form:

• Each method has an effect of some operator O as its head, a subset of O ’s conditions as its first
subproblem,3 and the application of O as its second subproblem.

This structural constraint gives hierarchical problem networks a very different feel from classic
HTNs or HGNs. Instead, they come closer to generalized traces of partial-order plans that can
encode solutions to tasks with arbitrary numbers of objects. We will return to this point when we
discuss extensions to the framework, including ways that a problem solver might learn new methods.

3.2 Processing Postulates

Now that we have presented claims about representation, we can discuss processes that operate
over these structures. The first postulate is suggested by the framework’s focus on how procedural
knowledge is used to generate hierarchical plans:

• Problem solving recursively decomposes a problem into subproblems in order to find an oper-
ator sequence that achieves the problem’s goals.

This states that problem solving occurs in a top-down, goal-driven manner, in which each step
breaks down a problem into component subproblems. A typical refinement replaces a goal in a

3. Not all of O ’s conditions contribute to the first subproblem; some may instead appear in the method’s state conditions.

5



P. LANGLEY AND H. E. SHROBE

problem P with one subproblem to satisfy an operator O ’s conditions, another one to apply O, and a
final subproblem to achieve P ’s other goals. The theory also includes details about this activity. In
particular, it posits that decomposition is a serial process that introduces one refinement at a time:

• Problem decomposition iteratively examines the topmost element of a problem stack and then
places new subproblems above it.

The problem stack is a dynamic structure that stores intermediate results. The idea of processing the
top element of a stack appears in other accounts of multi-step cognition that apply one rule at a time.
Indeed, this assumption is even more widespread than commitments to hierarchical decomposition.

Moreover, the theory of hierarchical problem solving enumerates the mechanisms that take place
on each cognitive cycle, specifically stating that:

• Problem decomposition relies on three main subprocesses: method matching, method selection,
and method expansion.

The first stage finds all methods whose head unifies with unsatisfied goals in the current problem,
P, whose state conditions match the state and whose goal conditions do not match. This produces
a set of applicable method instances, each of which binds variables to constants. The second stage
chooses one method instance, M, for use when decomposing P. Finally, the subproblems of M are
added to the stack, where they influence processing on later cycles.

The problem solver must also know when to halt decomposition, which occurs when the current
problem’s goals are satisfied or when it involves applying an operator. In such cases, it pops the
problem from the stack and focuses attention on the one below it. However, sometimes the selected
decomposition does not lead to a solution, which requires a final postulate:

• Problem solving involves search through a space of decompositions defined by the methods,
problem goals, and initial state.

The problem stack lends itself to depth-first search with backtracking, although that is not the only
way to organize exploration, and heuristics for method selection can also aid processing. Moreover,
appropriate conditions on methods eliminate search so that problem solving operates in a determin-
istic manner, with any remaining choices giving equivalent serializations of a partial-order plan.

3.3 Comparison to Other Frameworks

As noted earlier, hierarchical problem networks share key features with other planning frameworks,
but they also differ from these predecessors in important ways. Table 1 compares classic operator-
driven planning, HTNs, HGNs, and HPNs in terms of seven assumptions about representation and
processing. The first row shows that all four paradigms support the generation of sequential plans
that achieve goals, but that only the latter three use hierarchical methods to decompose complex
activities into simpler ones and apply them only when certain conditions hold in the current state.
Thus, HPNs draw substantially on earlier approaches to hierarchical planning, although they come
closest to HGNs, which also index methods by the goals they achieve, and to the ICARUS architec-
ture (Langley & Choi, 2006), which introduced this idea in the context of reactive control.

The final three rows review some more distinctive characteristics. HPNs differ from other hi-
erarchical frameworks, at least in their most commonly used forms, by decomposing problems –

6



HIERARCHICAL PROBLEM NETWORKS

Table 1. Comparison of hierarchical problem networks with three other approaches to planning in terms of
seven characteristics. The symbol • indicates that a feature is present, whereas ◦ denotes that a feature is
absent. Subsection 3.1 discusses the distinguishing characteristics in greater detail.

REPRESENTATIONAL AND Classic HTN HGN HPN
PROCESSING ASSUMPTIONS Planners Planners Planners Planners

Generate sequential plans that achieve goals • • • •
Decompose complex activities hierarchically ◦ • • •
Methods require that relations hold in state ◦ • • •
Methods indexed by goals they achieve ◦ ◦ • •
Decompose problems into subproblems ◦ ◦ ◦ •
Methods require that goals are not unsatisfied ◦ ◦ ◦ •
Methods are linked to primitive operators ◦ ◦ ◦ •

sets of goals – rather than decomposing individual tasks or goals. This feature enables a second
one: the ability to specify methods that apply only when certain goals are not unsatisfied in the
current state, which in turn constrains the order in which these goals are addressed. Finally, HPNs
assume that each method is linked directly to a primitive operator that determines its head and
subproblems. Together, these assumptions provide greater representational power than traditional
hierarchical techniques, offering an effective and compact way to encode procedural expertise while
still supporting heuristic search when such knowledge is limited.

4. The HPD Problem-Solving Architecture

We have developed a problem-solving architecture – the Hierarchical Problem Decomposer (HPD)
– that incorporates these postulates. As Langley (2018) notes, there are usually many ways to make
a theory operational and thereby testable, and here we present only one alternative. We start by
examining HPD’s representational formalism, then describe the mechanisms that operate over it.

4.1 Representation in the HPD Architecture

The HPD architecture embodies the representational commitments listed in the previous section,
reflecting them in its syntax for encoding long-term and short-term structures, as in many cognitive
architectures (Langley, Laird, & Rogers, 2009). This provides a programming language for denoting
states, problems, and procedures that underlie problem solving. The notation has much in common
with those used in logic programming (Lloyd, 1984) and hierarchical task networks (Nau et al.,
2003), but there are also some important differences with implications for processing.

For example, Table 2 (a) specifies a state from the Blocks World that involves 13 distinct literals.
These use the predicates on, ontable, clear, holding, and hand-empty, which can share
arguments to describe relational configurations. Similarly, Table 2 (b) presents a problem from the
Blocks World. This also consists of relational literals, but it refers to desired state elements and it
omits ones that hold no interest. Here the problem’s goals specify a tower with A on B, B on C, and

7



P. LANGLEY AND H. E. SHROBE

Table 2. A state description from the Blocks Worlds encoded as a set of relational facts and a problem de-
scription denoted as a set of goals.

(a) Initial state:
((block A)(block B)(block C)(block D)
(ontable A)(ontable B)(ontable C)(ontable D)
(clear A)(clear B)(clear C)(clear D)(hand-empty))

(b) Goal description:
((on A B)(on B C)(ontable C))

C on the table, but they do not mention ontable, clear, holding, or hand-empty, nor do
they refer to block D. Problem statements in HPD may also include unbound variables as arguments
of goal predicates, although they do not appear in this example.

Table 3 presents a hierarchical problem network for the Blocks World. Each of the four methods
includes a head, a set of state conditions, an optional set of goal conditions, and an ordered set of
subproblems. For instance, the first method’s head is (on ?X ?Y), which refers to a goal in the
current problem. The :conditions field specifies this rule should only apply when the current
state includes (block ?X) and (block ?Y). In addition, the :unless-goals field indicates
that the method should not apply if there exists an unsatisfied goal of the form (on ?Y ?ANY),
where ?Y is bound in an earlier field but ?ANY is not, or the form (ontable ?Y). Finally, the
:subproblems field lists two subproblems to replace the goal in the head. The first specifies the
goals ((holding ?X)(clear ?Y)) and the second to apply the operator (stack ?X ?Y).

Operators are a special type of method that describe the conditional effects of actions. Table 4
shows four operators from the Blocks World, in HPD syntax, that many readers will find famil-
iar. Each entry specifies a name and arguments in its head, conditions that must match the current
state for application, and changes to the state when such application occurs. For example, the first
operator has the head (stack ?X ?Y) and the conditions (holding ?X) and (clear ?Y).
The effects are that these relations cease to hold, but that (on ?X ?Y) and (hand-empty) be-
come true. Operators do not include :unless-goals conditions, because they deal with isolated
actions, or a :subproblems field, because they serve as terminal nodes in plans.

As noted earlier, each method in a hierarchical problem network has a clear relation to some
operator. For example, the head of the first method in Table 3, (on ?X ?Y), is an effect of the
operator stack in Table 4. The first subproblem contains conditions of the operator achievable
by other actions, whereas the second subproblem contains the operator’s head, indicating that it
should be applied after its conditions are met. A similar relation holds between the second method
in Table 3 and the operator pickup, although one of the latter’s conditions, (ontable ?X), is in
the method’s :conditions field rather than its first subproblem. The reason is that one cannot
achieve the goal (ontable ?X) without first achieving (holding ?X), which is circular.

HPD’s formalism for expertise maps directly onto classic features of procedures or programs.
Each method corresponds to a conditional statement that applies only when relevant. Moreover, a
method specifies how to decompose a problem into subproblems, which correspond to subroutine
calls, some of which lead to recursion. Programs terminate upon reaching an applicable operator

8



HIERARCHICAL PROBLEM NETWORKS

Table 3. Six methods for the Blocks World that include a head, state conditions, optional goal conditions, and
one or two subproblems. In each case, the final subproblem refers to application of an operator. This HPN
enodes a procedure that solves a broad class of problems in the domain without the need for search.

((on ?X ?Y)
:conditions ((block ?X)(block ?Y))
:subproblems (((clear ?Y)(holding ?X))((stack ?X ?Y)))
:unless-goals ((on ?Y ?ANY)(ontable ?Y)))

((holding ?X)
:conditions ((block ?X)(ontable ?X))
:subproblems (((clear ?X)(hand-empty))((pickup ?X)))
:unless-goals ((clear ?ANY)))

((holding ?X)
:conditions ((block ?Y)(block ?X)(on ?X ?Y))
:subproblems (((clear ?X)(hand-empty))((unstack ?X ?Y)))
:unless-goals ((clear ?ANY)))

((clear ?Y)
:conditions ((block ?Y)(block ?X)(on ?X ?Y))
:subproblems (((clear ?X)(hand-empty))((unstack ?X ?Y))))

((hand-empty)
:conditions ((block ?X)(holding ?X))
:subproblems (((putdown ?X)))
:unless-goals ((clear ?ANY)))

((ontable ?X)
:conditions ((block ?X))
:subproblems (((holding ?X))((putdown ?X))))

and they ‘return’ a result for each subproblem that is encoded as a hierarchical plan. The major
disconnect lies in HPD’s reliance on goals, rather than routine names, to index and invoke methods,
but these serve the same function as traditional procedural calls.

We should also consider the form of solutions that the HPD architecture generates. Table 5
shows a hierarchical plan for the initial state and problem in Table 2, with indentations indicating
levels in the solution. The top-level problem,((on A B)(on B C)(ontable C)), appears in
the first line. The plan breaks this down into three subproblems: ((clear C)(holding B)),
((stack B C)), and ((ontable C)(on A B)). The first subproblem in turn has three sub-
problems: ((clear B) (hand-empty)), ((pickup B)), and ((clear C)). Some termi-
nal nodes involve applying an operator, whereas others correspond to subproblems that the current
state already satisfies, and do not require any further effort. This solution has a right-branching
structure, but other plans, say for clearing a block embedded in a tower, will be left branching.

4.2 Processing in the HPD Architecture

In accordance with the theory, HPD operates in cycles. On each iteration, processing focuses on
the topmost problem P in the problem stack in the context of the current state S. The primary
steps include pushing new subproblems of P onto the stack, popping P from the stack, applying

9



P. LANGLEY AND H. E. SHROBE

Table 4. Four operators for the Blocks World, each specifying an action (head), conditions, and effects.

((stack ?X ?Y)
:conditions ((block ?X)(block ?Y)(holding ?X)(clear ?Y))
:effects ((on ?X ?Y)(hand-empty)(not(clear ?Y))(not(holding ?X))))

((pickup ?X)
:conditions ((block ?X)(ontable ?X)(clear ?X)(hand-empty))
:effects ((holding ?X)(not(hand-empty))(not(ontable ?X))))

((unstack ?X ?Y)
:conditions ((block ?X)(block ?Y)(on ?X ?Y)(clear ?X)(hand-empty))
:effects ((clear ?Y)(holding ?X)(not(on ?X ?Y))(not(hand-empty))))

((putdown ?X)
:conditions ((block ?X)(holding ?X))
:effects ((ontable ?X)(hand-empty)(not(holding ?X))))

an operator to update S, and adding or removing elements from the hierarchical plan. The action
that HPD takes depends on the results of comparing the problem P, the state S, and the heads and
conditions of methods. One of four situations will hold, each with an associated response:

• If the topmost problem P matches the current state S (i.e., all of P ’s goals are satisfied), then
HPD simply pops P from the problem stack.
• If the topmost problem P is to apply an operator O and if O ’s conditions match the current state

S, then HPD instantiates O ’s effects, uses them to update S, and removes P from the stack.
• If a method instance M is applicable to problem P in state S, then HPN pushes M ’s subproblems

onto the problem stack and inserts them as children of P in the hierarchical plan.
• If the plan length exceeds a limit, or if no method applies to problem P in state S, then HPD pops

P from the stack and removes P and its siblings from their parent in the hierarchical plan.
The final situation will not occur during a problem-solving run if appropriate methods, with the
necessary conditions, are known. In such cases, HPD will select a reasonable decomposition on
each cycle and find a hierarchical plan without needing to backtrack. In contrast, if the system lacks
these conditions, then it can be led astray and must carry out search before it finds a solution.

Let us consider in more detail these stages of processing. To match a method M against a
problem P and state S, HPD first compares the goals in M ’s head H with P ’s unsatisfied goals G
(i.e., those not satisfied by S). If H unifies with G, then the system compares M ’s conditions C with
the state S, subject to bindings from the head. If C matches against S in a consistent way, then HPD
compares the goal descriptions U in M ’s :unless-goals field with P ’s unsatisfied goals, again
taking bindings into account. If U matches successfully against G, then the method instance fails
because the unless condition blocks its applicability.

For example, suppose the top problem on the stack is the goal set ((on A B)(on B C))
and the current state is

((block A)(block B)(block C)(ontable A)(ontable B)
(ontable C)(clear A)(clear B)(clear C)(hand-empty)).

10



HIERARCHICAL PROBLEM NETWORKS

Table 5. A hierarchical plan that solves the problem in Table 2 (b) given the initial state in Table 2 (a).

((on A B)(on B C)(ontable C))
((clear C)(holding B))

((clear B)(hand-empty))
((pickup B))
((clear C))

((stack B C))
((ontable C)(on A B))

((clear B)(holding A))
((clear A)(hand-EMPTY))
((pickup A))
((clear B))

((stack A B))
((ontable C))

In this situation, the head of the first method in Table 3, (on ?X ?Y), matches the problem de-
scription in two distinct ways. One goal, (on A B), matches with bindings ?X → A and ?Y
→ B, while the other goal, (on B C), matches with bindings ?X → B and ?Y → C. The
:conditions field matches successfully for both sets of bindings, but the first match is rejected
because the :unless-goals condition, (on ?Y ?ANY), matches a goal, (on B C), that is
not satisfied. No analogous unsatisfied goal exists for the second match, so HPD treats it as appli-
cable. Such goal conditions constrain the order in which it addresses a problem’s goals.

Once HPD has found a set of acceptable methods instances, it selects one of them for applica-
tion. The current implementation picks a candidate at random, but it could instead incorporate a
mechanism for conflict resolution like that used in production systems (Neches, Langley, & Klahr,
1987). For instance, the system might favor methods whose heads unify with more unsatisfied prob-
lem goals or whose subproblems introduce fewer unsatisfied goals. Such preferences would serve
as heuristics to guide search through the space of decompositions. They would not be guaranteed to
reduce effort or to generate better plans, but they could aid performance substantially on average.

After the architecture has selected a method instance M to decompose the topmost problem P,
it instantiates M’s subproblems based on the accumulated variable bindings and adds them on top
of the problem stack. If M includes two subproblems, S1 and S2, then HPD introduces not only S1
and S2, in that order, but also a third subproblem that comprises any goals in P not mentioned in
M’s head, including ones that are currently satisfied. In some situations, this set difference will be
empty, but in other cases goals will remain that the system must address later. In addition to adding
these subproblems to the stack, HPD stores them as children of P in the hierarchical plan.

Returning to our example, the first method in Table 3 specifies two subproblems. After sub-
stituting bound variables, these become ((holding B)(clear C)) and ((stack B C)),
which HPD pushes onto the problem stack. However, because the current problem contains two
goals, ((on A B)(on B C)), and the decomposition only addresses one of them, the system
also adds a third subproblem – ((on A B)) – that includes the remaining goal. After the appli-
cation of this method instance, the stack retains the original top-level problem, but three new ones

11



P. LANGLEY AND H. E. SHROBE

now sit above it. In this manner, HPD continues to decompose problems and push their subproblems
onto the stack, where they become the foci of attention on future cognitive cycles.

This activity continues until the topmost problem P is to apply an operator O and O ’s conditions
match the current state S. In such cases, HPD instantiates O ’s effects, uses them to update S, and
removes P from the stack. If the new top-level problem is satisfied by the new state, then the system
removes it as well; otherwise, it finds a relevant method to solve it. If things go well, the architecture
eventually addresses each problem on the stack, including the original one, and returns a hierarchical
plan. When HPD cannot find a decomposition that it has not already tried and rejected, it abandons
the current problem and backtracks. However, given appropriate methods, the system avoids search
entirely and mimics an algorithmic procedure. State and goal conditions join forces to produce this
behavior, the former influencing which bindings are selected and the latter ensuring that goals are
addressed in the right order. As Table 3 illustrates, the encoding of procedural knowledge for a
given domain can be remarkably simple. Besides the operators themselves, often this requires only
one or two methods per operator that specify how to decompose problems into subproblems.

4.3 Implementation and Use Details

We have implemented the HPD architecture in Steel Bank Common Lisp. The software supports the
syntax outlined above for specifying states, problems, and hierarchical problem networks. It also
incorporates mechanisms for interpreting these structures. These include modules for matching,
selecting, and applying HPN methods in ways that update the problem stack and the state, as well
as for backtracking when the need arises. In other words, HPD both operationalizes the theory
of hierarchical problem solving presented earlier and offers a programming language for stating
knowledge about goal-directed sequential activities.

To apply HPD in a specific scenario, the user loads a file that contains a set of hierarchical meth-
ods, an initial state described as a set of relational literals, and a set of goals that encode a problem.
The architecture is called with these arguments, along with the maximum length for acceptable
plans. The interpreter repeatedly focuses on the topmost problem, popping it from the stack if sat-
isfied, selecting an untried method that adds new subproblems to stack if not, or abandoning the
current problem and backtracking if necessary. Upon completion, HPD returns a hierarchical plan
that transforms the initial state into one that satisfies the problem goals.

5. Empirical Studies of Hierarchical Problem Networks
Hierarchical problem networks offer a promising framework for encoding and using procedural
expertise, but it is important to demonstrate that they support the abilities listed in Section 2. Thus,
we must show that HPD can generate action sequences which achieve a set of goals, take both goals
and situations into account when selecting actions, decompose complex activities into simpler ones,
carry out search when choices arise, and use domain knowledge to constrain this search. To this
end, we developed HPD knowledge bases for three planning domains and a suite of test problems
for each one. In this section, we describe the domains, the hierarchical problem networks, and basic
tests of their behavior. Next we report lesion studies that remove some of the methods’ contents
to determine their effects on search. We also present controlled experiments that vary problem
characteristics to show how HPD programs scale to increasing complexity.

12



HIERARCHICAL PROBLEM NETWORKS

5.1 Demonstrations of HPD’s Abilities

We selected three well-studied domains from the AI literature. These have typically been used to
evaluate planning systems that rely on heuristic search, but people who are familiar with them can
solve novel problems with little or no backtracking, which makes them ideal for showing HPD’s
ability to encode procedural expertise. For each domain, we describe the predicates used to specify
goals and states, the operators that transform states, and the hierarchical problem networks that we
developed to solve tasks. We also report on the number of problems used to test the HPD programs
and their complexity in terms of goals and solution lengths.

The Blocks World involves changing an initial configuration of blocks into another configuration
that satisfies a goal description. There are six predicates for states – block, on, ontable, clear,
holding, and hand-empty – and four operators – stack, unstack, putdown, and pickup.
The HPD program for this domain, shown in Table 3, includes six methods, including two for the
holding relation and one each for the other dynamic predicates. We tested this knowledge base
on 20 tasks from the Blocks World. Solution lengths varied from four to 12 steps and every problem
involved five goals. For each task, HPD found the expected hierarchical plan without backtracking.
In other words, the architecture used the methods like a deterministic procedure, as intended.

The Logistics domain requires transporting packages from initial to target locations. Static rela-
tions include object, truck, airplane, location, city, airport, and in-city, while
the only dynamic predicates are at and in. The six operators are load-truck, drive-truck,
unload-truck, load-airplane, fly-airplane, and unload-airplane. The knowl-
edge base for logistics included seven methods, four for the relation at and three for in. We
evaluated the HPD program on ten problems from this domain, with the number of goals varying
from one to three and with solution lengths ranging from four to 18 steps. As before, the architec-
ture found a hierarchical plan for each problem with no search. In a few cases, it made it extra round
trips for packages with the same initial and target locations, but it never required backtracking.

The Depots domain combines elements of the Blocks World and Logistics, in that it involves
moving crates from some pallets to others and stacking them in specified arrangements. Here the
static predicates include place, truck, pallet, surface, crate, and hoist, while the
dynamic relations are available, lifting, at, on, in, and clear. There are five operators
are drive, lift, drop, load, and unload, and we provided HPD with eight methods, two for
the relation on and lifting and one for every other dynamic predicate. We ran the architecture
on ten Depots problems that involved from two to three goals and whose solutions ranged from
eight to 18 steps. As expected, this knowledge base found solutions to every task without resorting
to search, as its methods made correct choices at each stage of the problem-solving process.

5.2 Lesion Studies of HPD’s Problem Solving

Our initial results provide evidence that hierarchical problem networks are an effective way to en-
code procedures, but they do not reveal their sources of power. To gain further insights, we devised
lesion studies to compare the behavior of the basic HPD programs with that for three variants with
facets of their methods removed. In one version, we eliminated both state and goal conditions, so
that each method included only static state conditions. For instance, for the third method in Ta-
ble 4, we excised the :unless-goals field and moved the state condition (on ?X ?Y) into

13



P. LANGLEY AND H. E. SHROBE

0 0.5 1 1.5 2 2.5

State and goal conditions

0
0.

5
1

1.
5

2
2.

5

O
nl

y 
st

at
e 

co
nd

iti
on

s

Depots

Logistics

Blocks World

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

State and goal conditions

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5

O
nl

y 
go

al
 c

on
di

tio
ns

Depots

Logistics

Blocks World

Figure 1. Scatter plots that compare the effort by different knowledge bases to solve problems in three do-
mains. The left graph shows the CPU time taken by a complete HPD program vs. the time needed by one that
lacked goal conditions. The right graph shows the time for a full HPD program and one that lacked dynamic
state conditions. Points above the diagonal denote problems in which the complete knowledge knowledge
base was more efficient. Each point is averaged across 30 separate runs and shown on logarithmic scales.

the :subproblems field. Another variant retained dynamic state conditions but omitted goal con-
ditions, while the final version kept goal conditions but not dynamic state conditions. We expected
that search, and thus time to find solutions, would increase in all three variants, but we did not know
if state or goal conditions would be more important. For each domain, we told HPD to try no more
than 20,000 decompositions and to only consider solution paths with 20 steps or fewer. We ran the
system on the 40 problems described above, averaging across 30 runs in each case.

Figure 1 presents the main results of this comparison as scatter plots. The graph on the left
compares the CPU time, in logarithmic scale, for the full HPD knowledge base in each domain
with one that omitted goal conditions. On nearly every problem, the unmodified programs fared
better, although the lesioned variants still kept search down to a reasonable level. The graph on the
right compares the problem-solving times for full knowledge bases with those for HPD programs
that retained the goal (unless) conditions but not dynamic state conditions. The differences here are
much greater, so much that on some tasks the system failed to find a solution before exceeding its
allotted number of decompositions. This indicates that state conditions, which constrain methods’
bindings, limited search more than goal conditions, which constrain goal orderings. The fourth
variant, which elided both types of conditions, did substantially worse than the others, as predicted.

In addition, we recorded the number of decompositions tried during each run. We have not
graphed these results because they were correlated highly (r = 0.997) with the observed CPU times
for solved problems, which suggests that the cost of matching methods was not a factor. We also
tracked the length of solutions found by the architecture with all four variations. This dependent
variable was nearly unaffected by removal of state or goal conditions, except when the system failed
to find a solution because it reached the limit placed on decompositions. In other words, the length
of solutions remained the same even when substantial search was required to find them.

14



HIERARCHICAL PROBLEM NETWORKS

0 1 2 3 4 5 6 7

Number of irrelevant blocks

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5

lo
g(

C
P

U
 s

ec
s 

x 
10

^4
)

Neither

Goal

State

Both

0 1 2 3 4 5 6 7 8 9 10

Number of interacting goals

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5

lo
g(

C
P

U
 s

ec
s 

x 
10

^4
)

Neither

Goal

State

Both

Figure 2. Scaling curves that show CPU times to solve problems in the Blocks World as a function of (left)
the number of irrelevant blocks and (right) the number of interacting goals. Each graph includes a curve for
the HPD program from Table 3, the same methods with only state conditions, with only goal conditions, and
with neither of them. Each point is an average over 30 runs, with CPU times shown on a logarithmic scale
and with error bars denoting 95 percent confidence intervals. The higher curves level off because search fails
when HPD reaches the limit on plan length, thus bounding the time spent on problem solving.

5.3 Scaling Studies of HPD’s Problem Solving

The previous comparisons revealed the relative importance of state vs. goal conditions on a sample
of problems in three domains, but not their influence on scaling behavior, which is critical to com-
binatorial tasks. To understand this important issue, we devised two additional experiments, both
involving the Blocks World. In the first study, we held constant the number of goals and varied the
number of blocks that were irrelevant to problem solutions. We hypothesized that state conditions
would keep search under control as we increased the number of objects, since they contsrain vari-
able binding in methods and thus which subproblems are created. Figure 2 (left) shows results that
are consistent with this prediction. The flat curve for methods with state conditions but no goal con-
ditions is indistinguishable from that for the full HPD program in Table 3, implying that no search
arose. In contrast, the plot for methods with goal constraints but no state conditions is no different
from the HPD variant with neither of them; in both cases, search grows with the number of objects.

In the second study, we varied the number of interacting goals in problems that involved building
a tower from blocks on the table. This also meant varying the number of objects, but we predicted
that goal conditions would be more helpful in scaling with problem complexity, since they impose
constraints on goal orderings, while state conditions would prove less useful. The graphs in Fig-
ure 2 (right) only largely agree with these expectations. The presence of goal conditions aids HPD
slightly more than state conditions until six interacting goals, when the former starts to mitigate
search substantially more than the latter. Note that processing time increases even for the full HPD
program from Table 3, despite the fact that it requires no search, because the problems with more
goals have longer solutions. However, the growth in solution time is slightly more than linear, which
suggests that the cost of matching methods may also be increasing slowly.

15



P. LANGLEY AND H. E. SHROBE

6. Links to Earlier Research

The theory of hierarchical problem networks borrows ideas from the previous literature, but it also
makes important new contributions. One of the framework’s core tenets is that procedural knowl-
edge is organized into modular, hierarchical methods. This assumption has been adopted widely,
from early research on mathematical reasoning (Slagle, 1963) to the entire paradigm of logic pro-
gramming (Lloyd, 1984). The closest links are to hierarchical task networks (Nau et al., 2003),
hierarchical goal networks (Shivashankar et al, 2012), and the ICARUS architecture (Langley &
Choi, 2006). However, the current theory is distinctive in that methods break down problems – sets
of goals – rather than tasks or individual goals, and that each method includes a domain operator.
This focus on problems lets HPNs specify explicit constraints on goal orderings that are not possible
in other hierarchical frameworks, at least without considerable extensions.

There are certainly other approaches to specifying such restrictions. Problem-solving architec-
tures like Soar (Laird, 2012) and Prodigy (Minton, 1988) incorporate control rules that state when
to select, reject, or prefer certain goal orderings. Similarly, some extensions to hierarchical task
networks, such as SHOP3 (Goldman & Kuter, 2019), include second-order inference rules that de-
scribe relations between states and goals, which can then appear in methods’ conditions. Another
scheme relies on some variety of temporal logic to encode such ordering constraints (e.g., Lin,
Kuter, & Sirin, 2008) and eliminate alternatives that violate them. Hierarchical problem networks
differ from these approaches by augmenting the formalism for describing methods themselves to
incorporate this content, providing a compact and intuitive notation for procedural knowledge that
does not require inference rules to constrain goal orderings.

Another central idea is that problem solving involves a process of recursive decomposition that
produces hierarchical solutions. This assumption also appears in many earlier efforts on HTN and
HGN planning, as does the theory’s reliance on cognitive cycles that match, select, and apply rules.
The key difference is that HPN solvers produce not a sequence of subtasks or subgoals, but rather
a sequence of subproblems, each of which includes an operator instance. This approach lets a
small set of general methods handle a broader class of problems than HTNs or HGNs, which re-
quire different decomposition rules for problems with different numbers of goals. Moreover, the
backward-chaining character of HPN interpretation, combined with the use of goal conditions, is
more akin to a knowledge-based version of partial-order planning (Kambhampati, 1997) than to
other techniques for recursive decomposition.

Researchers have reported other systems that decompose problems into subproblems, but these
have seldom incorporated procedural knowledge beyond the level of primitive operators. Newell,
Shaw, and Simon’s (1960) General Problem Solver introduced means-ends analysis, which uses
operators in this manner, and successors like EUREKA (Jones & Langley, 2005) and HPS (Lan-
gley, Barley, & Meadows, 2018) invoke flexible variations on the same theme. However, these
systems emphasized search through a space of possible decompositions, rather than drawing on
domain knowledge to eliminate search. A closer analog to HPD is Marsella and Schmidt’s (1993)
REAPPR, which used decomposition rules to break problems into subproblems but did not associate
an operator with each one. However, our framework does share this idea with Geib’s (2016) lexical-
ized HTNs, in which each method includes an operator and in which each subtree of a hierarchical
plan incorporates at least one operator instance.

16



HIERARCHICAL PROBLEM NETWORKS

Finally, the theory offers an effective way to specify general procedures that an interpreter like
HPD can use to solve a broad range of problems without search. This supports constructs associated
with traditional programming languages, including arguments, conditional and iterative statements,
subroutines, and recursion. At the same time, the framework supports search through a problem
space when the knowledge available is not enough to eliminate it entirely. Again, HTNs and cogni-
tive architectures that incorporate search-control rules have similar capabilities, but they emphasize
search and treat search-free procedures as a special case. HPNs reverse this focus, coming closer
to Miller et al.’s 1960) original notion of plans as deterministic procedures. Most important, HPN
programs obeys strong constraints, in that their structure follows directly from operators and their
effects, making them elegant, straightforward to write, and potentially easy to learn.

7. Concluding Remarks

In this paper, we introduced a new representation for procedural expertise – hierarchical problem
networks – that specifies how to decompose problems (sets of goals) into subproblems. HPN meth-
ods can include both state conditions, which constrain bindings on variables, and goal conditions,
which constrain the order in which goals are tackled. We also described HPD, a problem-solving
architecture that provides an HPN syntax and an interpreter that generates hierarchical plans. Given
sufficient knowledge, the interpreter operates much like that for a procedural programming lan-
guage, but has the ability to fall back on search when this content is incomplete. Finally, we reported
empirical results with HPD on three planning domains. These showed that simple HPNs suffice to
solve many problems without search, identified the contributions of state and goal conditions when
search arises, and clarified how these knowledge sources influence scaling to problem complexity.

Despite this progress, we have only started to explore the potential of hierarchical problem
networks for knowledge-based planning. In future work, we will extend the theory, and its imple-
mentation in the HPD architecture, to incorporate additional cognitive abilities by:

• Including a heuristic that favors methods with fewer unsatisfied goals in their initial subproblem,
which should mitigate the current reliance on state conditions to reduce search and thus improve
scaling to more difficult planning tasks;
• Extending hierarchical plans to allow OR branches for nondeterministic outcomes, which seems

necessary to support information-gathering operators that are core to diagnostic procedures, like
those common in mechanical and medical settings;
• Allowing methods and plans to contain durative operators with temporal constraints on start and

end times, as needed for procedures that carry out actions in parallel, like those needed to prepare
meals and operate vehicles; and
• Integrating HPN-guided problem solving with partial-order planning to take advantage of de-

composition rules when such domain knowledge is present but to fall back on search using
primitive operators when it is not available.

This last extension may hold the key to learning HPN methods. Recall that each method’s head
corresponds to an effect of an operator that appears as one of its subproblems, so one need only
identify the state and goal conditions for each method. We hypothesize that one can determine goal
conditions from orderings on operators found during partial-order planning and that one can acquire

17



P. LANGLEY AND H. E. SHROBE

state conditions with a variety of explanation-based learning which analyzes causal dependencies
in problem solutions (Minton, 1988). Extending the framework to create HPN methods automat-
ically from experience would remove the main bottleneck to making knowledge-guided planning
preferable to the currently dominant knowledge-lean schemes.

Acknowledgements
This research was supported by Grant N00014-20-1-2643 from the Office of Naval Research, which
is not responsible for its contents. We thank Gary Borschart, Sue Felshin, and Boris Katz for con-
structive discussions that influenced the ideas we have reported here.

References
Clocksin, W. F. & Mellish, C. S. (1981). Programming in Prolog. Berlin, Germany: Springer-

Verlag.
Geib, G. (2016). Lexicalized reasoning about actions. Advances in Cognitive Systems, 4, 187–206.
Goldman, R. P., & Kuter, U. (2019). Hierarchical task network planning in Common Lisp: The case

of SHOP3. Proceedings of the Twelfth European Lisp Symposium (pp. 73–80). Genova, Italy.
Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators. Machine Learning, 3,

285–317.
Jones, R. M. & Langley, P. (2005). A constrained architecture for learning and problem solving.

Computational Intelligence, 21, 480–502.
Kambhampati, S. (1997). Refinement planning as a unifying framework for plan synthesis. AI

Magazine, 18, 67–97.
Laird, J. E. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press.
Langley, P. (2018). Theories and models in cognitive systems research. Advances in Cognitive

Systems, 6, 3–16.
Langley, P., Barley, M., & Meadows, B. (2018). Adaptive search in a hierarchical problem-solving

architecture. Advances in Cognitive Systems, 6, 251–270.
Langley, P., & Choi, D. (2006). Learning recursive control programs from problem solving. Journal

of Machine Learning Research, 7, 493–518.
Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues and chal-

lenges. Cognitive Systems Research, 10, 141–160.
Langley, P., Shrobe, H. E., & Katz, B. (in press). A cognitive task analysis of rapid procedure

acquisition from instructional documents. Advances in Cognitive Systems.
Lin, N., Kuter, U., & Sirin, E. (2008). Service composition with user preferences. Proceedings of

the Fifth Annual European Semantic Web Conference (pp. 629–643). Tenerife, Spain: Springer.
Lloyd, J. W. (1984). Foundations of logic programming. Berlin, Germany: Springer-Verlag.
Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems. In D.

Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development.
Cambridge, MA: MIT Press.

Marsella, S. C., & Schmidt, C. F. (1993). A method for biasing the learning of nonterminal reduction
rules. In S. Minton (Ed.), Machine learning methods for planning. San Francisco, CA: Morgan
Kaufmann.

18



HIERARCHICAL PROBLEM NETWORKS

Miller, G. A., Galanter, E., & Pribram, K. A. (1960). Plans and the structure of behavior. New
York: Holt, Rhinehart, & Winston.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. Pro-
ceedings of the Seventh National Conference on Artificial Intelligence (pp. 564–569). St. Paul,
MN: Morgan Kaufmann.

Nau, D., Au, T., Hghami, O., Kuter, U., Murdock, J., Wu, D., & Yaman, F. (2003). SHOP2: An
HTN planning system. Journal of Artificial Intelligence Research, 20, 379–404.

Newell, A., Shaw, J. C., & Simon, H. A. (1960). Report on a general problem-solving program for a
computer. Proceedings of the International Conference on Information Processing (pp. 256–264).
UNESCO House, France: UNESCO.

Reddy, C., & Tadepalli, P. (1997). Learning goal-decomposition rules using exercises. Proceedings
of the Fourteenth International Conference on Machine Learning (pp. 278–286). Nashville, TN:
Morgan Kaufmann.

Shell, P., & Carbonell, J. G. (1989). Towards a general framework for composing disjunctive and it-
erative macro-operators. Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (pp. 596–602). Detroit, MI: Morgan Kaufmann.

Shivashankar, V., Kuter, U., Nau, D., & Alford, R. (2012). A hierarchical goal-based formalism
and algorithm for single-agent planning. Proceedings of the Eleventh International Conference
on Autonomous Agents and Multiagent Systems (pp. 981–988). Valencia, Spain.

Slagle, J. R. (1963). A heuristic program that solves symbolic integration problems in freshman
calculus. Journal of the ACM, 10, 507–520.

Veloso, M. M., & Carbonell, J. G. (1993). Derivational analogy in PRODIGY: Automating case
acquisition, storage, and utilization. Machine Learning, 10, 249–278.

19


