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Abstract 
This paper describes early work on developing domain-independent, semantically-oriented natural 
language generation for language-endowed intelligent agents within the OntoAgent cognitive 
architecture. The approach draws heavily from past work on natural language understanding in this 
paradigm: it uses the same knowledge bases, theory of computational linguistics, agent architecture, 
and methodology of developing broad-coverage capabilities over time while still supporting near-
term applications. Though the work is in its early days, three aspects of it are timely to report. (1) 
The recently published book, Linguistics for the Age of AI, describes language understanding in 
OntoAgent in considerable depth, and this paper answers the obvious question, What about 
generation? (2) The generation-system architecture underscores the nature and scope of work 
needed to treat open-domain language – in contrast to minimally-demo-sufficient language. (3) In 
response to the oft-asked question, Why don’t you just combine knowledge-based and machine-
learning methods, we have a negative result to report: language models grounded in machine 
learning – at least as currently configured – cannot help with choosing among sentence-levels 
candidate paraphrases within a given context. 

1. Introduction 

A core need of artificial intelligence (AI) is human-level language processing, comprised of natural 
language understanding (NLU) and natural language generation (NLG). The recent successes of 
large language models such as GPT-3 and Switch-C (Brown et al., 2020; Fedus, 2021) have ignited 
widespread popular interest in NLG as well as the impression that fluent text generation means that 
the language problem in AI has been solved.1 But this couldn’t be further from the truth due to 
well-known deficiencies in machine learning-oriented approaches to NLG. For example: (a) such 
systems don’t have any understanding of what they are generating, resulting in errors such as overly 
repetitive text, word-modeling failures (e.g., writing about fires happening under water), and erratic 
topic switching (Radford et al., 2019); (b) they struggle to be contextually relevant since their 
primary source of context is typically just a dialog history; and (c) they cannot explain their 

 
1 Note that the words “widespread” and “popular” are central to our generalization. Obviously, NLG has been under 

investigation since the earliest days of AI. For surveys, see Gatt and Krahmer  (2018) and Santhanam and Shaikh (2019). 
For an approach that makes reference to knowledge but is not knowledge-based and explainable in the sense we pursue 
here, see Dinan et al. (2018). For a historical perspective on natural language processing, see McShane & Nirenburg 
(2021). 
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decisions or behavior, leading to distrust of AI systems (Xu et al., 2019). Moreover, as Bender et 
al. (2021) argue, there are environmental and ethical considerations to contend with when 
designing, training, and deploying large language models.  
  An alternative approach to NLG, which avoids these pitfalls, uses a knowledge-based approach 
to cognitive modeling. The one described here develops Language-Endowed Intelligent Agents 
(LEIAs) within the OntoAgent cognitive architecture (Nirenburg et al., 2020). It is in the spirit of 
natural language work in the early days of AI, before the statistical turn, but it reflects significant 
advances that are informed by decades of research and development, and it is supported by 
tremendous innovations in computing over that time.    
  The objective of LEIA research is to develop human-level, language-endowed, explainable 
intelligent systems using computational cognitive modeling. Language processing in LEIAs 
follows the theory of Ontological Semantics, which is a human-inspired theory of language 
understanding that covers both natural language understanding (NLU) and natural language 
generation (NLG) (Nirenburg & Raskin, 2004). In the LEIA architecture shown in Figure 1, the 
left-hand dotted rectangle highlights NLU: an input text is analyzed by the language understanding 
service, yielding an ontologically-grounded knowledge structure called a text meaning 
representation, or TMR. We refer to these as NLUTMRs to emphasize their source. Correspondingly, 
the right-hand dotted rectangle highlights NLG: the Attention and Reasoning service creates an 
ontologically-grounded text meaning representation that serves as a content specification for the 
process of NLG, which is carried out by the Verbal Action Generator. We call this variety of text 
meaning representations NLGTMRs, i.e., meaning representations that are used as input to NLG.  
 

  

Figure 1. The OntoAgent architecture for developing LEIAs. 
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  Until recently, LEIA research has devoted significantly more attention to NLU than NLG 
(McShane & Nirenburg, 2021). That is, whereas we have pursued broad and deep coverage of 
language in NLU, we have addressed NLG only to the degree needed to support our prototype agent 
applications. This decision reflected our judgment of the relative importance, and strategically best 
sequencing, of the many issues in language processing in the face of resource constraints. Still, 
ultimately, it is equally important to approach NLG with the same view toward broad coverage and 
domain independence as was devoted to NLU. The reason is that small-domain NLG capabilities 
will not scale up since they involve significant simplifications (ibid.). For this reason, we have 
recently begun to address broad-coverage, domain-independent NLG. This paper reflects early 
stages of that work with, we believe, some noteworthy observations and lessons learned.  
  This paper describes key features of our nascent NLG system. The flow of argumentation is as 
follows: 
 
• Meaning in OntoAgent is recorded in unambiguous, ontologically-grounded meaning 

representations.  
• Text meaning representations involve language processing: they are the output of NLU 

(NLUTMRs) and the input to NLG (NLGTMRs).2 In these two functions, TMRs differ only with 
respect to minor details, such as the metadata that records the processing that gave rise to 
them.  

• The near-identity of NLUTMRs and NLGTMRs opens up an interesting possibility for R&D: it 
allows us to use the NLU system to create content specifications for the NLG system for a 
large number and wide variety of texts. This overcomes a well-known barrier to broad-
coverage work on NLG: the fact that most cognitive systems have narrow domain coverage, 
thus limiting the content specifications they can produce and, therefore, the fodder for 
developing robust NLG capabilities.  

• Having established that our NLU system could supply the needed content specifications, we 
developed an NLG architecture that: (a) is theoretically  informed by our past work on NLU, 
(b) uses the same knowledge bases (ontology, lexicon, fact repository), and (c) is embedded 
in the same agent architecture (Nirenburg & English, 2020).  

• Many of same linguistic and extra-linguistic challenges confront both NLU and NLG, albeit 
in different guises: polysemy and paraphrase, coreference, ellipsis and fragmentary 
utterances, and so on. Our past work on NLU is, obviously, strongly informing our approach 
to NLG, particularly with respect to anticipating linguistic eventualities.  

• Just as we use machine-learning-based engines for select aspects of NLU (preprocessing, 
syntactic analysis), we had hoped we could use machine-learning-based language models for 
a particular subtask of NLG: selecting the most natural of multiple paraphrases given a 
particular context. However, as it turns out, the available models are not configured to be 
used in this way.  

 

 
2 Of course, they are also the content of episodic memory and input to reasoning. 
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  Why should readers be interested in an early report about what will ultimately be a large and 
complex system? There are three reasons. First, our recently-published book (McShane & 
Nirenburg, 2021) focuses on NLU, so a natural question is, What about NLG? Second, just as the 
book was intended to make manifest how narrow-coverage NLU differs from broad-scale NLU, 
this paper intends to do the same for NLG. Third, our negative result – i.e., the inability to leverage 
large language models to assist in paraphrase selection for NLG – is, we believe, an instructive 
example about how one cannot simply mix-and-match machine-learning and knowledge-based 
approaches – even though we will continue to seek out opportunities to somehow leverage the 
results of machine learning in our overall process of NLG.  

2. From NLU to NLG  

A challenging question in the history of work on NLG has been, What meaning does the system 
want to express through language and where does it come from? This is known as content 
specification. In cognitive systems that are developed using typical cognitive architectures (ours 
included), content specification is an aspect of agent reasoning – something we will return to in a 
moment. However, it is important to understand, by way of orientation, that most current dialog 
systems are not cognitive systems – they avoid the task of content specification entirely. Instead, 
they use ML methods – based on surfacy (not interpreted) text features – to predict the most likely 
response based on the previous dialog turn. Recent attempts to optimize this approach include 
Brown et al.’s (2020) work on few-shot learning using GPT-3’s language model, and Liu et al’s 
(2020) incorporation of aspects of “persona” (text strings about the speaker) into the content of 
generation.  
  Returning to LEIAs, before an agent says anything it must (a) know what content it wants to 
express and (b) decide to express it using language rather than some other action (e.g., agreement 
and disagreement can be expressed by nodding and shaking one’s head, respectively). This 
reasoning is carried out by the Attention & Reasoning service (cf. Figure 1), yielding a NLGTMR. 
Figure 2 shows the NLGTMR for the meaning that some person attached a painting to a wall on 
05.01.2021 at 9:02. The NLGTMR is comprised of instances of ontological concepts, distinguished 
by numerical indices, that are stored in two modules of agent memory: long-term episodic memory 
and the situation model. In other words, this is a particular FASTEN event (FASTEN-18) involving a 
particular HUMAN (HUMAN-104), PICTURE (PICTURE-7) and WALL (WALL-40). 
 

FASTEN-18 
 AGENT     HUMAN-104 
 THEME     PICTURE-7 
 DESTINATION  WALL-40 
 DATE      05.01.2021  
   CLOCK-TIME        09:02 
 

HUMAN-104 
    AGENT-OF       FASTEN-18 
PICTURE-7 
    THEME-OF       FASTEN-18 
WALL-40 
    DESTINATION-OF     FASTEN-18 

Figure 2. An example of an NLGTMR – the meaning an agent wants to express using language. 
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Ontology excerpt Episodic memory excerpt 
FASTEN 
 AGENT      sem    HUMAN 
 THEME      sem   PHYSICAL-OBJECT 
 DESTINATION   default  PLACE 
          sem   PHYSICAL-OBJECT 

HUMAN-104 
 HAS-NAME   Tom 
 GENDER    male 
 AGENT-OF   a list of all known event instances, 
                             including FASTEN-18 

 
Figure 3. Excerpts from the ontology and episodic memory. 

 
 The agent’s knowledge about the types of concepts used in NLGTMRs is stored in the ontology. 
For example, the semantic constraints on the case-role fillers of FASTEN are shown in the left-hand 
column of Figure 3. The default facet holds more typical fillers than the basic semantic constraints 
indicated by the sem facet.  
 The agent’s knowledge about concept instances, like those that populate NLGTMRs, is stored in 
episodic memory. For example, the fact that this person’s name is Tom is listed in the episodic 
memory frame for HUMAN-104, which includes everything else the agent knows about this person, 
including his gender, all the event instances he was an agent of in the past, etc. – as shown in the 
right-hand column of Figure 3. 
  To generate sentences from NLGTMRs, the agent must make a lot of linguistic decisions, such 
as which of the available synonyms to use in lexical selection, when to use multiword expressions, 
which morphological  forms of words to generate, how to render referring expressions, which voice 
(active vs. passive) to use for each clause, and so on. The complexity of each of these problems is 
well attested in the descriptive, theoretical, and computational linguistic literature of the past half 
century. Faced with this complexity, cognitive systems developers have typically addressed only 
the subset of issues that are required by the given application, using methods appropriate to that 
application. This makes sense in the short term, especially to foster progress on integrated agent 
systems; but it won’t scale up. What we are trying to do, by contrast, is to work on issues of NLG 
in principle, across domains, in ways that are practical and mindful of the current state of the art.  
  In order to work on a broad range of issues in NLG across domains, it is desirable to accumulate 
a large inventory and variety of NLGTMRs to serve as examples of content specification. The 

problem is, extant LEIA-based 
application systems – like most cognitive 
system applications – do not have broad 
coverage, thus limiting the availability of 
NLGTMRs generated by the agent’s 
content specification module. However, 
that turns out to not be an insurmountable 
hurdle because LEIAs provide us with a 
workaround: we can use the LEIA’s own 
NLU module to generate knowledge 
structures that are very similar to 
NLGTMRs and use them as content Figure 4. NLU provides content specifications to NLG. 
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specifications for NLG. Figure 4 shows how this works. (1) Take any natural language text as input, 
(2) use the agent’s NLU module to generate NLUTMRs for them, (3) strip the latter of the metadata 
indicating which words and constructions were used in the original sentence, and (4) treat the 
stripped meaning representation as if it had been generated by the agent’s content generation 
module. We must emphasize that, while this is a research-and-development strategy, not an 
application configuration, it offers ample fodder for experimentation without waiting for agent 
systems to become far more robust than they currently are or resorting to having people manually 
create meaning representations to serve as content specifications. Of course, the NLG capabilities 
developed in this way can be used in LEIA-based application systems as well. 
  Since NLUTMRs are important to our story, let us briefly describe their creation – which is a 
good introduction to language processing by LEIAs overall.  
  As shown in Figure 1, language processing by LEIAs relies on agent memory, comprised of 
various static and dynamically populated knowledge elements. The three most important ones for 
this discussion are: (1) a lexicon containing around 30,000 linked syntactic and semantic 
descriptions of lexemes, multiword expressions, and constructions; it is far from comprehensive 
but is sufficient to allow us to work on the core issue of lexical ambiguity; (2) a property-rich 
ontology containing around 9,000 concepts – each described by dozens of properties – that grounds 
all semantic descriptions in the lexicon and episodic memory; and (3) a dynamically populated 
episodic memory containing both the situation model and the interaction history.  
  Let us walk through the process of NLU using the sentence Tom secured a paining to the wall 
– which is one rendering of the situation illustrated by the NLGTMR in Figure 2. Its NLUTMR is 
shown in Figure 5.  
 

FASTEN-1 
 AGENT     HUMAN-1 
 THEME     PICTURE-1 
 DESTINATION  WALL-1 
 TIME      (< find-anchor-time)  
 from-sense   fix-v2 
 word-num   1 
 
HUMAN-1 
 HAS-NAME    ‘Tom’ 
 AGENT-OF       FASTEN-1 
 from-sense   Tom-n1 ; from onomasticon 
 word-num   0 

PICTURE-1 
 THEME-OF    FASTEN-1 
 from-sense    painting-n1 
 word-num    3 
 
WALL-2 
 DESTINATION-OF FASTEN-1 
 COREFER     WALL-1 
 from-sense    wall-n1 
 word-num    6 
 

 
Figure 5. The NLUTMR for Tom secured a painting to the wall. 

 
To create a NLUTMR from this input, the agent carries out preprocessing, syntactic analysis, lexical 
lookup, semantic analysis, and pragmatic analysis – as described in McShane & Nirenburg (2021). 
For this abbreviated description of NLU, the first point of interest is the lexicon. Table 1 shows a 
simplified version of the lexical sense of fix that was used to generate the NLUTMR. 
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Table 1. Simplified lexical sense for fix-v2. 
Top-level info Syn-Struc Sem-Struc 
fix-v2 
  def    to attach something  
             to something else 
  ex       He fixed the bookshelf to the  
             wall. 
  synonyms  attach, fasten, secure  

subj     $var1 
v       $var0 
directobject  $var2 
pp 
 prep    $var3 (root to) 
 n      $var4 

FASTEN 
 AGENT     ^$var1 
 THEME     ^$var2 
 DESTINATION  ^$var4 
^$var3 (null-sem+) 

 
This sense is headed by the verb fix but covers the synonyms attach, fasten, and secure as well. 
Syntactically (see the syntactic structure zone, or Syn-Struc), it is transitive with an obligatory 
prepositional phrase headed by ‘to’. Semantically (see the semantic structure zone, or Sem-Struc), 
it instantiates the concept FASTEN with the AGENT, THEME, and DESTINATION slots filled by the 
semantic interpretations (indicated by ^) of the coreferenced variables. The ontological description 
for FASTEN, whose excerpt was introduced earlier, indicates the semantic constraints on the fillers 
of those case-role slots.  When generating a NLUTMR, the agent looks up all of the sentence’s words 
in the lexicon and optimizes how they can be combined into a context-sensitive meaning 
representation. Notice how similar the NLUTMR is to the NLGTMR in Figure 2 if one strips the 
metadata shown in italics. 
  A couple of things to notice are: (a) whereas a picture does not have a coreferent, the wall does: 
it is resolved to a previous instance, WALL-1; (b) the filler of the TIME slot, used to reflect the past 
tense of the verb, is a call to a procedural semantic routine that attempts to ground the utterance in 
an actual time and then make the time of the reported action before that anchor time; (c) in the 
NLUTMR, Tom’s name is actually mentioned, whereas in the NLGTMR shown earlier it is not – an 
issue we will return to later on. Our goals in describing the NLU process here were modest: first, 
to introduce the kinds of knowledge bases that used for both NLU and NLG; and second, to 
emphasize that, once we strip the metadata, the results of NLU are very similar to the NLGTMR 
resulting from the agent’s reasoning, thus providing a back door into creating content specifications 
as input to work on broad-coverage NLG. 

3. The Architecture of NLG 

Figure 6 shows the architecture of the NLG module (the Verbal Action Generator module in Figure 
1). The subsections below discuss the first four stages: Lexical selection, Converting CandidateSets 
into CandidateSolutions, Generating candidate sentences, and Selecting the best sentence.  

3.1 Lexical Selection 

Lexical selection is the process of collecting the lexical senses that might ultimately contribute to 
the final solution for generating a sentence from a NLGTMR. It includes five steps that we describe 
using the example of Tom fastening a painting to the wall. 
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Figure 6. The architecture of NLG.  
 

3.1.1 Extract Candidate Lexical Senses 
This step covers two cases: meanings that are recorded in the heads of NLGTMR frames, and 
meanings that are not (typically, property values). 
  a. Treat NLGTMR heads. For each frame in the NLGTMR, the agent identifies its head concept 
and searches the lexicon for all CandidateSenses whose sem-struc zones are headed by that concept. 
Table 2 gives a thumbnail sketch of some of lexical senses headed by the concept FASTEN.  
 
Table 2. A subset of lexical senses headed by FASTEN. 

Sense # Example Syn-Struc Sem-Struc 
fix-v2 
(synonyms: attach 
fasten, secure) 

They fixed the shelves 
to the wall 

S V DO PP-“to” FASTEN 
  AGENT (SEM HUMAN) 
  THEME (SEM PHYSICAL-OBJECT) 
  DESTINATION (SEM PHYSICAL-OBJECT) 

moor-v1 They moored the ship S V DO FASTEN 
   AGENT (SEM HUMAN) 
   THEME (SEM SURFACE-WATER-VEHICLE) 
   INSTRUMENT (SEM ANCHOR) 

skewer-v1 He skewered the meat S V DO FASTEN  
   AGENT (SEM HUMAN) 
   THEME (PHYSICAL-OBJECT) 
   INSTRUMENT (SEM SKEWER) 
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In some cases, the sem-struc zone of a lexical sense expresses a meaning that is more precise than 
the closest available concept in the ontology. This is done by more narrowly constraining case-role 
fillers and/or including additional property-based descriptions. For example, the meaning of ‘moor’ 
is described in the lexicon as a type of FASTEN rather than creating a special concept for MOORING. 
(Within our knowledge environment these are compatible knowledge acquisition strategies; the 
choice between them is discussed in McShane & Nirenburg, 2021.) In the table, the semantic 
constraints that are specified in the lexical sense – thus overriding ontological defaults – are in 
boldface. Those that are understood from the ontology are in italics. Similarly, the lexicon has 
many senses of PAINTING, including those in Table 3.  
 
Table 3. A subset of senses headed by PAINTING. 

Sense # Example Syn-Struc Sem-Struc 
painting-n1 Let’s buy a painting. N PAINTING 
picture-n1 I like that picture. N PAINTING 
cityscape-n1 I want to buy a cityscape. N PAINTING  

   DEPICTS CITY 
graffiti-n1 He hates graffiti. N PAINTING  

   LOCATION EXTERIOR-BUILDING-PART  
   LEGALITY-ATTRIBUTE NO 

landscape-n1 What a pretty landscape! N PAINTING 
   DEPICTS COUNTRYSIDE 

 
  b. Treat property values. In most cases, properties do not head NLGTMR frames; instead, they 
are used as descriptors within OBJECT and EVENT frames. For example, pretty picture will be 
expressed in a NLGTMR as “PAINTING (AESTHETIC-ATTRIBUTE .8)”. For the meanings of properties 
(attributes and relations) to be generated in text, the agent must identify all words in the lexicon 
that can render the given meaning. For our example, pretty, lovely, and attractive are among the 
options for expressing “AESTHETIC-ATTRIBUTE .8”. Suffice it to say that there are many details to 
be managed with respect to this process that must be addressed both algorithmically (to foresee and 
account for realization options) and in terms of software engineering.  

3.1.2 Manage Referring Expression Options 
The goal of this stage is to enhance the inventory and description of CandidateSenses by analyzing 
coreference relations and their effect on the choice of referring expressions. Let us begin with some 
examples. 
  The speaker and hearer, like all humans, will be referred to in NLGTMRs using frames headed 
by HUMAN. This means that, during Step 1, all lexical senses headed by HUMAN (e.g., person-n1, 
individual-n2, he-n1, she-n1, etc.) will in the set of CandidateSenses. When a NLGTMR indicates 
coreference with the speaker or hearer, then the overwhelmingly correct decision is to render it as 
the appropriate pronoun: I (me, myself) or you (yourself). At this stage, all senses other than I (me, 
myself) or you (yourself), as applicable, are removed from the CandidateSenses.   
  3rd-person HUMANs who are already in the discourse context (situation model) can be referred 
to using pronouns (they, them, themselves, etc.), definite descriptions (the waiters), relative 
referring expressions (my neighbor), or various naming conventions (Bruce and Charlie; the Jones 
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brothers). Pronouns will already be among CandidateSenses and, at this stage, those with incorrect 
features (e.g., singular instead of plural) will be pruned out. Full noun phrases that can be used to 
refer to 3rd-person HUMANs may or may not already be in the candidate space – an issue that 
manifests differently depending on whether we are practicing NLG using metadata-stripped 
NLUTMRs or carrying out NLG within an application system. If we are practicing NLG using 
NLUTMRs, then the availability of particular definite descriptions will often be provided explicitly: 
e.g., if a frame is headed by WAITER and is described as “HUMOR-ATTRIBUTE .8” and “COREF 
WAITER-2”, then the NLG system will know to generate ‘the funny waiter’. By contrast, if the NLG 
system is working from a content specification created within an application, then individuals will 
be referred to using their HUMAN anchors in episodic memory: e.g., HUMAN-2002. The agent will 
not magically know the best way – of all the options listed above – to refer to this individual in this 
context. This is a complex and well-known problem that spans the tasks of content specification 
and NLG. It is at the top of our agenda once we have the basic throughput of NLG, described below, 
solidly in place.  
  Our final example of reference issues involves non-human OBJECTs, which may or may not 
already be in the discourse context. If they are, then they will be referred to using either a pronoun 
or a definite description (a noun phrase with the). If they are not, then if they are singular they will 
be referred to using an indefinite description (a noun phrase with a/an) and if they are plural they 
will be referred to using either some or no article. Here, again, we encounter more challenges within 
an end application than when we practice NLG using NLUTMRs. When we use NLUTMRs, the 
specificity of the referents will have already been selected (e.g., BANK vs. BUILDING vs. THING), 
whereas within an end application the agent’s content specification and NLG modules must 
determine the best level of specificity.  
  In sum, during this stage the agent excludes some lexical senses (e.g., those headed by HUMAN 
but with the wrong value of number) and decorates others with coreference information about how 
they should be realized (e.g., using a/an or the). 

3.1.3 Aggregate CandidateSenses into CandidateSets 
This function generates all permutations of the lexical senses in purview, selecting one sense per 
meaning for each CandidateSet. For our example, the combination of senses used in the NLUTMR 
in Figure 5 is attach-v2, painting-n1, Tom-n1, wall-n1. As applicable, these senses carry along the 
reference-related information computed in Step 2 – e.g., the need for the article a/an or the. 

3.1.4 Prune CandidateSets Semantically3 
This step removes CandidateSets that will not work semantically, of which there might be many 
because the initial lexical retrieval stage cast a very wide net (it looked only at the heads of the 
Sem-Struc of lexical senses, not any other aspects of their semantic descriptions or their syntactic 
descriptions).  
  Before turning to the details of this step, let us consider the basic idea using the example of 
requests for action (i.e., commands), which are realized as the concept REQUEST-ACTION. They are 
ontologically defined as having, among others, the features POLITENESS and REFUSAL-

 
3 We follow an accepted linguistic convention by which the term ‘semantics’ includes pragmatics. 
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OPPORTUNITY (i.e., the degree to which the speaker leaves the door open to say no), both measured 
on the abstract scale {0,1}. Any content-specifying TMR frame headed by REQUEST-ACTION can 
include values for either or both of these. Similarly, all constructions in the lexicon that are headed 
by REQUEST-ACTION (there are many dozens) are specified for these values. Some examples:  
 
POLITENESS 1, REFUSAL-OPPORTUNITY 1    It might be a good idea for you to VP 
                         It would be much appreciated if you would VP 
POLITENESS .8, REFUSAL-OPPORTUNITY .8   Could you please VP? 
POLITENESS 0, REFUSAL-OPPORTUNITY 0   VPIMPERATIVE, dammit!   
 
One could quibble over the numeric values of these properties assigned to different language 
constructions (see Nirenburg & Raskin, 2004, for discussion of why numerical values are used in 
Ontological Semantics), but the idea should be clear: when the agent generates a content 
specification (a NLGTMR), it does so with  knowledge of the situation and its interlocutor. This 
means that feature-value assertion is a part of the content specification. The NLG engine can then 
use those feature values to guide its selection of which language utterances are appropriate.  
  Turning now to details, this step is divided into functions covering lexical senses that do not 
contain dependencies and those that do contain them.  
  a. Evaluate non-argument-taking CandidateSenses. For each CandidateSense whose Syn-
Struc does not contain dependencies (e.g., basic nouns), score the goodness of the semantic match 
between the given NLGTMR frame and the CandidateSense’s requirements, listed in the Sem-Struc.  
 

i. Exclude impossible matches, such as CandidateSets that use CandidateSenses for which 
the Sem-Struc incudes elements not reflected in the NLGTMR. For our sample sentence, the 
agent can immediately reject cityscape-n1, graffiti-n1, and landscape-n1 as candidate 
realizations because they include semantic descriptions (values of DEPICTS and LOCATION) 
that are not in the NLGTMR. That is, there is no reason to generate a sentence using 
landscape unless we know that the picture in question actually is a landscape.  

ii. Give a scoring bonus to exact matches. For example, if our NLGTMR had included PICTURE 
(DEPICTS LANDSCAPE) then CandidateSets using landscape-n1 would receive a large 
bonus.  

iii. Additional scoring conditions are under development.  
 
  b. Evaluate argument-taking CandidateSenses. For the remaining CandidateSenses (i.e., 
those that do contain Syn-Struc dependencies), score the goodness of the match between the given 
NLGTMR frame and the CandidateSense’s semantic description.  
 

i. Exclude impossible matches. For our sample sentence, moor-v1 is excluded because it 
requires its THEME to be SURFACE-WATER-VEHICLE whereas the TMR’s THEME is 
PAINTING. Similarly, skewer-v1 is excluded because its explanatory component 
“INSTRUMENT SKEWER” is not found in the TMR.  
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ii. Give a scoring bonus to CandidateSets that use CandidateSenses that fulfill more narrow 
selectional constraints. For example, say our input was actually “They moored the ship”: 
Although SHIP fulfills the THEME constraints of fix-v2 and affix-v1 (by virtue of being a 
PHYSICAL-OBJECT), the sense moor-v1 gets a large bonus because SHIP matches the much 
more narrow constraints on its THEME (namely, it’s a SURFACE-WATER-VEHICLE). 

iii. Additional scoring conditions are under development.  

3.1.5 Prune CandidateSets Syntactically 
For the CandidateSenses still under consideration, determine if all obligatory syntactic components 
can be filled by NLGTMR elements. If they cannot, then the given sense cannot be used to generate 
a sentence. To understand this, consider the minimal pair of examples “I am walking” (intransitive) 
vs. “I am walking the dog” (transitive). The lexicon has different senses of walk covering each of 
these constructions. If a NLGTMR expresses the “I am walking” situation, then clearly the “I am 
walking the dog” sense will not fit, and vice versa. Similarly, pronominal realizations cannot be 
used for OBJECTs that are modified (one cannot say ‘blue it’) or for EVENTs that are modified or 
have case-roles listed in their frames.4 In short, lexical senses are combinations of syntactic and 
semantic descriptions and must be selected or rejected as a whole.  

3.1.6 Create CandidateSets for Synonyms 
For the CandidateSenses still under consideration, if synonyms are listed in the synonyms field of 
another word’s sense, then create a set of CandidateSets for each synonym that mirrors that of the 
sense’s head word. 

3.2  Convert CandidateSets into CandidateSolutions  

The CandidateSets the agent has created so far are only sets of lexical senses – in some cases, 
decorated with reference information. More work needs to be done to prepare them to serve as input 
to the engine that will generate actual sentences, a process called rendering. Specifically, for each 
CandidateSet, the agent (a) expands all argument-taking Syn-Strucs, filling their variable slots with 
actual CandidateSenses, (b) orders the argument-taking Syn-Strucs according their ordering in the 
NLGTMR, (c) extracts the ordered lists of words from the filled Syn-Strucs, along with any features 
they carry, and (d) asserts other features that the rendering engine can use. 
  For rendering, we are currently using a software package called SimpleNLG (Gatt & Reiter, 
2009). Without delving too deeply into the particulars of SimpleNLG, some of the features and 
values that the agent can provide to SimpleNLG, based on its preparatory work, are:  
 

• the set of words that will comprise the sentence and their preliminary ordering (which can 
be overridden, e.g., if the verbal feature ‘passive’ is selected) 

 
4 There are exceptions to these generalizations that we postpone for the moment. For example, one can say of a known 

object ‘It is blue’, in which case that object (e.g., PAINTING-3) has a COREF link (e.g., to PAINTING-2) and is described by 
“COLOR blue”. However, this pronominalization strategy only works for standalone utterances, not if ‘the blue painting’ 
is used as the case-role filler of another event, such as ‘I like the blue painting’.  
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• their parts of speech 
• their syntactic function (e.g., for nouns – subject, direct object, etc.; for verbs – main verb, 

auxiliary verb) 
• features of verbs (e.g., form – infinitive, imperative, infinitive, etc.; tense – present, past, 

future) 
• features of nouns (e.g., number – singular, plural; possessive – true, false) 
• features of clauses (e.g., interrogative type – yes/no, how; passive vs. active voice) 
• components of to-be sentential constituents (e.g., a prepositional phrase needs to be formed 

from the preposition ‘to’ and the noun phrase ‘a’ ‘nice’ ‘cat’). 
   
  Consider the process of converting CandidateSets into CandidateSolutions for our example of 
Tom securing a painting to the wall. One of the many CandidateSets includes the words ‘secure’ (a 
synonym of attach-v2), ‘Tom’ (Tom-n1), ‘painting’ (painting-n1), and ‘wall’ (wall-n1). The Syn-
Struc of attach-v2 provides the basic word order for the clause: subject (Tom), verb (secured), direct 
object (painting), prepositional phrase (wall). It also indicates that the word ‘to’ must be used as 
the preposition that introduces the noun phrase indicating the DESTINATION (wall). To emphasize, 
‘to’ was not in the original list of words – it got added by the Syn-Struc of attach-v2. From reference 
processing, we know that painting needs the article ‘a’ whereas wall needs ‘the’; these articles need 
to be added, in the appropriate order, to the set of words that will be passed to the sentence 
generator. Finally, from the NLGTMR we know that this happened in the past, so the verb requires 
the feature past tense, which will be realized appropriately by SimpleNLG. All of this information 
is compiled into the input format required by the SimpleNLG engine that will be launched next. 
Each such data structure that will serve as input to SimpleNLG is what we call a CandidateSolution.  
  Let us give just one more example of how a CandidateSolution fleshes out the corresponding  
CandidateSet. As we have already mentioned, there are many ways to ask someone to do something 
– ontologically, a REQUEST-ACTION event: I would really appreciate it if you would X; it would be 
great <fantastic, terrific> if you would X; I’d like to ask you to (please) X; Would you be so kind 
as to X?; and so on. Each such construction is anchored in the lexicon using a particular non-
variable word. Table 4 shows the lexical sense that covers the first example above. 
 
Table 4. Simplified lexical sense for appreciate-v8. 

Top-level info Syn-Struc Sem-Struc 
def “indirect speech act 

‘I would (really) 
appreciate it if you 
(could/would) X” 

 
ex “I would really 

appreciated it if 
you would make 
dinner.” 

 

Syn-Struc  
  subj              $var1 
  aux               $var2 (root (will would)) 
  adv               $var3 (root really) (opt +) 
  v                $var0 
  directobject  $var4 (root it) 
  conj              $var5 (root if) 
      subj                $var6 (root you) 
  aux               $var7 (root (could would)) (opt +) 
  v                $var8   

Sem-Struc  
 REQUEST-ACTION  
  AGENT            ^$var1  
  THEME            ^$var8  
         BENEFICIARY  ^$var6 
         POLITENESS  1 
         REFUSAL-OPPORTUNITY .5 
 [^$var2 ,3,4,5,7] null-sem+ 
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As we see from the Sem-Struc, there are only four main components to this meaning: the request, 
its agent, and its theme, and its beneficiary.5 However, the request is expressed using a multi-word 
expression, all of whose component words – in the correct order and morphological form – must 
be introduced into the CandidateSolution at this stage.  

3.3  Generate Candidate Sentences 
Since we use an imported engine, SimpleNLG, to generate sentences from our CandidateSolutions, 
we point readers to Gatt & Reiter (2009) for its full description. We are not wed to this software 
package, and there are other options available. However, for our current experimentation, this is 
proving quite useful. Among the important features this engine provides us are generating the 
correct morphological forms of words based on features, generating the passive voice when our 
discourse analysis (e.g., comparison of new and known objects) suggests that it is the best option, 
and generating various forms of possessives. 

3.4  Select the Best Sentence 
Since we typically pass off multiple CandidateSolutions to SimpleNLG, we get multiple sentence 
realizations back. The next question is, How to choose the best one? 
  This seems like exactly the place where ML-based methods might be useful. After all, ML-
based language models – like the one underlying GPT-3 – are good at generating smooth, natural-
sounding texts.6 What we had hoped is that we could pass such a model a list of options for each of 
a sequence of sentences comprising a text and have it output the best sequence of sentences. This 
would be particularly helpful with respect to, e.g., selecting among synonyms that have no 
distinguishing features in our knowledge bases; realizing referring expressions; realizing the 
tense/aspect of verb forms; and capturing the topic-comment structure of discourse.  
  A toy example will convey the point. The following is a natural sounding text: Johnny jumped 
off the stairs onto his grandmother’s couch. He heard the springs snap and realized he had broken 
it. Consider just a handful of the sentence-realization options that could have been used to convey 
this meaning but would have sounded much worse: using Johnny’s name more than once; saying 
‘the couch of his grandmother’ rather than ‘his grandmother’s couch’; redundantly saying ‘the 
springs of the couch’ or ‘the couch’s springs’ (though ‘its springs’ would have been fine); splitting 
the second sentence into two (‘He heard… He realized’); using a passivization structure for the last 
clause (‘he realized it has been broken by him’); getting the sequence of tenses wrong (‘he realized 
he broke it’). Unfortunately, we were not able to find any off-the-shelf tools that would harness the 
power of GPT-3-style language models for our purposes here – they are just not set up as 
applications of this kind. Therefore, we need to rely wholly on knowledge-based selection criteria. 
  Although one might imagine that, given the significant history of work on NLG, there should 
be ready-made solutions for at least some component problems, this is – very unfortunately – not 
the case. As explained in McShane & Nirenburg (2021, Section 1.4.3), the theoretical and 
descriptive linguistic literature does not worry about computable prerequisites; the NLP literature 

 
5 The other elements of the Sem-Struc are property values (which do not get rendered directly by words) and indications 

of which words are not compositional (e.g., would, really, could, etc.). 
6 In ML-oriented, retrieval-based dialog systems, selecting the best candidate from available options is called response 

selection (Jia et al., 2020). However, it is entirely orthogonal to generating language from meaning representations.  
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has long focused on annotation-driven ML outside of cognitive systems; the NLP literature before 
the statistical turn offers descriptive and algorithmic food for thought but no actual solutions that 
we can reuse or import; and cognitive systems builders typically focus on narrow-domain 
applications whose requirements are quite different from those of developing robust language 
processing across domains.  
  At this early stage of our work on broad-coverage NLG, we do not have reportable results about 
how best to prune the candidate sentences but we do have ideas that will guide our ongoing work. 
For example, one branch of the linguistic theory called construction grammar focuses on frequency 
effects (e.g., Bybee, 2013). For NLG, frequency effects are particularly important in cases where 
language offers many paraphrases – as for requesting an action, discussed earlier. For NLG, the 
idea is for the agent to sound normal and avoid creativity and other flourishes that spice up human 
discourse but would sound bizarre coming from an artificial agent. (By contrast, we have spent 
significant time preparing our LEIAs to understand such inputs.) For example, although the lexicon 
needs to account for such constructions as I request that you X, it is only used in hyper-formal 
contexts and should be avoided by agents. In principle, we could supplement the lexicon with 
features for all synonymous words and constructions that would reflect their frequency, but that 
would be a heavy knowledge engineering task. Instead, we are planning to automatically collect 
construction frequency using light parsing of the COCA (Davies, 2008-) corpus. We expect this to 
work reliably only for multi-component constructions, not single words, since most words are 
highly polysemous and frequency counts across their different meanings are unlikely to convey the 
selection preferences we are actually seeking.     
  Another inroad is our extensive past work on coreference in natural language understanding (cf. 
McShane and Nirenburg, 2021, Chapters 4-7). For NLU, we have found it useful to record 
constructions covering pairs of referring expressions – i.e., antecedents and their coreferents. The 
question is to what degree we can use those constructions to predict the best correlations of referring 
expressions during generation. Of course, there is a very large literature on referring expression 
selection in generation that will also inform this angle of our work. To give just a taste of the 
directions pursued: there has been extensive exploration of the Incremental Algorithm (Dale, 1989; 
Dale & Reiter, 1995) and its extensions, such as DIST-PIA (Williams & Sheutz, 2017); there are 
analyses of particular subproblems that might not immediately come to mind, such as the need to 
avoid false conversational implicatures through the choice of referring expressions (Reiter 1990); 
there are analyses of the deficiencies of proposed algorithms, including with respect to correlations 
with human studies (Deemter et al., 2012); and there are extensive linguistic studies in various 
schools of functional and discourse grammar (e.g., Keizer, 2014). One thing to note about much of 
this work, however, is that it reflects single-topic research thrusts: that is, it is relatively rare for the 
research effort to be exploring reference resolution along with discourse structure, surface 
realization, operating with a realistic-size lexicon that features extensive paraphrases, optimizing 
that lexicon to serve both NLU and NLG, and all the rest that we are trying to combine into a single, 
overarching, long-term, ever-advancing program of research and development. 

4. Conclusions and Future Plans  

This paper has explained how we are approaching NLG using the same knowledge bases,  
computational linguistic theory (Ontological Semantics), and agent architecture (OntoAgent) that 



M. MCSHANE AND I. LEON 

16 

have long supported our work on NLU. We are well into exploring linguistic eventualities and 
divvying up their treatment across multiple modules of NLG. We have an initial implementation 
of an NLG engine, called OntoGen, which can process simple inputs through the stage of generating 
candidate sentences using SimpleNLG.  
  In order to make work on broad-coverage NLG feasible, we have focused on its linguistic 
aspects, separated from content specification. We use the agent’s NLU engine to provide content 
specifications as practice material. Our goal is to create NLG capabilities that can be ported across 
domains and cognitive-system applications. Specifically, each cognitive system – which is likely 
to cover only a small domain – will provide content specifications that rely on its particular 
knowledge and reasoning. The our NLG engine will use generic, linguistically informed methods 
to generate the most appropriate English formulations.  
  Even when separated from content specification, there is nothing simple about NLG. However, 
this is not a reason to give up or despair. As we have learned from decades of work on NLU, it is 
counterproductive to view AI as all or nothing – there is plenty of room for results that are useful 
albeit short of human sophistication. Rules of thumb can go and far people can accommodate 
imperfect system output as long as it is understandable. It is our hope that readers will now better 
understand what NLG looks like from a knowledge-based perspective and will see that there are 
practical paths toward explainable, human-level language processing. 
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