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Abstract 
This is a detailed analysis and comparison of the ACT-R and Soar cognitive architectures, 
including their overall structure, their representations of agent data and metadata, and their 
associated processing. It focuses on working memory, procedural memory, and long-term 
declarative memory. I emphasize the commonalities, which are many, but also highlight the 
differences. I identify the processes and distinct classes of information used by these architectures, 
including agent data, metadata, and meta-process data, and explore the roles that metadata play in 
decision making, memory retrievals, and learning.  

1. Introduction 
Cognitive architectures, such as ACT-R (Anderson, 2007) and Soar (Laird, 2012), are designed to 
provide the computational infrastructure sufficient for supporting the knowledge representations 
and processing of cognitive models and AI agents. In this paper I develop a simple and sufficient 
taxonomy for the types of information that are represented and processed in these architectures. 
Using this taxonomy, I analyze and compare the current versions of ACT-R (Bothell, 2020) and 
Soar (Laird et al., 2017) at a level of detail beyond prior analyses. I choose ACT-R and Soar 
because of my familiarity with them, their prominence, and their similarity. Although similar in 
structure, they have been shaped by different primary goals: cognitive modeling of human 
behavior for ACT-R and development of general AI agents with complex cognitive capabilities 
for Soar. Conveniently, their secondary goals overlap with their differing primary goals: ACT-R 
has been used for real-world agents and Soar has been used for modeling human behavior. 

This analysis extends the original analysis that led to the “Common Model of Cognition” 
(Laird, Lebiere, & Rosenbloom, 2017). The Common Model is an abstract theory of the mind that 
draws from research across cognitive science, AI, and neuroscience, inspired by Newell’s work 
on Unified Theories of Cognition (Newell, 1990). A unique contribution of this analysis is 
examining the interaction between data and metadata, including how metadata are maintained by 
the architecture and the role they play in architectural processing for memory retrieval, decision 
making, and learning. Other analyses and comparisons of cognitive architectures and similar 
frameworks have focused on defining the space of cognitive architectures (Langley, 1983), 
analyzing the general types of knowledge and processing (Jones & Wray, 2006), or providing a 
broad overview of current and past cognitive architectures (Kotseruba & Tsotsos, 2020). In 
contrast, this is a detailed comparison of the specific representations and processes used in two 



J. E. Laird 

2 
 

cognitive architectures, with the goal of improving our understanding of these Common Model 
architectures. An equally important goal is to identify regularities in the design and interactions of 
their constituent modules and underlying data and metadata representations that can inform the 
analysis and design of other cognitive architectures.  

Section 2 introduces the organization, agent data, metadata, and processing of these cognitive 
architectures, defining terminology and concepts, which are then used in Sections 3-5 to compare 
and contrast the details of working memory, procedural memory, and declarative memory in 
ACT-R and Soar.1 Each section describes commonalities shared by the two architectures, 
followed by those aspects that differentiate the architectures from each other.2 For the casual 
reader, I recommend reading Section 2, then skimming over Sections 3-5, reading those sections 
and subsections of specific modules of interest. Section 6 summarizes the analysis, highlighting 
the commonalities and differences of these architectures, and discussing other types of data and 
metadata that should possibly be considered for inclusion in future cognitive architectures. 

2. Overview of Architecture: Data and Processes 
A cognitive architecture defines the task-independent memory systems, data representations, 
processes, and interfaces of an intelligent agent. Figure 1 shows the memories, processes, and 
their interconnections as characterized by the Common Model,3 which are shared by ACT-R and 
Soar. That structure, in terms of the modules and their connections, is fixed and cannot be 
modified by learning. Starting from the lower left, perception (P) delivers changes to working 

 
1 Perception and motor are not included because there is little to distinguish them between the two architectures. 
2 A formalization is available at http://laird.engin.umich.edu/wp-content/uploads/sites/331/2021/08/formal-3.pdf. 
3 The link from motor to WM was not in the original Common Model, but both ACT-R and Soar include the ability of 

motor to provide feedback to WM during the execution of a motor action.  
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memory (WM). Working memory contains the agent’s current representation of the 
environmental situation, augmented with its interpretation of the situation, as well as the agent’s 
goals, intentions, and other data that drives the agent’s immediate behavior. It includes buffers for 
interacting with the other modules. Procedural memory (PM) contains the agent’s knowledge 
about how to act, such as skills and procedures. Accessing procedural memory entails selecting 
and executing of a single internal action based on the contents of working memory. Many 
cognitive architectures use rule-like structures to represent procedural knowledge because they 
independently encode when an action can be performed (the conditions which test working 
memory) and how to perform it (the actions that modify working memory). The changes made by 
an internal action drive the overall cognitive cycle by initiating processes in the modules for: 

1. the selection and execution of a subsequent internal action from PM;  
2. a retrieval from declarative memory (DM); 
3. execution of a motor action (M);  
4. modulation of perception (P). 

Declarative memory (DM) contains long-term facts, beliefs, and experiences, which can be 
retrieved into working memory by the creation of a cue in the DM buffer. The individual modules 
(P, PM, DM, M) run independently and asynchronously, with their own memory structures and 
processing (including learning). Complex cognition arises from sequences of these primitive 
cycles, with no additional modules for planning, language processing, or metacognition.  

2.1 Agent Data 

Data in the memories consist of memory elements or just elements. An element is a symbol 
structure that can be independently tested, created, or deleted. It can contain symbols, numbers, 
and strings. Agent data are the elements in WM, DM, and PM. They encode the agent’s 
knowledge about itself, its skills, it tasks, and the world. There are three classes of agent data that 
are differentiated by the processes that create, test, and modify them. 

1. Internal agent data. These are short-term symbol structures that are created by P, PM, or 
retrievals from DM in WM, or long-term structures created by learning processes in PM or 
DM.  

2. Module commands. These short-term elements are created by PM actions and are sent to a 
module to initiate its processes, such as a retrieval from DM or a command to M. There is an 
innate/fixed set of symbols that define the commands for each module.  

3. Module status data. These elements are created by a module in its WM buffer, providing 
feedback on the module’s processes, such as that a retrieval from DM was successful. These 
are the one source of meta-process data – data about the underlying architectural processing. 

With few exceptions, architectural processing of agent data is sensitive only to the form of agent 
data (that agent data elements are graph structures or rules), but not its content (the specific 
symbols, numbers, or strings). Exceptions are module commands and module status data, which 
include innate symbols with fixed semantics. The meaning of agent data is determined by how the 
agent derives them from perception (grounding), how they connect with other agent data, and 
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how the agent reasons with them using other data and uses them to interact with the world – a 
procedural semantics view of meaning. 

2.2 Agent Metadata 

In addition to agent data, a cognitive architecture maintains agent metadata,4 which are data about 
agent data. These influence how agent data are processed by the architecture. Agent metadata are 
created and updated exclusively by the architecture in parallel with, and as a side effect of, the 
processing of agent data. Metadata are often statistical/numeric but can be relational/symbolic. 
They can be associated with individual data elements or collections of memory elements. Base-
level activation (BLA), or just activation, is a common type of metadata, originally defined in 
ACT. It encodes the recency and frequency of creation and usage of an element and is used to 
represent the likelihood that an element will be useful in the future.  

In ACT-R and Soar, metadata are used exclusively by architectural processes for memory 
retrievals, decision making, and learning. They are not represented in working memory and they 
cannot be tested or directly modified by agent data processing. Thus, there is a “wall” between 
agent data and agent metadata. An agent can access metadata indirectly by monitoring its own 
behavior, such as testing the speed of DM retrieval (Anderson et al., 2021), and influence them 
indirectly through deliberate actions such as rehearsal. In AI, metadata sometimes refers to any 
data used in metalevel reasoning/processing, such as during deliberate self-reflection, even if it is 
agent data, which is a broader definition than used here. 

2.3 Processing 

Every module (P, PM, DM, M) has specific associated processes. Perception has processes that 
transduce input data from sensors. PM has processes for selecting and applying a single internal 
action, whereas DM has processes for retrieving data from its memories. PM and DM also have 
processes for learning new elements. Motor has processes that convert commands to action in the 
environment. Metadata processing is a side effect of these processes over agent data and all 
changes to agent data and metadata occur exclusively through these processes. DM retrievals 
(limited to one at a time) and M actions are initiated by the creation of cues or actions requests by 
PM in an associated buffer. Sharing of data and metadata is limited to communication through 
WM (except for a direct connection between P and M).  

3. Working Memory 
In cognitive science, working memory can refer to elements in both short-term and long-term 
memories that are potentially relevant to the current situation. For our purposes, WM is restricted 
to those memory elements that can cue selection of actions from procedural memory. These 
elements can be the result of perception, internal PM actions, retrievals from long-term DM, and 

 
4 Metadata has sometimes been called “subsymbolic” information. I avoid that term as it can refer to information used 

to implement symbolic representations and processes, as in neural-based symbol processing.  
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module status data, such as feedback from M. They can include information about the current 
situation, the agent’s current goals and plans, and any other elements that drive behavior.  

3.1 Working Memory Data  

In both ACT-R and Soar, working memory contains relational graph structures. An individual 
element consists of a triple: a node, a labeled edge, and a value. The node and edge labels are 
symbols. The value can be another node, a primitive symbol, string, or a number. Elements that 
share a common node (not a value) are collectively called a chunk,5 where the node symbol is 
also called the chunk name. The distinction between individual elements and chunks (collections 
of elements) is important in how data are processed.  

Working memory includes designated areas called buffers that provide interfaces to other 
modules, including perception, declarative memory, and motor. To support interaction with the 
associated module, the following six fields can be part of a buffer: 
• A chunk generated by perception;  
• A command to be sent to a module, such as for performing a motor action; 
• A chunk to be sent as part of a motor action; 
• A cue for a retrieval from the DM module, which is a partial specification of a chunk; 
• A chunk retrieved from declarative memory; 
• The status of the processing in a module, such as “busy,” “success,” or “failure.”  

Procedural memory actions can test any working memory data and modify any working memory 
element, but they cannot modify module status data, which is created by the architecture. 

3.1.1 ACT-R Working Memory Data 

In ACT-R, working memory corresponds to a fixed set of modules with associated buffers, each 
of which contains a field for holding a chunk (such as the retrieval field for the DM buffer). These 
buffers are the only memory structures that can be tested and modified by procedural memory. In 
ACT-R terminology, a chunk consists of a unique identifying name and an unordered set of 
labeled slots with values. The value of a slot can be a chunk name, a string, a number, or a 
distribution over numbers. The chunk name, together with a single slot-value pair, corresponds to 
a single memory element as defined above. Each element can be independently created, tested, 
and deleted. Storage and retrieval to DM are performed on chunks and not individual elements.  

The DM module has a single field for requesting a retrieval and then receiving a retrieved 
chunk, so that the retrieved chunk overwrites the request. The buffers associated with DM, P, and 
M contain module-specific status data that can be tested but not created or modified by PM. 
Module commands are encoded directly as actions of PM elements (called productions in ACT-
R) and sent directly to the module without being represented in the buffer. This contrasts with 
Soar, where module commands are placed in the command field of the buffer.  

 
5 In this paper, I use ACT-R terminology to describe WM structures, so that even though a chunk in Soar is a learned 

rule, in this paper, chunk refers to a WM structure. 
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For a given agent, there is a fixed set of modules and buffers, but the number varies across 
agents depending on the task that an agent is designed for. Agents that involve external 
interaction include DM, P, M, a goal buffer, and an imaginal buffer. Examples of other task-
independent modules (with associated buffers) that have been developed in ACT-R research 
include a temporal module for estimating time and a controller module for learning settings of 
control parameters (Anderson et al., 2021). Many ACT-R agents also include task-specific 
modules to provide additional buffers to increase intermediate storage or to augment the 
perceptual and motor systems. For example, an ACT-R agent that processes natural language may 
have specialized buffers for intermediate results in language processing (Ball, 2011).  

3.1.2 Soar Working Memory Data 

In Soar, working memory is a connected graph structure rooted in a node called the state. An 
individual element consists of a symbol called an identifier (which is a node – equivalent to a 
chunk name), an attribute (the edge/slot), and a value. Values can be identifiers, numbers, or 
strings. Thus, an element is a labeled edge between two nodes (the identifier and the value) in a 
graph, corresponding to a slot-value pair of a chunk in ACT-R. A collection of elements that 
share an identifier is equivalent to an ACT-R chunk. For consistency, I use element to refer to a 
single slot-value triple of a chunk, and chunk to refer to elements that share the same node, even 
when referring to Soar memory structures. Many operations apply to individual elements, but 
some, such as a retrieval from declarative memory, apply to a chunk as a whole.  

In Soar, WM elements are not restricted to buffers and there is no limit to the number of WM 
elements. However, all elements must be linked, possibly indirectly, to a state, so that there is a 
path through the graph from a state to each WM element. Buffers are a part of the state and are 
used for interactions with DM, P, and M, with fields for commands, cues, retrievals, etc.  

The WM of a Soar agent is initialized with a single top state and all interactions with the 
environment occurs through P and M buffers in that state. When there is an impasse in procedural 
memory processing, a new substate is automatically created in working memory. A substate is a 
chunk consisting of elements that describe the reason for the impasse, including an element that 
links to the superstate (which is maintained in WM in addition to the substate).Thus, a substate 
provides module status data created when PM fails to select and apply an internal action, 
providing an entry for metacognitive reasoning. When the impasse is resolved, the substate is 
automatically removed.  

3.1.3 Analysis of ACT-R and Soar Working Memory Differences 

ACT-R’s and Soar’s working memory have the same functional role and the buffer structure for 
supporting module interaction. Although the details of the buffers vary, both have read-only 
status fields for receiving feedback from modules. The most important difference is that in ACT-
R, WM is restricted to a fixed set of buffers, whereas in Soar, there is no constraint on the breadth 
or depth of the graph structure. The limits on WM in ACT-R leads to extensive use of declarative 
memory to hold intermediate structures.  
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For real-world application, ACT-R’s limits lead to the inclusion of additional task-specific 
buffers. Soar’s WM can make it easier to develop complex AI agents, but also makes it less likely 
to model aspects of human reasoning related to short-term memory management. Soar’s substates 
support metareasoning about the current situation, which enable many types of complex cognition 
(planning, perspective taking, hierarchical task decomposition). Metacognition has been relatively 
unexplored in ACT-R.  

3.2 Working Memory Metadata 

There are multiple types of metadata that are associated with a WM element, all automatically 
maintained by the architecture in parallel with agent data processing. Two generic types of WM 
metadata are used by both ACT-R and Soar:  

• Copy-of: When a retrieval from DM is made, a copy of the selected DM chunk is made and 
installed in the DM buffer, which I refer to as WDM. A WDM has relational metadata that 
indicates its source chunk in DM so that the architecture can maintain a correspondence 
between the two for when the WDM is tested or modified. 

• Derivation: To support procedural learning, metadata are maintained about agent data used 
to derive an element. If an element is created by procedural knowledge, a copy of the 
instantiated procedural element is saved.6 If an element is created via DM retrieval, the WM 
elements that served as the cue are saved. Metadata are not maintained for module status and 
perception-based elements because they are not incorporated in learning.  

3.2.1 ACT-R Working Memory Metadata 

ACT-R maintains copy-of metadata for WMD chunks as described above. Instead of explicitly 
maintaining derivation metadata, it maintains a memory of the last fired production instantiation, 
which is used in procedural learning (Section 4.3). That memory essentially encodes derivational 
metadata for all actions of that instantiation so that during learning, they can be merged with 
conditions of the production that fires next. 

3.2.2 Soar Working Memory Metadata 

Soar also maintains the metadata described above, but also stores two additional types of WM 
metadata: 

• Activation: This is the quantitative base-level activation described earlier, where metadata 
are associated with individual WM elements (except module status and perceptual data). 
Activation is computed from when a WM element was created and accessed. It biases 
retrievals from DM and can be used in automatic WM forgetting.  

• Substate Level: Each WM element includes relational metadata that encodes the highest 
substate to which an element is linked. These are used to determine the results of subgoals 
and are also used in PM learning.  

 
6 A PM instantiation includes the bindings of variables in its conditions and actions to WM elements (see Section 4). 
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3.2.3 Analysis of ACT-R and Soar Working Memory Metadata Differences 

ACT-R and Soar have similar qualitative metadata in terms of functionality for WM elements. 
Activation of Soar’s WM elements is rarely used for WM forgetting, but it is used for biasing 
retrievals from DM. Substate level metadata in Soar is necessary to support substates in which it 
can pursue metareasoning.  

3.3 Working Memory Forgetting 

ACT-R does not have a forgetting mechanism for working memory because it has a fixed 
working memory consisting of the buffers whose contents are overwritten as new information 
becomes available. Soar automatically removes substate WM elements when the substate 
terminates because those WM elements are no longer accessible. Soar has the capability to 
remove WM elements when their activation falls below a fixed threshold, but this is rarely used 
as agent reasoning usually removes elements that are no longer relevant.  

4. Procedural Memory 
Procedural memory contains knowledge about skills and reasoning: when and how to perform 
internal and external actions. We first discuss the representation of PM elements and PM retrieval 
(the main process associated with PM), and then discuss PM metadata.  

4.1 Procedural Memory Data and Usage  

A PM element has a rule-like structure with two parts, conditions and actions, distinguishing it 
from WM and DM elements. The conditions tests WM elements to determine when it is possible 
to execute the actions, while the actions create and remove individual WM elements. The 
selection is based on a combination of factors, including the comparative utility of competing PM 
elements that match WM. The selection and application of a single PM element drives the 
cognitive cycle by making one or more changes to working memory. Those changes can lead to 
further execution of PM actions, DM retrievals, initiation of motor actions, or interactions with P. 
As a side effect of a PM’s actions, the metadata of relevant WM, PM, and DM elements are 
updated. There is no consensus as to the exact structure of a PM element – whether it is a rule (as 
in ACT-R) or a collection of rules (as in Soar). However, there is agreement that it is the 
primitive unit of conditional deliberate action, which in modeling human behavior, takes ~50 
msec to select and apply. 

4.1.1 ACT-R Procedural Memory Data and Retrieval 

ACT-R’s PM elements are individual production rules whose conditions are matched against 
chunks in buffers. A single rule is selected based on degree of match to WM elements, combined 
with the rule’s utility, a type of metadata described below. A rule action can create new chunks in 
buffers, modify individual elements in buffer chunks, or remove (clear) existing chunks from 
buffers. ACT-R does not report the status of PM retrievals in any buffer.  
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4.1.2 Soar Procedural Memory Data and Retrieval 

For this analysis, a PM element in Soar is an operator. An operator consists of a collection of 
rules that propose, evaluate, and apply the operator. Rules fire in parallel, so multiple operators 
can be proposed and evaluated simultaneously. A single operator is selected based on the results 
of proposal and evaluation. Once an operator is selected, application rules for that operator fire in 
parallel, creating or deleting individual WM elements. Although Soar operator elements are 
represented in WM, they should not be considered agent data because they are memory structures 
used exclusively for selecting and applying an operator. Instead, they should be considered data 
structures that are internal to accessing procedural memory.  

Soar’s PM also includes elaboration rules, which fire in parallel and create elements in WM 
when their conditions match and then retract those elements when their conditions no longer 
match. These rules (and the data they produce) are not associated with specific operators but 
expand the set of available data used during operator selection and application (PM retrieval), 
acting as a preliminary stage in PM retrieval.  

This finer-grained representation of procedural knowledge means that the process of 
retrieving and applying that knowledge can fail for multiple reasons: no operator is proposed, 
multiple operators are proposed but there is insufficient knowledge to choose among them, and an 
operator is selected, but there is insufficient knowledge to apply it. All of these failures lead to an 
impasse in Soar and the creation of a new WM chunk, called a substate, which includes the type 
of impasse. This is how PM module status information is represented in Soar. Once the substate is 
created, the process of selecting and applying operators recurs until the impasse is resolved, 
which leads to the removal of the substate and associated WM elements.  

4.1.3 Analysis of ACT-R and Soar Procedural Memory Data 

Soar provides a finer-grained representation of procedural knowledge, using multiple rules to 
represent a PM element, as opposed to a rule in ACT-R. This leads to multiple tradeoffs. With the 
more coarse-grained representation, ACT-R models retrieve only one rule and learn only one rule. 
With a more fine-grained representation, Soar models can have independent knowledge for 
proposing, selecting, and applying a PM element, which they can learn independently. Also, Soar 
has a richer language for expressing the knowledge used to select among competing PM 
elements. In ACT-R, there is utility (described below), which is also in Soar, but there are also 
preferences that allow preferring one element over another, making an element a default to be 
selected only if there are no other elements, rejecting elements, and making an element preferred 
to all other except those that have a similar preference. Soar’s finer-grain representation, together 
with the detection of impasses, allows for the automatic creation of subgoals within which 
hierarchical problem solving and metareasoning can occur.  

4.2 Procedural Memory Metadata 

Procedural utility is associated with individual PM elements and biases selection from PM. It is 
computed from reward, which is neither agent data nor agent metadata. Utility is updated by a 
form of temporal difference learning (Sutton, 1988). In both architectures, reward is computed by 
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rules or by internal architectural computations (such as for intrinsic reward or reward derived 
from the environment). Computing reward via rules is convenient and flexible, especially for 
internal goals, but it is problematic when there are novel tasks that require new reward rules. 

4.2.1 ACT-R Procedural Metadata 

In ACT-R, when a reward is created, utility metadata of all rules that have fired since the last 
reward are updated. To support this, PM elements maintain addition metadata, including the time 
of the last reward and the time of previous PM element firing.  

4.2.2 Soar Procedural Metadata 

In Soar, some evaluation rules (called RL rules) have associated utility metadata that are updated 
using temporal difference learning. Soar also includes activation metadata for learned rules that is 
used for forgetting learned rules that are rarely used (Derbinsky & Laird, 2013).  

4.3 Procedural Memory Learning 

The updating of the utility metadata described above supports reinforcement learning in both 
architectures. A second type of procedure learning involves the creation of new rules that 
summarize multiple PM selections and executions by composing them using derivational 
metadata. This type of learning compiles away intermediate processing, including retrievals from 
DM, but not environmental interactions, speeding future reasoning. The details of this type of 
learning differ between the architectures.  

4.3.1 ACT-R Procedure Memory Learning 

In addition to reinforcement learning, ACT-R learns new rules by production compilation, which 
is performed between pairs of rules that fire in sequence, eliminating the actions of the first rule 
that are tested in the second rule. This eliminates any DM retrieval in the first rule whose result 
was tested in the second. Compilation is limited so that the combined computation is 
deterministic. The new rule is initialized with low utility, so it will not immediately replace the 
original pair. However, when the new rule duplicates an existing rule, its utility is boosted. With 
enough repetitions, the new rule will be selected in place of the original rules. 

4.3.2 Soar Procedure Memory Learning 

In addition to reinforcement learning, Soar also learns new rules by combining existing rules, 
using a process called chunking. Chunking composes rule instantiations that fire in subgoals and 
ultimately produce a result. The process is initiated when a result is created in a substate, 
followed by composing the rule instantiations and DM retrievals that occurred in the substate and 
that led to the result. Instead of replacing a pair of existing rules, the new rule bypasses the 
creation of an impasse and the reasoning that would occur in the ensuing substate. 
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4.4 Procedural Memory Analysis and Discussion 

Although ACT-R and Soar differ in the underlying representation of procedural memory elements 
(rules vs. operators), the overall processing and core metadata are similar, including the support 
of two learning mechanisms, one that learns the utility of PM elements, and a second that 
compiles PM processing (and DM retrievals) to generate new, more efficient PM elements. ACT-
R compiles over pairs of rules that fire in succession, whereas Soar compiles the processing in 
substates, which can involve arbitrary numbers of rules. Another difference is that in ACT-R, a 
rule must be learned multiple times for it to eventually be used, whereas in Soar, once a rule is 
learned, it does not need to be relearned. However, when we have attempted to closely model 
human procedure learning in Soar, we have found it necessary to modify the architecture so that 
learned rules must be learned multiple times before they are used (Stearns, 2021).  

5. Declarative Memory 
Functionally, declarative memory is the equivalent of a large database that contains facts and 
other long-term data. An important difference between DM and WM is that DM chunks must be 
retrieved into WM before they influence reasoning through PM actions. WM contains a DM 
buffer that includes fields for cuing a retrieval, receiving the results of a retrieval, and module 
status. The two DM processes are retrieving items into WM (5.3) and learning new DM structures 
(5.4). There are no explicit forgetting mechanisms for DM, although DM chunks with sufficiently 
low base-level activation will never be retrieved. 

5.1 Declarative Memory Data  

DM uses the same representations as WM with elements organized into chunks.  

5.1.1 ACT-R Declarative Memory Data 

ACT-R has a single declarative memory as described above and has two buffers associated with 
DM in WM. One is for retrieving a single chunk from DM. The other buffer is for retrieving 
matched chunks are “blended.” The status field includes whether a retrieval was requested, 
whether it succeed or failed, and whether the memory system is in the process of performing a 
retrieval. 

5.1.2 Soar Declarative Memory Data 

Soar has two long-term declarative memories: semantic memory (SM) and episodic memory 
(EM), each with its own buffer in WM. They differ in the type of information they contain, how 
that information is added, and how it is retrieved. Semantic memory is similar to ACT-R’s 
declarative memory in that it stores memory elements without temporal/sequential or relational 
metadata. Episodic memory contains episodes, which are “snapshots” of the complete top state of 
WM, but not substates created because of impasses.  
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5.2 Declarative Memory Metadata 

Metadata are associated with both individual DM elements and DM chunks. Base-level activation 
is associated with chunks, which then influences retrievals from DM (Section 5.3). ACT-R and 
Soar differ on the exact events that contribute to this activation. Activation metadata can also be 
associated with individual elements or pairs of chunks and is often called association strength. 
These metadata bias the spread of activation to connected chunks during a retrieval. Once again, 
ACT-R and Soar differ on which events contribute to activation, but in both cases element 
activation metadata influences activation spread.  

5.2.1 ACT-R Declarative Memory Metadata 

ACT-R maintains activation metadata for chunks in DM, which are updated whenever a chunk is 
store/restored into DM. Recently, associational metadata between chunks has been added back to 
ACT-R, which provides information about the recency and frequency with which chunks co-
occur in WM (Anderson et al., 2021). 

5.2.2 Soar Declarative Memory Metadata 

In Soar’s semantic memory, metadata are associated with both chunks and elements. Activation 
metadata of chunks are updated when a chunk is stored or when it is retrieved. Activation 
metadata for elements are updated when a corresponding WDM element is tested or created. 
Episodic memory elements have temporal metadata unrelated to activation. The metadata 
includes the time at which an element was added to and deleted from episodic memory. 
Relational metadata are associated with each episode that allows an agent to retrieve temporally 
previous or next episodes.  

5.3 Declarative Memory Retrieval 

To retrieve memory elements from declarative memory, a cue is created in the declarative 
memory buffer in WM.7 Only one retrieval is possible at a time. The cue provides a partial 
specification for a memory element in DM, which is searched to find the best matching chunk. 
Three types of metadata, as well as noise, influence retrievals: the degree of match of the cue to a 
DM chunk; the base level activation of DM chunks that are candidates for retrieval; and the 
activation that is spread from chunks in WM to DM chunks. Retrieval in ACT-R and Soar differ 
in the details, but in both cases retrieval is based on a cue that constrains which DM chunks can 
be retrieved, activation of chunks in DM, which biases the retrieval based on history (activation 
of individual DM chunks), and context (the result of spread for WDMs). In both, chunks recently 
retrieved from DM can be inhibited to avoid repeated retrievals of the same DM chunk. As with 
PM, metadata for DM and WM elements are updated as a side effect of a DM retrieval. 
 
 

 
7 ACT-R also supports spontaneous retrieval, as described in Section 5.3.1. 
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5.3.1 ACT-R Declarative Memory Retrieval 

In ACT-R, the cue can include constraints on the values of slots, such as that a retrieved value 
must not equal a specific value or that a retrieved value must be above/below a numeric threshold. 
ACT-R supports two types of retrievals by using different buffers. One retrieves an existing DM 
chunk. The second “blends” the values of all chunks that match the cue using a weighted average 
of their activation (Vinokurov et al. 2013). In ACT-R, spreading activation initiates from the 
values of elements in buffers, and then spreads one level to chunks that share those values. ACT-
R also supports spontaneous retrieval. If the retrieval buffer is empty and the most highly 
activated DM chunk exceeds a fixed threshold, that chunk is retrieved.  

5.3.2 Soar Declarative Memory Retrieval 

Soar biases retrievals from DM by including WM activation metadata of elements in the cue 
buffer, so that it prefers DM chunks that contain elements in the cue high activations. Activation 
spreads from DM chunks that are also in WM to other DM chunks, from a chunk through 
individual elements to chunks that are values. The spread can continue through multiple levels of 
additional DM chunks, controlled by a parameter. Soar provides the option of retrieving children 
of a result, recursively to a specified depth. Soar also supports non-cued retrieval from semantic 
memory using a chunk’s name, which directly retrieves that chunk.  

In episodic memory, the cue is a partial specification of WM and the most recent episode that 
fully matches the cue is retrieved. If no episode matches fully, the episode with the best match is 
retrieved, with ties broken by recency. Next or previous episodes of a retrieved episode can also 
be retrieved, which allows for recreation of an extended experience. Spontaneous retrieval from 
episodic memory has been used in experimental versions of Soar.  

5.4 Declarative Memory Learning  

As in PM learning, in DM learning there are two classes of learning mechanisms. The first are 
described in Section 5.2 and update DM activation metadata, influencing future retrievals. The 
second are mechanisms that copy or merge WM chunks into declarative memory. The exact 
details for performing those processes vary by architecture and memory module.  

5.4.1 ACT-R Declarative Memory Learning 

ACT-R learns activation metadata and associational metadata as described in Sections 5.2.1 and 
5.3.1. ACT-R learns new DM knowledge by adding a chunk in a buffer to DM whenever a buffer 
is “cleared.” 

5.4.2 Soar Declarative Memory Learning 

As described in Sections 5.2.2 and 5.3.2, Soar also learns activation metadata that influences 
retrievals. Soar does not have an automatic storage mechanism for semantic memory, and relies 
on explicit storage of chunks in WM into DM. For episodic memory, all changes to WM are 
stored automatically into EM.  
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5.5 Declarative Memory Analysis and Discussion 
ACT-R declarative memory and Soar’s semantic memory are similar long-term declarative 
memories, supporting similar mechanisms for retrieval using similar metadata, although the 
details differ, especially in how activation spreading occurs. ACT-R’s declarative memory has 
been used for some aspects of episodic memory, but it does not directly support the automatic 
simultaneous storage of the contents of all buffers along with temporal relations to in a way that 
they can be retrieved in the future. Temporal information can be deliberately encoded in chunks, 
which incurs processing overhead during reasoning and does not capture the concurrent contents 
of multiple buffers.  

6. Summary and Discussion  
Well, that was a bit of a slog, but my hope is that this analysis leads to insights about these 
cognitive architectures and possibly others. Even though ACT-R is designed for cognitive 
modeling and Soar is designed for developing general AI agents, they have many commonalities: 

• There is a basic cognitive cycle and a fixed set of core components (P, WM, DM, PM, M).  
• There are a small number of basic types of information: agent data, agent metadata, and 

module status (meta-process data), and only a limited set of types of data having predefined 
meaning, including module status data and motor commands.  

• Buffers are used for interfacing between WM and other modules. 
• Module status data in buffers are the only source of meta-process data. 
• Declarative knowledge for WM and DM is represented as symbolic graph structures. 
• PM processing includes selecting and executing a single rule-like element using utility 

metadata. PM has two learning mechanisms – one for learning utility of PM elements and the 
other that learns new elements via knowledge compilation.  

• DM processing involves retrievals and learning of chunks biased by metadata. 
• Metadata are updated as a side effect of PM and DM processes. Metadata are not examinable 

or modifiable by agent data.  

Although they are very similar, automatic (or even straightforward) conversions of programs 
written for one architecture to another are not possible. There are abstract languages that compile 
into both architectures (Jones et al., 2006; Cohen et al., 2010), but with significant challenges 
because of the difference listed below:  

• ACT-R’s restricts WM to being a fixed set of buffers, which leads to storing and retrievals of 
intermediate results from DM. In contrast, in Soar, intermediate results are maintained in 
WM, simplifying internal reasoning.  

• In ACT-R, the primitive deliberative act involves the selection and firing of a single rule, 
whereas in Soar, it is the selection and application of an operator via a run-time composition 
of multiple rules. Soar’s use of operators leads to impasse-driven subgoaling that supports 
metareasoning, planning, and other aspects of complex cognition that are more difficult to 
achieve in ACT-R.  
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• In Soar, DM is split into semantic memory and episodic memory. Episodic memory lets an 
agent easily access its past experiences and then reason about them which is much more 
challenging in ACT-R. This is the least fundamental difference in terms of overall design.  

The organization of WM is perhaps the most fundamental difference between the two because it 
requires more deliberate reasoning to manage intermediate results. Conversely, one could imagine 
combining Soar’s representations of operators with a constrained WM, possibly with an 
additional buffer that can represent impasse and substate information, providing for at least one 
level of metareasoning. Whether that is sufficient to enable the types of complex cognition found 
in Soar, and whether it is true to human processing constraints, are open questions.  

Although there are important differences, and many other similarities, the most striking result 
of this analysis to me is the small number of different functional types of data (agent data, agent 
metadata, and module status data) and the consistency in how they interact in ACT-R and Soar to 
support both reasoning and learning. In both architectures, the flow of information among these 
types is the same. Agent data is represented in WM, PM, and DM, with different types of 
metadata for the agent data in each of those modules. However, agent metadata cannot be 
modified by agent data directly, and to date, cannot be tested by agent data (but see below). 
Module status data is read-only – it can be tested by agent data but cannot be modified. 
Importantly, it provides an agent with its only source of information about the current state of 
module processing. All other data available to the agent is about its environment, retrieved from 
memory, or produced during reasoning. Module status data provides access to the agent’s own 
processing, providing an entry to metareasoning. Finally, the multiplicity of learning mechanisms 
use different combinations of agent data and metadata to either update metadata or create new 
agent data structures, but the learning mechanisms in the two architecture are very similar in data 
they use and the structures they create or modify. An interesting question is whether other 
architectures have these specific types of data and the corresponding interactions among them.  

6.1 Data, Metadata, and Meta-process Data 

In both ACT-R and Soar, metadata are critical for decision making, knowledge retrieval, and 
learning. They focus attention on the most relevant elements in PM and DM. Meta-process data, 
uniquely provided by module status data, provide internal feedback on processing and a potential 
entry for metacognition.   
 As observed earlier, both architectures maintain strict boundaries between agent data and agent 
metadata so that metadata are computed as a side effect of agent-data processing, and agent data 
cannot test or modify metadata. The meaning of metadata is thus fixed by the architecture, 
whereas the meanings of agent data are flexible and open to change through experience and 
learning new agent data. Moreover, behavior cannot be directly conditioned on metadata but only 
indirectly, such as through monitoring which chunk is retrieved given a specific context.  

But is this strict separation necessary? Can metadata be available in WM and testable by PM 
without disrupting other commitments in these cognitive architectures? If metadata is available, it 
would require that the agent be imbued with, or learn, knowledge for interpreting the meaning of 
its metadata. As a possible example, the activation of a retrieved WM chunk could be available in 
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the module buffer, providing some indication of confidence in the retrieval. Conversely, should 
agent data be able to modify metadata, such as through the actions of a PM element? This change 
is more problematic as agent data would interfere with the processes that compute and maintain 
metadata. Currently, agent data can modify metadata only indirectly through its other processing, 
such as rehearsal to boost the activation, where it relies on architectural mechanisms for changing 
activation. Thus, it may make sense to allow agent data to test metadata but not modify it, much 
as how meta-process data is handled.  
 In ACT-R and Soar, there are a few sources of data and metadata. Data in WM are derived 
from perception, agent data stored in memories, and module status data, whereas metadata are 
computed based on the processing of agent data. Are there other potential sources of data and 
metadata currently missing from ACT-R and Soar? Below are possible additional categories 
inspired by data types found in humans and by prior research on extending ACT-R and Soar. 

1. Memory and processing appraisals. Humans can judge many properties of their memories and 
processing, such as familiarity in a belief, feelings about ease of processing; feelings of 
knowing such as tip-of-the-tongue, judgments of difficulty in learning, and judgments of 
remembering versus knowing. Some of these might be implemented as module status data for 
declarative memory. For example, feeling of knowing could be the status for a failed retrieval 
where the retrieval process has reason to believe a retrieval is possible. Remembering versus 
knowing could be based on the declarative memory buffer from which a result was retrieved 
(assuming separate semantic and episodic memories and buffers). Judgments of difficulty in 
learning are trickier and could require retrieval of similar past experiences where the agent 
explicitly evaluated the difficulty generalizes it to new situations.  

2. Judgments of passage of time. In ACT-R, a module can be used that measures and estimates 
short time durations, but neither ACT-R nor Soar have mechanisms for judging longer-term 
time scales. Although Soar’s episodic memory provides access to distant memories, explicit 
timing information and its use are still open research problems. 

3. Innate appraisals (Marsella & Gratch, 2009). It is hypothesized that there are innate appraisals 
that are precursors to emotion. These appear to be properties of agent’s overall processing 
state, often related to an agent’s needs and goals, as well as to other overall properties of the 
situation, such as surprise. Important issues include how these are computed, how they 
influence other agent processes, such as memory retrieval, decision making, and learning 
(Marinier, Laird & Lewis, 2009), either indirectly as metadata or directly through elements in 
WM in some summary of the agent’s overall embodiment.  

4. System-wide moderators. Physiological moderators can have systemic effects on the cognitive 
system, including influencing attention, decision making, memory retrieval, and learning. 
Examples include fatigue, arousal, and stress. Chemicals such as dopamine, serotonin, and 
caffeine also have systemic effects. Researchers in ACT-R have examined many moderators, 
including fatigue (Gross et al., 2006) and other physiology factors (Darcy et al., 2015).  
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6.2 Future Work 

A next step is to apply this analysis to similar cognitive architectures such as EPIC (Kieras & 
Meyer, 1997) and LIDA (Franklin et al., 2016). A more challenging analysis will be to examine 
architectures that use neural/graphical representations for memory elements, such as Sigma 
(Rosenbloom et al., 2016) and Spaun (Eliasmith et al., 2012). In these architectures, the data and 
metadata are intermixed, with symbolic structures implicit in the representations (Rosenbloom, et 
al., 2019). On promising hypothesis is that the structure of the processing of data and metadata 
will be similar, as was observed for Sigma in the Common Model paper (Laird et al. 2017), but 
more analysis is needed.  
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