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Historical Development of AI Research

1st Wave of AI: Exclusive focus on explicit representation of
knowledge

Advantage: Powerful algorithms with provable characteristics

But: A large amount of human knowledge is not available to
inspection and verbalisation (Polyani’s Paradox)

I Implicit/tacit knowledge
e.g., perceptual knowledge, such as object recognition / face recognition

I Highly automated expert knowledge (“gut feeling”)
I Procedural knowledge / skills

e.g., driving a bicyle, policy in game playing
I Common sense reasoning

e.g., what does not change when performing an action (frame problem)

2nd Wave of AI: Exclusive focus on data-intensive machine learning
I But: high demands on amount and quality of data

(“garbage in garbage out”)
I Labeling of training data in specialized domains demands high expertise

(medical diagnostics, quality control)

↪→ From Knowledge Engineering Bottleneck to
Data Engineering Bottleneck
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Data Engineering Bottleneck – the next AI winter?

Nuremberg Funnel, 1910; https://de.wikipedia.org/
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Polanyi’s Revenge

(Subbarao Kambhampati, Communications of the ACM, February 2021)

In AI resesarch as well as practice:
Polanyi’s paradox ↪→ Polanyi’s revenge

Recent advances have made AI synonymous with
learning from massive amounts of data, even in tasks
for which we do have explicit theories and hard-won
causal knowledge!

Knowledge is injected in deep learning through
architectural biases and carefully manufactured
examples

Anecdotal evidence: industry practitioners readily
convert doctrine and standard operating procedures
into ‘data’ only to have the knowledge be ‘learned back’
from that data.
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3rd Wave of AI: Explainable AI (XAI)
Hybrid, explanatory, interactive, human-centric

http://www.darpa.mil/program/explainable-artificial-intelligence

David Gunning, IJCAI 2016
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Outline

On to the 3rd Wave of AI
I 1st Wave: knowledge-based
I 2nd Wave: data-driven
I 3rd Wave: hybrid, XAI, human-centric

Inductive (Logic) Programming
I Natural Combination of Learning and Reasoning in First Order Logic
I Learning in Relational Domains
I Expressive Approach to Intrinsically Interpretable Machine Learning
I Neural-symbolic Integration (CNN + ILP)

Explanatory and Interactive Machine Learning
I The Need for Multi-Modal Explantions
I Empirical Evidence for Effects of Explanations on Performance and

Trust
I Mutual Explanations in Human-AI Partnerships (Domain Experts)
I Explanations for Novices – Intelligent Tutor Systems
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Predictive Accuracy & Comprehensibility of
Models/Decisions
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Machine Learning – A Research Area with Long Tradition

At the beginning (in accordance with goals of early AI): human-like
machine learning – A computer algorithm analyses data and creates a
general rule it can follow and discard unimportant data.

I Arthur Samuel (1952) – learning a strategy for checkers
I Donald Michie (1963) – reinforcement learning for Tic-tac-toe
I Tom Mitchell (1977) – version spaces
I Patrick Winston (1981) – relational learning with near misses
I Gerald de Jong (1982) – explanation-based generalization
I Ryszard Michalski (1983) – concept learning
I Ross Quinlan (1986) – decision trees
I Pat Langley (1988) – learning from problem solving experience
I Stephen Muggleton (1991) – inductive logic programming

www.ibm.com/ibm/history/ibm100/images/icp/, miro.medium.com
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Deep Learning

Gary Marcus Keynote at IJCLR 2021

Generative Pre-trained Transformer 3 (GPT-3), from OpenAI

The largest language model ever trained (up to 175 billion
parameters)

Has the model learned to do reasoning, or simply memorizes training
examples in a more intelligent way? (stochastic parrots)
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Human vs Machine Learning

Humans can learn some types of concepts and rules from very few
examples – e.g., regular past tense (‘eated’), (see e.g. Schmid &
Kitzelmann CSR 2011)

Some machines learning approaches can do this also (classic,
symbol-level approaches)

Josh Tenenbaum
http://pinouchon.github.

io/images/tufa.png
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ILP: Learning Prolog Programs

Hypotheses/models are represented as Prolog programs
Examples are presented by target predicates (positive and negative)
and by background knowledge
In some approaches: also by background theories
↪→ Uniform representation as Horn clauses

Gulwani, Hernandez-Orallo, Kitzelmann,
Muggleton, Schmid, Zorn, Inductive Pro-
gramming meets the real world, CACM
58(11), 2015
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Example: Family Domain

% Background Knowledge

father(jake,bill). mother(matilda,bill).

father(jake,john). mother(matilda,john).

father(bill,ted). mother(alice,jill).

father(bill,megan). mother(alice,ted).

father(john,harry). mother(alice,megan).

father(john,susan). mother(mary,harry).

father(ted,bob). mother(mary,susan).

father(ted,jane). mother(mary,andy).

father(harry,san). mother(jill,bob).

father(harry,jo). mother(jill,jane).

mother(liz,san). mother(liz,jo).

% Examples

grandparent(matilda,megan). not grandparent(megan,matilda).

grandparent(matilda,harry). not grandparent(jake,jake).

grandparent(jake,susan). not grandparent(matila,alice).

% Learned hypothesis (parent can be background theory or invented)

grandparent(X,Y) :- parent(X, Z), parent(Z,Y).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).
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% Background Theory for Spatial Relations

% ---------------------------------------

% Area X touches area Y if holds that they have at least one boundary point

% in common, but no interior points.

touches(X,Y) :- I is intersection(X,Y), not(empty(I)),

InteriorX is interior(X), InteriorY is interior(Y),

J is intersection(InteriorX,InteriorY), empty(J).

% disjoint(X,Y) :- ...

% includes (X,Y) :- ...

% ...

% positive examples for diagnostic class pT3

% -----------------------------------------

% scan123 is classified as pT3. The scan is composed of areas of

% different tissues such as fat and tumor which are in specific spatial relations.

pt3(scan123).

contains_tissue(scan123,t1). contains_tissue(scan123,f1).

contains_tissue(scan123,f2).

is_tumor(t1). is_fat(f1). is_fat(f2)

touches(t1,f1). disjoint(f1,t1).

% negative examples for diagnostic class pT3 (e.g. pT2, pT4)

% ------------------------------------------

% ...

% Induced Rules: (learned from data with ILP)

% -----------------------------------------

% A scan is classified as pT3 if a scan A contains a tissue B

% and B is a tumor and B touches C and C is fat.

pT3(A) :-

contains_tissue(A,B), is_tumor(B), is_fat(C), touches(B,C).

% further rules ...

Bruckert, Finzel, Schmid, The Next Generation of Medical Decision Support: A Roadmap Toward Transparent Expert
Companions, Frontiers in AI, 2020
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ILP Algorithms

Given a tuple (B ,E+,E−) where:

B denotes background knowledge

E+ denotes positive examples of the concept

E− denotes negative examples of the concept

An ILP algorithm returns a hypothesis H ∈ H such that:

∀e ∈ E+,H ∪ B ` e (i.e. H is complete)

∀e ∈ E−,H ∪ B 6` e (i.e. H is consistent)

FOIL (Quinlan, 1990): Generate-and-test, sequential covering
(ID3, C4.5, simulteneous covering by the same author)

Golem, Progol, Aleph, Metagol (Muggleton, since 1990ies): learning from entailment in
different variants

Igor (Kitzelmann & Schmid, JMLR 2006; Schmid & Kitzelmann, CSR 2011): Inductive
(functional) programming

ProbLog (de Raedt, 2007): combining logical and statistical learning
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Algorithm

FOIL(Target predicate,Predicates,Examples)
Pos ← those Examples for which the Target predicate is True

Neg ← those Examples for which the Target predicate is False

Learned rules ← {}

while Pos, Do
I NewRule ← the rule that predicts Target predicate with no precondition
I NewRuleNeg ← Neg
I while NewRuleNeg , Do

• Candidate literals ← generate new literals for NewRule, based on
Predicates

• Best literal ← argmaxL∈Candidate literalsFoilGain(L,NewRule)
• add Best literal to preconditions of NewRule
• NewRuleNeg ← subset of NewRuleNeg that satisfies NewRule

preconditions
I Learned rules ← Learned rules + NewRule
I Pos ← Pos − {members of Pos covered by NewRule}

Return Learned rules
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Probabilistic Inductive Logic Programming

Statistical Relational Learning (StarAI)

Motivation: Biological Graphs
path(gene 620, disease altzheimer)

edges are typically probabilistic

De Raedt, Kimmig, Toivonen, ProbLog: A probabilistic Prolog and its application in link discovery, IJCAI 2007
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XI-ML for Medical Diagnosis
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Explicit and Implicit Knowledge Injection in ML

Combine with KR whenever explicit knowledge is available, e.g.,
domain specific/expert knowledge

Take into account formal approaches for common sense/world
knowledge, e.g., temporal or spatial calculi

Human experts might not be able to explicitly formulate all rules
necessary to perform a diagnosis – but, they recognize errors and can
correct them
↪→ interactive learning
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Neural-symbolic Integration

Many recent approaches (de Raedt et al., IJCAI 2020 Survey)
Combining learning for perceptual domains and interpretable ML
Blackbox classifiers as sensors
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Picasso Faces

Rabold, Schwalbe, Schmid, Expressive Explanations of DNNs by Combining Concept Analysis with ILP, KI 2020
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Interactive ML and Explanations

Interactive ML allows to make use of knowledge in learning
I More knowledge means less data are necessary

We do not need to learn what we already know
I Knowledge can constrain and guide model induction
I When ground truth labeling is expensive or not available, label

corrections might be helpful

For effective knowledge injection, humans must comprehend (aspects
of) the learned model

I Local explanations to make decisions for specific instances
comprehensible

I Global explanations to make the model itself transparent

A model might be right for the wrong reason (e.g. Teso & Kersting,
2019)
↪→ extend interactive learning to correction of explanations (e.g.
Schmid & Finzel, Mutual explanations, KI 2020)
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Explainable Artificial Intelligence (XAI)

http://www.darpa.mil/program/explainable-artificial-intelligence

David Gunning, IJCAI 2016

First years – nearly exclusive focus on visual explanations (saliency maps):
LIME, LRP, Grad-CAM
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Unmasking Clever Hans Predictors

(Lapuschkin et al., 2019, LRP)
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LIME

“Perturbed” samples (deleting part of information, e.g., superpixels, words)

Ribeiro, Singh, Guestin, Why Should I Trust You?: Explaining the Predictions of Any Classifier, KDD 2016
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LIME’s Superpixel Approach Quick-Shift

Schallner, Rabold, Scholz, Schmid, Effect of Superpixel Aggregation on Explanations in LIME – A Case Study with Biological
Data, AIMLA 2019
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Visual Explanations

LIME

CAM

LRP
Weitz, Hassan, Schmid, Garbas, Deep-learned faces of pain and emotions: Elucidating the differences of facial expressions with
the help of explainable AI methods, tm-Technisches Messen, 2019
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Visual explanations are often not sufficient

Helpful to recognize overfitting

Fast communication of information (attention, relevance)
BUT – visual highlighting is not expressive enough for

I spatial relations (the blowhole is on a supporting part)
I quantification (all blowholes are smaller than 1 mm)
I feature values (the eyes are shut not open)
I negation (there is not a blowhole but a hairline crack)
I recursion (an arbitraty number of objects of increasing size)

Explanation:
A smaller circle of stones is included 
in a larger circle
AND in the middle is a configuration of stones
consisting of three stones of equal size

Classifier Decision: IRON AGE

WHY?

Rabold, Siebers, Schmid, ILP 2018; Rabold, Deininger, Siebers, Schmid, Enriching Visual with Verbal Explanations for
Relational Concepts – Combining LIME with Aleph, AIMLA 2019

U. Schmid (CogSys, UniBA) Human-in-the-loop ML ACS’2021 27 / 37



Experimental Findings on Explanations, Joint Performance,
and Trust

(4 features, based on Medin &
Schaffer, 1978, stimuli pattern
for classification learning)

(ANOVA, n = 190; a priori
power analysis for a medium ef-
fect size (f = .25, α = .05, 1−
β = .90) gave a minimum re-
quired sample size of 171 partic-
ipants)

Thaler & Schmid, Explaining Machine Learned Relational Concepts in Visual Domains – Effects of Perceived Accuracy on Joint
Performance and Trust, CogSci2021
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Some Observations on Explanations

Tim Miller, AIJ 2019; Tania Lombrozo, TiCS 2006

There are different possibilities to explain something to someone
I verbal (different degrees of detail)
I visual (maybe with symbolic annotations)
I prototypical examples
I contrastive (near miss) example

There is no one-size fits all (context specificity)

Explanations can be wrong (right for the wrong reasons, Teso &
Kersting, AAAI/ACM Conference on AI, Ethics, and Society, 2019)

Explanations are not always helpful (Beneficial and Harmful
Explanatory Machine Learning, Ai, Muggleton, . . ., Schmid, MLJ
2021)

Explanations might lead to unjustified trust

Explanations can be mutual and extend interactive learning (Schmid
& Finzel, KI 2020)

Explanations are a process
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Contrastive Near-miss Explanations: Structural Alignment

(Gentner, D., & Markman, A. B. (1994). Structural alignment in comparison: No difference without similarity. Psychological
Science, 5(3), 152-158.)
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Contrastive Near-miss Explanations: Relational Learning

(Rabold, Siebers, Schmid, MLJ, to appear)
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Contrastive Near-miss Explanations: Relational Learning

Local explanation

A local explanation for a positive example P is a ground clause Cθ where
C ∈ T such that P = head(Cθ) and T |= body(Cθ).

Near Miss Explanation

Given a local explanation Cθ and a minimally changed clause C ′ with
substitution θ′, we call C ′θ′ a near miss explanation and ∆head(C ′θ′) a
near miss example if T |= body(C ′θ′), T 6|= head(C ′θ′).

(Rabold, Siebers, Schmid, MLJ 2021)
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(Fraunhofer IIS CAI, Marvin Herchenbach,2021)
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Explanation of Critical Features by Contrastive Alignment

Intelligent Tutor System for Nurses (DFG, PainFaceReader)
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Explanatory Dialogue

(Finzel, Tafler, Thaler, Schmid, Multimodal Explanations for User-centric Medical Decision Support Systems, HUMAN.AI @
AAAI 2021; Finzel, Tafler, Scheele, Schmid, Explanation as a process: user-centric construction of multi-level and multi-modal
explanations, KI 2021)
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Take Away

Many application domains have requirements which cannot be met by
data intensive blackbox approaches of machine learning alone
Combining deep learning and ILP supports learning of classifiers for
image data together with relational explanations
Mutual explanations and interactive learning allow to integrate
expert/common sense knoweldge into the learning process resulting in
less need for data and allowing to correct errouneos decisions of the
learned model
Explanations are not one size fits all – therefore research should
address different explanation modalities, their combination, and
strategies to select the most helpful explanations
Research on explanations and human-in-the loop ML requires
interdisciplinary collaboration with psychology and education
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