Knowledge Engineering in the Long Game of Artificial Intelligence

The Case of Speech Acts

Marjorie McShane, Jesse English, Sergei Nirenburg Cognitive Science Department, Rensselaer Polytechnic Institute

11/17/21

The Goal: Holistic Knowledge Engineering

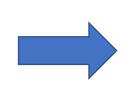
- KE is expensive but it also enables a level of understanding that ML does not
- Siloed and domain-specific KE is useful for producing application results, but doesn't help the long goal of AI
- To address human-level reasoning, we need Holistic Knowledge Engineering:
 - KE that foresees a wide range of agent capabilities
 - KE that supports multiple domains
 - KE that works in a variety of applications

A Brief Aside – OntoAgent [1]

- Our agent theory and architecture
- OntoAgent is knowledge-centric
- Expects large-scale knowledge
- Expects all knowledge, perceptions, and experiences to be ontologically grounded in a uniform metalanguage

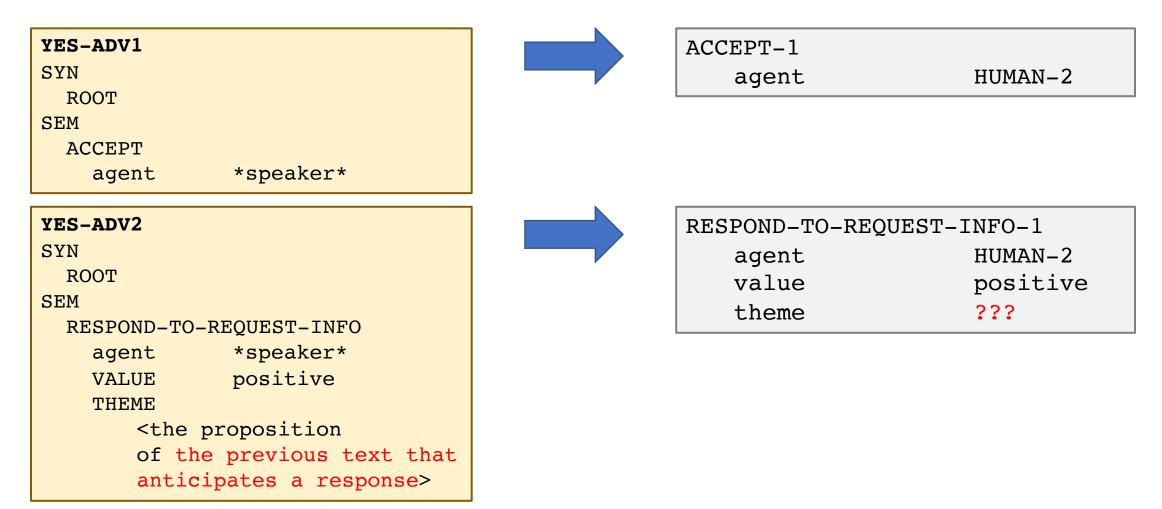
A Brief Aside – OntoAgent [2]

- OntoAgent contains the following modules:
- Perception + Interpretation (something perceived, voice or text, vision, etc. must be interpreted into the metalanguage; e.g., an NLU system converts text into meaning)
- Attention + Reasoning (all inputs and thoughts must be attended or not, inputs and thoughts can be reasoned over)
- Action Specification + Rendering (decisions to take action must be made, and actions must be realized in the world; e.g., vocalized, motorized, etc.)
- Memory and Knowledge management are a must (everything is in the same metalanguage!)


OntoAgent's NLU System

- Uses a syntactic/semantic lexicon to bridge lexical inputs and ontological knowledge
- Produces a TMR (Text Meaning Representation) that is in the uniform metalanguage of the agent's memory
- The TMR represents unambiguous meaning of the input text
- The agent can reason over the TMR

NLU Example – "Did you eat a cookie?"


REQUEST-INFO	
is-a	COMMUNICATION
agent	HUMAN
beneficiary	HUMAN

DO-AUX47	1	
SYN		
ROOT		
SUBJ	\$var1	
VP	\$var2	
PUNCT	?	
SEM		
REQUES	ST-INFO	
AGEN	TI	*speaker*
BENE	EFICIARY	\$var1
THEM	1E	\$var2

REQUEST-INFO-1	
agent	HUMAN-1
beneficiary	HUMAN-2
theme	INGEST-1
INGEST-1	
agent	HUMAN-2
theme	COOKIE-1

NLU Example – "Yes."

NLU Example – "Yes."

Well... that's not very helpful, is it?

- A dialog model can help us better understand what "Yes." means here!
- But... a dialog model isn't exactly taking the long view for AI. What do we do?

RESPOND-TO-REQUEST-INFO-1	
agent HUMAN-2	
value	positive
theme	???

YES-ADV2	
SYN	
ROOT	
SEM	
RESPOND-TO-REQUEST-INFO	
agent *speaker*	
VALUE positive	
THEME	
<the proposition<="" td=""></the>	
of the previous text that	
anticipates a respons	e>

Introducing Scriptlets [1]

- Concepts: atomic, general-purpose units of knowledge (e.g., DOG or INGEST)
- Scripts: dense and often domain-specific encapsulations of knowledge about all behavior in an event, for example:
 - To travel you must
 - Buy a plane ticket (how, with what resources, from where?)
 - Pack your bags (with what, and why? into what container?)
 - Drive to the airport (directions? take a cab? when to leave?)
 - Go through security...
 - And so forth

Introducing Scriptlets [2]

- In between the relatively isolated and clean concept definition, and the dense, complex, and hyper-specific script definition lies the scriptlet
- A scriptlet is an augmented concept that contains private references to concept instances so that it can, in a domain-agnostic way, define interrelated behaviors in a lightweight fashion
- Example: "when someone ORDERs lunch, they typically INGEST it"
- Example: "when something moving at X speed ACCELERATEs, it is now at Y speed, where Y > X"

Scriptlets are small but are key to the long game

- They introduce a minimal amount of knowledge to enable reasoning
- They are not bound by weighty domain-specific scripts (but can be used by them)
- This is psychologically plausible:
 - Ask someone what happens "after you pick up a hammer" and you'll likely get a variation of "you hit a nail"; a heavy a complex script isn't required to be worked through, this is quick reasoning
- Scriptlets remove the need for an agent to know it is in a script to function
- Scriptlets make manual knowledge acquisition practical as you don't need to record "all knowledge"
- Scriptlets enable lifelong learning as agents can more easily augment a few critical slots in an EVENT than construct an entire script from scratch

Let's use scriptlets to improve the example

- We want to use scriptlets to make a minimal dialog model
- We need to stick to keeping things simple (as simple as it can be)
- We want things to be domain independent, and to feel like common knowledge

Scriptlet Implementation

REQUEST-INFO		
is-a	COMMUNICATION	
agent	HUMAN-1	
beneficiary	HUMAN-2	
happens-next	RESPOND-TO-REQUEST-INFO	
	agent	HUMAN-2
	beneficiary	HUMAN-1

To make a scriptlet:

- Turn some of the fillers into internal instances
- Add a happens-next field
- For this concept, the default value is a type of RESPOND (the listener is now the speaker)

NLU with Scriptlets – "Yes."

ACCEPT-1

agent

HUMAN-2

- The second sense of YES is now selected. Why?
 - The agent knows it has an instance of REQUEST-INFO in its working memory.
 - REQUEST-INFO is usually followed by RESPOND-TO-REQUEST-INFO; and further, the proposed agent (HUMAN-2) lines up.
 - The agent can fill the the theme as well.
 - All of this allows the agent to prefer this sense when interpreting the meaning.

RESPOND-TO-REQUEST-INFO-1		
agent HUMAN-2		
value	positive	
theme	INGEST-1	
	TNGEDI-I	
INGEST-1		
agent	HUMAN-2	
theme	COOKIE-1	
	Т	
"Did you ea	T at a cookie?"	
"Did you ea YES-ADV2	T at a cookie?"	
YES-ADV2	T at a cookie?"	
YES-ADV2 THEME	↑	
YES-ADV2 THEME <the prop<="" th=""><th>osition</th></the>	osition	
YES-ADV2 THEME <the prop<br="">of the pro</the>	↑	

NLU with Scriptlets – "Yes."

RESPOND-TO-REQUEST-INFO-1		
agent	HUMAN-2	
value	positive	
theme	INGEST-1	
INGEST-1		
agent	HUMAN-2	
theme	COOKIE-1	

"Yes." == "Yes, I ate a cookie."

The TMR is improved; the scriptlet effectively expands the useless "Yes." into "Yes, I ate a cookie."

Scriptlets can be used across various input modalities

- RESPOND-TO-REQUEST-INFO is a COMMUNICATE, not just a SPEECH-ACT. It doesn't matter what the source is, the agent can reason over it just the same
- Our Text Meaning Representations (TMRs) have a vision analogue (VMRs); and the lexicon's counterpart, the opticon, fills the same role
- We can have an opticon entry for *nodding a head* whose semantic interpretation is identical to the speech act for "Yes!"
- The scriptlet will get involved in exactly the same way, making it very portable, even across input modalities

Conclusion

- Demonstrated how scriptlets can be used to implement a dialog model
- Showed how scriptlets aren't bound to a domain, are small enough to reasonably acquire, and are generally useful to agent reasoning
- Scriptlets are one part of the long game of knowledge engineering for human-like AI

Questions?

This research was supported in part by the U.S. Office of Naval Research.