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Introduction

* This paper describes key design features of the natural language

generation (NLG) capabilities we’ve recently begun developing
within the OntoAgent cognitive architecture

 Natural language understanding (NLU) in OntoAgent is described in
Linguistics for the Age of Al (McShane and Nirenburg; MIT Press,
2021; open access)

* This paper answers the natural question: and what about NLG?




The OntoAgent content-centric cognitive architecture
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Content Specification

 The prerequisite for NLG is content specification: deciding what
meaning is to be conveyed

* |n applications, this is provided by agent reasoning

 However, in the current state of the art, nearly all cognitive systems

have very narrow coverage, so they can provide few content
specifications




Content Specification (cont.)

e Our goal, by contrast, is to solve the problems of broad-coverage
NLG (polysemy, paraphrase, coreference resolution, etc.)

 Where will the content specifications to foster such R&D come
from?

*  Our NLU system




NLU provides content specifications for NLG:

A practical approach to R&D
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The Architecture of NLG
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The Architecture of NLG - Lexical Selection
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Lexical Selection

 To give just a taste of why this is difficult, words and phrases

have syntactic and semantic requirements, listed in the lexicon,
that must be fulfilled within their sentence

 Word senses can combine into a sentence only if all their needs
are fulfilled by other elements of the sentence




 Below is an informal sketch of the verb ‘fix” that means FASTEN

* Syntactically it requires a subject, direct object, and prepositional
phrase with “to”

 Semantically it requires an AGENT, THEME, and DESTINATION, all of
whose fillers must match the semantic constraints specified in
the ontological frame for FASTEN

* Inshort, there are a lot of constraints to check and keep track of

Top-level info Syn-Struc Sem-Struc
fix-v2 subj $varl FASTEN
def  to attach something \% $var( AGENT "Svarl
to something else directobject $var2 THEME "Svar2
ex  He fixed the bookshelf to the pp DESTINATION  “$vard
wall. prep $var3 (root to) A$var3 (null-sem+)
synonyms attach, fasten, secure n Svard
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The Architecture of NLG - Generate Candidates
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The Architecture of NLG - Candidate Selection
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Tom secures the painting to the wall.
Tom secures the picture to the wall.

Tom fastens the painting to the wall.
Tom fastens the picture to the wall.

Tom fixes the painting to the wall.

Tom fixes the picture to the wall.




So, what about explainability?

 This line of work enables agents to generate natural language
from content specifications that explain agent behavior

 The nature of our knowledge bases and processing allows an
agent to point directly to the knowledge and internal processes
which generated a particular behavior; in this case the behavior
of generating a natural language sentence(s)




* How does this work differ from the knowledge-based work on NLG that was
carried out half a century ago and proved to be so difficult that people gave
up on it?

* None of the problems have gone away, but our understanding of both the
content (linguistics, cognitive modeling, ontology) and strategy have
evolved

 Asregards strategy, we focus on lifelong learning (to overcome the so-
called “"knowledge bottleneck”) and integrating language processing with
other channels of perception and general reasoning

|t has become clear at this point that Al will not reach its potential without
explainability, so no matter how difficult it is to build explainable systems, it
must remain on agenda




 The goal of this work is to develop natural language generation

capabilities for a content-centric cognitive architecture called
OntoAgent

e R&D isstill in the early stages; however, this paper describes
some of the core design features of our natural language
generation system

 QOur goalis to solve some of the problems of broad coverage
NLG, including many of the micro-theories covered by our NLU
system, and to bootstrap development of our NLG system with
meaning representations from open-domain texts




Thank you!




