Scales and Hedges in a Logic with Analogous Semantics

H.R. Schmidtke, ArtEsploro Research, Germany schmidtke@acm.org and S. Coelho, Faculty of Medicine, University of Lisbon, Portugal arascoelho@gmail.com

ACS 2021, November 16, 2021

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Semiotics

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Empathy and Meaning in Ethical Decision Making

- The ability to imagine may be critical for pro-social behaviours.
- Current literature distinguishes
 - affective empathy: ability to share another's feelings and emotions, compassion and distress (Hodges & Myers, 2007).
 - cognitive empathy: inferences about anothers' mental states, ability to perceive their intentions, motivations and expectations.
- \Rightarrow Evidence from pathologies that present with impairment in empathy: psychopathy and autism.
 - Psychopaths preserve cognitive empathy but have a low affective empathy (Smith, 2006) ⇒ anti-social behaviour, insensibility towards signs of distress
 - People with autism show deficits in cognitive empathy but have their affective empathy intact (Smith, 2006) ⇒ normal morality
- \Rightarrow Decision making needs imagination of what consequences mean
 - E.g.: invest in climate change action or economic growth?

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Semantics Introduction

Scales and

Hedges in a Logic with Analogous

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Summary and Conclusions

https://logical-lateration.appspot.com/video.html

Alternatives to Set-Theoretical Semantics

- Modern set-theoretical mathematical logic originated in the 19th century (before that no formal logic!)
- 20th century:
 - Alternatives to set-theory: Leśniewski's Protothetic, a mereological foundation for logic
 - Mereology: "flat" foundational relation *part-of* between individuals at the same level instead of hierarchical *element-of*
 - \Rightarrow Influential followers (e.g., Tarski)
 - \Rightarrow Advantageous, in particular, for continuous domains, e.g.: time/space
 - ⇒ In terms of mathematical structures: mereology describes a lattice or semi-lattice structure, which is a generalization of Boolean Algebra
 - Many equivalences between logics and mathematical theories, in general
 - Logically, close relationship between, e.g.: intuitionistic logic, certain modal logics, description logics, and Fuzzy Logic (Hájek, 1998) as based on lattices or semi-lattices
 - As computational structures: directed acyclic graphs (including trees) also belong into this same category
 - · Generally, any partial order gives rise to a lattice structure
- ⇒ Context Logic a cognitively motivated logic with a lattice semantics

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meanin

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

A Reasoner with Analogous Semantics

- Analogous semantics of Fuzzy Logic (Zadeh): Pixel region shoe123 has RGB color value with R-component of 90% "the shoe is red to the degree 90%"
 - \Rightarrow Color of the shoe can be reconstructed from statement and degree
 - \Rightarrow Truth and meaning in the intuitive sense of correspondence with reality
 - \Rightarrow Fuzzy Control Systems: can interact with the world, be verified logically
 - \Rightarrow But: meaning of a text is still just one numerical truth value
 - \Rightarrow Context Logic (CL)
- Vector Symbolic Architectures (Kanerva): abstract distributed model of cognition
 - Intensional pointer/association semantics
 - Advantage: input image and all symbols are of the same type (vectors)
 - But: no analogous semantics
- ⇒ Activation Bit Vector Machine: a VSA for logical reasoning with full analogous semantics for complex CL formulae

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meanin

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

Context Logic: a Two-layered Logic for Reasoning about, and in Context

1 Context terms T_C are defined over a set of variables V_C :

- Any context variable $v \in \mathcal{V}_C$ and the special symbols \top and \bot are atomic context terms.
- If c is a context term, then its complement ($\sim c$) is a context term.
- If *c* and *d* are context terms then the intersection (*c* ⊓ *d*) and sum (*c* ⊔ *d*) are context terms.
- **2** Context formulae \mathcal{F}_C are defined as follows:
 - If *c* and *d* are context terms then [*c* ⊑ *d*] (*c* is *subcontext* of *d*) is an atomic context formula.
 - If ϕ is a context formula, then $(\neg \phi)$ is a context formula.
 - If φ and ψ are context formulae then (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and (φ ↔ ψ) are context formulae.
 - If x ∈ V_C is a variable and φ is a formula, then ∀x : φ and ∃x : φ are context formulae.

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Context Logic: Conventional Semantics

- Syntax gives rise to a hierarchy of languages
 - CLA fragment (atomic CL) allows only \wedge
 - · CL0 (propositional CL) allows any construction without quantifiers
 - CL1 (first order CL) adds quantifiers
- · Conventional semantics: several different characterizations
 - Set-theoretical semantics (2007)
 - Kripke semantics (2008)
 - FOL axiomatic characterization based on Partial Orders and using DAGs (2008, 2009, 2012, and here)
 - Category-theoretical semantics (2021)

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meanin

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Context Logic: Semantics by Axiomatic Characterization I

- The core relation \sqsubseteq is a partial order, i.e. (2012):
 - reflexive

$$[\alpha \sqsubseteq \alpha]$$

• antisymmetric

$$[\alpha \sqsubseteq \beta] \land [\beta \sqsubseteq \alpha] \to \forall \xi : ([\alpha \sqsubseteq \xi] \to [\beta \sqsubseteq \xi]) \land ([\xi \sqsubseteq \alpha] \to [\xi \sqsubseteq \beta])$$

transitive

$$[\alpha \sqsubseteq \beta] \land [\beta \sqsubseteq \gamma] \to [\alpha \sqsubseteq \gamma]$$

• Characterization of \sqsubseteq in relation to \rightarrow :

$$[\beta \sqsubseteq \gamma] \to \forall \mathbf{X} : [\mathbf{X} \sqsubseteq \beta] \to [\mathbf{X} \sqsubseteq \gamma]$$

⇒ Allows us to move any complex context term to the right hand side: can characterize the relation between the context term operators and the logical operators with respect to their occurrence on the right hand side.

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Context Logic: Semantics by Axiomatic Characterization II

Intersection (□) and conjunction (∧):

$$[\top \sqsubseteq \alpha \sqcap \beta] \leftrightarrow [\top \sqsubseteq \alpha] \land [\top \sqsubseteq \beta]$$

• Sum (\sqcup) and disjunction (\lor):

 $[\top \sqsubseteq \alpha \sqcup \beta] \leftrightarrow \forall \xi : \exists \chi : [\chi \sqsubseteq \xi] \land ([\chi \sqsubseteq \alpha] \lor [\chi \sqsubseteq \beta])$

- Complement as related to \bot and (with empty domains excluded, i.e., $\neg[\top\sqsubseteq\bot])$ to \neg :

 $[\top \sqsubseteq \sim \alpha] \leftrightarrow [\alpha \sqsubseteq \bot]$

- Can immediately derive relations:
 - Converse: [α ⊒ β] ⇔ [β ⊑ α]
 Useful to specify opposites (north/south, small/tall, etc., 2020)
 - Equality: $[\alpha = \beta] \stackrel{\text{\tiny def}}{\Leftrightarrow} [\alpha \sqsubseteq \beta] \land [\beta \sqsubseteq \alpha]$
 - Overlap: $[\alpha \bigcirc \beta] \stackrel{\text{\tiny def}}{\Leftrightarrow} \neg [\alpha \sqcap \beta \sqsubseteq \bot]$
 - Non-empty subcontext: $[\alpha \sqsubseteq \beta] \stackrel{\text{\tiny def}}{\Leftrightarrow} [\alpha \bigcirc \beta] \land [\alpha \sqsubseteq \beta]$

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Context Logic: Semantics by Axiomatic Characterization III

- Using the conjunctive term operator □, arbitrary further p.o. relations can be constructed (basic property of lattice structures) without introducing special relational symbols
- Allows us to understand certain contexts as relational or dimensional contexts
- \Rightarrow Will allow us to analyze any relation in terms of one singular relation \sqsubseteq
 - 1 Partial orders
 - 2 General (non-partial-order) relations in terms of a mereological description of graphs/tuples
 - Wide range of relations are partial orders, e.g.: *spatial-part-of* or *north-of*.
 - Transitivity of p.o.s is fundamental for reasoning in many domains.
 - reflexivity $[\alpha \sqcap x \sqsubseteq \alpha]$
 - antisymmetry $[\alpha \sqcap x \sqsubseteq \beta] \land [\beta \sqcap x \sqsubseteq \alpha] \rightarrow [\beta \sqcap x = \alpha \sqcap x]$
 - transitivity $[\alpha \sqcap x \sqsubseteq \beta] \land [\beta \sqcap x \sqsubseteq \gamma] \rightarrow [\alpha \sqcap x \sqsubseteq \gamma]$

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Context Logic: Semantics by Axiomatic Characterization IV The proofs follow via:

 $[\alpha \sqcap \mathbf{X} \sqsubseteq \beta] \leftrightarrow [\alpha \sqcap \mathbf{X} \sqsubseteq \beta \sqcap \mathbf{X}]$

because $\alpha \sqcap x \sqsubseteq x$ is trivially true.

• We can define a *contextualization* syntax as a shorthand:

 $\mathbf{X}: [\alpha \sqsubseteq \beta] \stackrel{\text{def}}{\Leftrightarrow} [\alpha \sqcap \mathbf{X} \sqsubseteq \beta].$

- This already brings us close to the conventional way, we write relations in FOL
- We can say, that this conventional syntax is a further abbreviation, a schema, or syntactic sugar: x[α, β] ^{def}⇔ [α ⊓ x ⊑ β].
- This statement is in CLA, i.e., on the most fundamental expressive level
- $\Rightarrow\,$ We have the reasoning back-bone of any partial order "for free", i.e., without requiring any axiomatization

Scales and Hedges in a Logic with Analogous Semantics

ntroduction

Meaning Historic Conceptions about Meaning

Context Logic Analogous Semantics of Cl

Basic Vocabulary and Semantic Classes with Dimensional Meanings

Type	Dimension	Comp Type		Dimension	Comp.
Structural	Dimension	in in	Verb (i)	spatial (obj-ext.)	move
Structural	-	15	Verb (i)	spatial (obj-ext.)	run
	-	are	Verb (i)	spatial (obj-ext.)	go
PP (static)	north-south (+)	north	Verb (i)	spatial (obj-ext.)	continue
PP (static)	north-south (-)	south	Verb (i)	health (+, neg to avg)	recover
PP (static)	east-west (+)	east	Verb (t)	spatial (obi-ext.)	drive
PP (static)	east-west (-)	west	Verb (t)	spatial (subi-arm)	pull
PP (static)	size (+)	large	Verb (t)	health (+, neg to avg)	heal
PP (static)	size (-)	small	Verb (t)	health (-)	harm
PP (static)	left-right (-)	left	Verb (t)	health (min)	kill
PP (static)	left-right (+)	right	Verb (t)		aive
PP (static)	left-right (*)	side (adv.)	Verb (t)	poss space (subj,)	receive
PP (dynamic)	up-down (+)	up		poss. space (subj, +)	a/the trollov
PP (dynamic)	up-down (-)	down		-	a/the trools
PP (dynamic)	to-from (+)	to		-	a/the exect
PP (dynamic)	to-from (-)	from	NP	-	an/the agent
Aspect	contains-during (+)	V-ing	NP	-	a/the lever
Tense	before-after (+)	will V	NP	-	one person
			NP	-	tive people

Scales and Hedges in a Logic with Analogous Semantics

ntroduction

Ieaning Historic Conceptions about Meaning

Context Logic

Temporal Relations

relation name	causation (c)	containment (t)		
core(i,j)	$i \sqcap c = j \sqcap c$		lent	core
starts(i,j)	<i>i</i> ⊓ <i>c</i> ⊏ <i>j</i>	$i \sqcap t \sqsubset j$	ntainm	starte 0
finishes(i,j)	<i>j</i> ⊓ <i>c</i> ⊏ <i>i</i>		vith co	
icore(i,j)	$i \sqcap c = j \sqcap c$			finishes
istarts(i,j)	<i>i</i> ⊓ <i>c</i> ⊏ <i>j</i>	$j \sqcap t \sqsubset i$		
ifinishes(i,j)	<i>j</i> ⊓ <i>c</i> ⊏ <i>i</i>		Ą	qovic
qcore(i,j)	$i \sqcap c = j \sqcap c$		rlap on	
qstarts(i,j)	<i>i</i> ⊓ <i>c</i> ⊏ <i>j</i>	$j \sqcap t = i \sqcap t$	th ove	
qfinishes(i,j)	<i>j</i> ⊓ <i>c</i> ⊏ <i>i</i>		wi	iovic
qovlc(i,j)	$i \sqcap c = j \sqcap c$			
<i>ovlc</i> (<i>i</i> , <i>j</i>)	<i>i</i> ⊓ <i>c</i> ⊏ <i>j</i>	<i>i</i> ⊓ <i>t</i> ∘ <i>j</i>	a	meets*
iovlc(i,j)	<i>j</i> ⊓ <i>c</i> ⊏ <i>i</i>		overla	
meets(i,j)	$i \sqcap c = j \sqcap c$		ithout	
before(i,j)	<i>i</i> ⊓ <i>c</i> ⊏ <i>j</i>	\neg [<i>i</i> \sqcap <i>t</i> \bigcirc <i>j</i>]	×	after
after(i,j)	<i>j</i> ⊓ <i>c</i> ⊏ <i>i</i>			

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

General Relations

- But we need the expressive power of CL0 and CL1 for general relations
- With the existential quantitier ∃, CL1 allows any other relation to be constructed including non-p.o. relations, such as the instance-of relation between an object *o* and a class *c*:

 $\exists e : [e \sqsubseteq isi] \land [o \sqcap e \sqsubseteq a_1] \land [c \sqcap e \sqsubseteq a_2].$

o is an *instance of c* iff there is a subcontext *e* of *isi* (intuitively, the edge *e* of the graph *isi*) of so that *o* overlaps *e* in a_1 (first arguments or ends of edges) and *c* overlaps *e* in a_2 (second arguments or tips of edges).

- Formally, this construction is called a *tuple generator*, with which arbitrary relations can be constructed.
- We can then again say that the more conventional relation statement isi(α, β) is only a schema, an abbreviation, syntactic sugar

 $isi(\alpha,\beta) \stackrel{\text{\tiny def}}{\Leftrightarrow} \exists e : [e \sqsubseteq isi] \land [\alpha \sqcap e \sqsubseteq a_1] \land [\beta \sqcap e \sqsubseteq a_2].$

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning Historic Conceptions about Meaning Context Logic

Analogous Semantics of CL

Verbs

- Action verbs (CL1, 2021) generate event parameters (Davidson) that tie together the parts of a sentence (tuple generator construction, hypergraph edge)
- Static predication sentences

 $(subj)(is|are)(pred^{\sigma})(obj) \mapsto (dim)^{\sigma}[(subj), (obj)]$

- Action verb sentences
- Intransitive verb with adverbial PP, e.g.: Toms goes down the street $\langle subj \rangle \langle verb_i^{\sigma_v}(a,t) \rangle \langle pred^{\sigma_p} \rangle \langle obj^p \rangle \mapsto$ $\exists e_{n+1} : \alpha \tau(e_n, e_{n+1}) \land \ldots \land subj(e_{n+1}, \langle subj \rangle) \land \langle dim_v \rangle^{\sigma_v}[e_n, e_{n+1}] \land$ $\langle dim_p \rangle^{\sigma_p}[e_n, e_{n+1}] \land obj^p(e_{n+1}, \langle obj^p \rangle)$
- Transitive verb, e.g.: the physician heals the patient

 $\langle subj \rangle \langle verb_t^{\sigma}(a,t) \rangle \langle obj \rangle \mapsto$ $\exists e_{n+1} : \alpha \tau(e_n, e_{n+1}) \land \ldots \land subj(e_{n+1}, \langle subj \rangle) \land$ $obj(e_{n+1}, \langle obj \rangle) \land \langle dim_v \rangle^{\sigma_v}[e_n, e_{n+1}].$ Scales and Hedges in a Logic with Analogous Semantics

ntroduction

Meaning

Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

20

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning Historic Conceptions about Meaning

Context Logic Analogous Semantics of CL

Summary and Conclusions

Summary

- ⇒ We thus have derived the conventional syntax of *predicate expressions* demonstrating that these can be considered internally complex constructions.
 - We gain the advantage of reducing the number of axioms required for basic and compound transitive relations, such as the temporal *starts*
 - and have shown that CL does not replace conventional predicate logic but adds a way to further analyze and better understand its atomic formulae.
- \Rightarrow An analogous semantics for CLA, CL0, and CL1 is an analogous semantics for FOL!

Focus and Filter

- We can implement a CL reasoner using a Vector Symbolic Architecture by interpreting vectors logically with bitwise logical operations &, |, !
 - Assume random binary vectors a and b of long length, e.g., 10000 bits
 - Implement $a \sqcap b$ with bitwise &
 - \Rightarrow Yields a focus operation: focus on those parts of *a* that are also in *b* (or those parts of *b* that are in *a*)
 - Implement ~*a* with bitwise !
 - \Rightarrow Yields a filter operation: !a&b: filter out parts from b that are in a
 - Implement $a \sqcup b$ with bitwise
 - Implement a ⊑ b as: for all positions i, a_i ≤ b_i (or equivalently: for all positions i, a_i&!b_i = 0)
- ⇒ VSA reasoner is a probabilistic model checker for a classical set-theoretical semantics for CLA, e.g.:
 - ⇒ Given random vectors n, a, b, c, ... and a knowledge base (KB) $\phi = n : [a \Box b] \land n : [b \Box c] \land ...$
 - Obtain φ =!(a&n&!b)&!(b&n&!c)&... as the vector encoding of the KB.
 - We can query, e.g., for $n : [a \sqsubseteq c]$ by asking for the encoding of the query q = !(a & n & ! c), whether $!\phi | q$ is the 1-vector.

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic

Analogous Semantics of CL

From Binary Vectors to Analogous Representations

- We get: φ&x as focus on information φ has about object/relation x.
- And: $\phi \& n \& a$ as the information about *a* with respect to the *n*-relation.
- For the KB $\phi = !(a\&n\&!b)\&!(b\&n\&!c)\&...$ and looking at vectors $\phi\&n\&a$, $\phi\&n\&b, \phi\&n\&c$, we see that with ϕ we remove – i.e., set to 0 – all positions *i* where $\phi_i\&n_i\&a_i = 1$ and $b_i = 0$ and all portions where $\phi_i\&n_i\&b_i = 1$ and $c_i = 0$. In other words, all positions, where $\phi_i\&n_i\&c_i = 1$ have $\phi_i\&n_i\&b_i = 1$ and $\phi_i\&n_i\&a_i = 1$, and all positions, where $\phi_i\&n_i\&b_i = 1$ have $\phi_i\&n_i\&a_i = 1$.
- ⇒ This means for the number of 1s that $|\phi \& n \& a| \ge |\phi \& n \& b| \ge |\phi \& n \& c|$.
- ⇒ Generalizing, $|\phi \& n \& x|$ the number of 1s in $\phi \& n \& x$ numerically represents the *n*-aspect of *x*, an *n*-coordinate
- \Rightarrow A lot more to say here, e.g.:
 - how to reduce interference between relations (filter out other relations in the query, 2018, 2021)
 - how to rotate/mirror images (2019), etc.
 - how to build CL0 and CL1 reasoning on top of this (conventional FOL Tableaux reasoning, each branch yields a separate image, 2021)

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning

Historic Conceptions about Meaning Context Logic

Analogous Semantics of CL

Summary and Conclusions

- Origin of the gap in conventional FOL semantics' (Pierce, Frege) in focus on general relations
- Context Logic is a mature logical language with a unique image semantics
- FOL can be understood as partitioned by CL
- The Activation Bit Vector Machine (ABVM), a logical VSA, provides conventional classical reasoning as well as complex formula grounding and grounded reasoning for CL and thus also FOL
- · System can be "shocked" by extreme risk in "game of chicken" scenario
- \Rightarrow Demo shows scales in preference dimensions, e.g., wealth, versus options that are maximally catastrophic and tied to existential threat

Scales and Hedges in a Logic with Analogous Semantics

ntroduction

Meaning

Historic Conceptions about Meaning Context Logic Analogous Semantics of CL

References

- Schmidtke, H.R.: Logical lateration a cognitive systems experiment towards a new approach to the grounding problem. Cognitive Systems Research 52, 896 908 (2018).
- Schmidtke, H.R.: TextMap: a general purpose visualization system: Algorithms. Cognitive Systems Research 59, 27–36 (2020)
- Schmidtke, H.R.: Multi-modal actuation with the Activation Bit Vector Machine. Cognitive Systems Research, **66**,162 175 (2021).
 - Schmidtke, H.R.: Reasoning and learning with context logic. Journal of Reliable Intelligent Environments (2021).
- Schmidtke, H.R.: A canvas for thought. Procedia Computer Science **145**, 805–812 (2018).
- Schmidtke, H.R.: Logical rotation with the Activation Bit Vector Machine. Procedia Computer Science **169**, 568–577 (2020).
- Schmidtke, H.R.: The TextMap general purpose visualization system: Core mechanism and case study. In: Samsonovich, A. (ed.) Biologically Inspired Cognitive Architectures 2019. Advances in Intelligent Systems and Computing, vol. 948, pp. 455–464. Springer, Cham, Switzerland (2020).

Scales and Hedges in a Logic with Analogous Semantics

Introduction

Meaning Historic Conceptions about Meaning Context Logic Analogous Semantics of CL