Task Modifiers for HTN
Planning and Acting

Weihang Yuan Venkatsampath Gogineni
Hector Munoz-Avila Sravya Kondrakunta
Lifang He Michael Cox

Lehigh University Wright State University

Hierarchical Task Networks (HTNs)

* HTN planning decomposes compound tasks into primitive tasks,
which define actions that change the world state.

task t(name, arguments)

method m(s,t) = ¢t

S x {t} - Fu (nil) transport a package from location 1 to location 2

- N T

find a car load the package drive the car to location 2 unload the package
open the trunk start the car drive on route 0 open the trunk

place the package

action a(s,t) = s’

S % {t} = S U {nil}

HTN Planning

* An HTN planning problem (s, ¢, D)
* s is astate
e t = (tq,...,t,) is a task list
* D consists of a set of actions and a set of methods

* Aplanm = (a4, ..., a,,) is a solution if
e Ift =0, thent =0
« Ift = @,
* If ty is primitive and a, is applicable and (a,, ..., a,,) is a solution for (s’, (t,, ..., t;,), D)

* If t; is compound and there exists an applicable method m and m is a solution for
(s, (subtasks, t,, ..., t,), D)

Motivation

* In some problems, environmental dynamics are not fully observable.
* (s,t,D")

e D =aset of action names and a set of methods

* s is an observation

Cognitive Agent methods

observes a state takes an action

\Environment /statechange

dynamics: S X {t} > S U {nll}
a(s,t) =s'

Task Modifiers

* Originally, an agent’s task list can only be modified in two ways:
(ty, ..., t,)

applicable action exists

(t1, o) ty)

(m(s,t1), ty ..., ty)

applicable method exists

e Task modifier: S X T - T

TM(s,t) =t
* TMs provide an additional way to modify the task list.
* TMs receive a task list as input whereas methods receive a single task.

Task Modifiers

* An algorithm that integrates
SHOP with a task modifier and
interleaves planning and
execution

I: procedure PLAN-ACT-TM(Z, D)
2: observe s
3; return SEEK-PLAN-ACT-TM(s, t, D)

4: procedure SEEK-PLAN-ACT-TM(s, t, D)

5 if # = () or the episode terminates then
6: return s
g
8
9

t « the first task in ¢; R < the remaining tasks
if ¢ is primitive then
: if there is an action a(s,t) # nil then
10: apply a

11: observe s’

1B R+ TM(s',R)

13: return SEEK-PLAN-ACT-TM(s', R, D)

14: else

15 returnnil

16: else

17: for every method m(s,t) # nil do

18: S <— SEEK-PLAN-ACT-TM(s, (m(s,t), R), D)
19: if s #nil then

20: return s

21; return nil

Experiments

* Minefield: maximize the number
of transport ships that survive.

* The agent has no direct
knowledge of

* |dentity of the pirate
* Locations of mines

* The agent has a predefined TM
* The baseline has a random TM

......... rrrrrrI

e TM Agent
¢ x No Agent
» Random Agent

nx

0.10 015 020 025 030 035 040 045 0.50 .
probablity of placing mines

....... eI

7

Ssummary

e Describe an extension to HTN called task modifiers as a solution to a
type of domains

* Describe an algorithm that integrates task modifiers and SHOP
* Empirically demonstrate the feasibility of this approach

Thank you

