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Introduction



Skim Reading as a Human

• The reader does not attend to every word fully.

• Learns to skip words of lower importance.

• About 40% of the words can be skipped without substantial loss of

understanding [Hahn and Keller, 2018].
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Skim Reading as a Machine

• [Yu et al., 2017] found that the model could skip over several words

at a time and still be as accurate or more accurate than the

non-skipped models.

• [Hahn and Keller, 2018] showed that you could model the skipping

processes using human eye movements and achieve the same result

for sentiment analysis tasks.
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The Transformer [Vaswani et al., 2017]

Figure 1: The transformer architecture in [Vaswani et al., 2017]
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Transformers Inputs

Figure 2: The input of the transformer.
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Self-Attention

Figure 3: Self-Attention
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Experiments



Model: BERT [Devlin et al., 2018]

Figure 4: BERT-base architecture.(image source:peltarion.com)
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Data : IMDB [Maas et al., 2011]

Figure 5: A Data point.
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Experiments

Figure 6: Sum of attention scores of each token from 1st and 12th layers.
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Experiment1

Figure 7: Sentiment prediction accuracy of the text when only top x percentile

tokens are kept. 9



Experiment2

Figure 8: The top 10% of tokens based on the first layer are colored, where greens

are adjectives. The second figure shows how POS changes during filtering. 10



Conclusion and Future Work



Summary

• We show that BERT’s first layer attention can be used as a filter

that gives a remarkably effective sequence selection for the

sentiment analysis task.

• We show that the distribution of the parts of speech chosen by the

filter changes as the number of filtered tokens increases. We also

show that adjectives are the most persistent parts of speech in the

filtering progress for the sentiment analysis task.
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Summary and Future Work

• How much content may be needed for a sentiment analysis task.

• As future work, we intend to benefit from similar inductive biases in

order to reduce the long-distance-dependency costs for other

downstream tasks.
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Thank you!

Questions?
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