Self-Directed Learning of Action
Models using Exploratory
Planning

Dustin Dannenhauer Slack channel:
Matthew Molineaux #paper29-dannenhauer
Michael W. Floyd

Noah Reifsnyder

David W. Aha
Eissé'é'ﬁ\rﬁéd Parallax

LABORATORY ... ADVANCED RESEARCH

ACS 2021

Outline

* Research Problem

e Lifted Linked Clause (LLC)
* Self-Directed Exploration
* Empirical Results

* Summary

Research Problem

Motivation:
e Agents capable of learning in unknown environments

* Building an exploration-focused planning system

Assumptions:

e Agent does not require a goal, but can be tasked in a goal-directed manner
* Agent does not require a complete action model

e Agent does not have an extrinsic reward function

* Symbolic state representation

For more details on DCSS see:
https://github.com/dtdannen/dcss-ai-wrapper

An Example Domain:
Dungeon Crawl Stone Soup (DCSS

garrulousMonolith the Warrior
Gargoyle of Okawaru ******
98/139
29/29
22
17
13
49% Elven Halls:3
36722.7 (0.8)
flail "Epsoenke"™ {venom, +Inv +Fly
TF+++}
darts (poison)
Fly Drain

deep elf master archer

¥ ghostly deep elf death mage

bludgeon the deep elf master archer!

deep elf master archer looks as sick as possible!
deep elf master archer is moderately wounded.
deep elf master archer shoots an arrow.

block the arrow.

block the ghostly deep elf death mage's attack.

Motivation for Real-World Domains

* Complex real-world domains may not be fully modelled
 Domains may change over time (open-world novelty)
* Maintaining an accurate action model will aid in task achievement

Related Work

Intrinsically motivated reinforcement learning
* Exploration-based rewards (Hester and Stone 2017)

* Intrinsic motivations based on appraisal dimensions: novelty, motivation, control, and valence
(Sequeira, Melo, and Paiva 2011)

Difference from intrinsic RL — we consider a goal-directed agent

Inductive Learning for constructing action models

* Heuristic guided search (Hayes-roth and McDermott 1978; Vere 1980; Watanabe and Rendell 1990)
* Greedy algorithms: FOIL (Quinlan 1990)

* Learning from expert traces: OBSERVER (Wang, 1995)

Difference from prior inductive learning of action models work:

* Eliminating the need for expert traces
* Agent actively performs information gathering by finding new situations and trying actions

Outline

* Research Problem

e Lifted Linked Clause (LLC)
* Self-Directed Exploration
* Empirical Results

* Summary

Action
\VileYol=)

Example

(:action move or attack n
:parameters (?currcell ?destcell)
:precondition
(and
(northof ?currcell ?destcell)
(not (wall ?destcell))
(not (statue ?destcell))
(not (lava ?destcell))
(not (plant ?destcell))
(not (tree ?destcell))
(not (closeddoor ?destcell))
(playerat ?currcell)
)
reffect
(and
(playerat ?destcell)
(not (playerat ?currcell))

Liftted Linked Clause (LLC)

e LLC definition:

A lifted subset of predicates of a state space AND
* Predicates share at least one variable across their arguments

* More formally, an LLC is a first-order relational conjunct
C1 /\Cz N "'/\CTl

that refers to one or more existentially quantified variables and is
satisfied by some states S’ c S

e An LLC is active if it unifies with the current state

Liftted Linked Clause (LLC)

* First, by example: agent on the same tile as a shaft:

Symbolic LLC
State

Image

agent-at(s, 7) {agent-at(?X1, ?Y1),
shaft-at(s, 7) shaft-at(?X1, ?Y1)}

For reference, the agent on a regular (non-shaft) tile:

10

Liftted Linked Clause (LLC)

* Another example: agent in front of a closed door:

Image

Tile2

Tilel

Symbolic
State

closed-door (5, 3)

agent-at(5, 2)

north(3, 2)

LLC

{agent-at(?X1, ?Y1),
closed-door(?X1, ?Y2),
north(?Y2, ?Y1)}

11

Liftted Linked Clause (LLC)

* Another example: agent east of a monster:

Image

Symbolic

Annotation

agent-at(4, 1)

Tile2 Tilel west(5, 4)

LLC

{agent-at(?X1, ?Y1),
monster-at(?X2, ?Y1),
west(?X2, ?X1)}

Multiple LLCs are often active in a single state

{agent-at(?X1, ?Y1),
monster-at(?X2, ?Y2),
east(?X2, ?X1)}
north(?Y2, ?Y1)}

{agent-at(?X1, ?Y1),
monster-at(?X2, ?Y1),
east(?X2, ?X1)}

Monster northeast

Monster east of
of agent

agent

{agent-at(?X1, ?Y1),
empty(?X2, ?Y1),
west(?X2, ?X1)}

There is an open tile
west of the agent

13

Outline

* Research Problem

e Lifted Linked Clause (LLC)
* Self-Directed Exploration
* Empirical Results

* Summary

Exploratory Planning Agent Architecture

15

Agent
Architecture S

* |nteraction History:

* Collection of every < s;,a;, S;+1 > transition experienced
by agent:

(< sp, 9,51 >,< 81,041,532 >, ...)
* Domain Model:

* Current preconditions and effects model for every action

* Transition Model Learner:

* Off-the-shelf tool: ILASP
* “Inductive Learning of Answer Set Programs”

Agent

Controller

Exploration Planner

Interaction
History

Transition Model
Learner

16

Transition Model Learner

* We used Inductive Learning of Answer Set Programs (ILASP)
* Law, M., Russo, A., & Broda, K. (2015)

* To learn preconditions, we apply ILASP

* Positive examples are transitions where s; # s;, 1
* Negative examples are transitions where s; = s;,1

* To learn effects, we take every transition < s;, a;, s;;1 > for an action
a; and if s; # s;,1 we perform a state diff between s; and s; .1

Agent

Architecture

 Controller:

* Exploration planner:

Environment

If in a new situation (new LLC is active)
then try actions that have not been
tried in this LLC before

Otherwise call exploration planner
If no plan, take random action

Purpose: Reach new situations (where
new LLCs are active)

When a plan is executed, either it
succeeds or fails:

If Failure: Great, we have collected a
negative transition for one of our
actions, which will help update model

If Success: Great, we have reached a
new situation and can test new
actions, helping to update model

Agent

Controller

Exploration Planner

Interaction
History

Transition Model
Learner

18

Exploration
Planner

* Track which actions have
been taken in which LLCs

* Exploration planner chooses
an LLC to be a goal among
LLCs least acted in

* Planning happens using an
Answer Set Programming
planner that takes the LLC
directly as a goal (no
grounding is necessary)

Algorithm 3 Exploration-based Planning using LLCs as Goals

1: procedure LLC-PLANNER

2 Global: s, A, I, LtoA

3 A+ learnAction M odels(I) > Perform learning to ensure up-to-date action models
1 Gaone |] > Store goals already attempted
5: do

6 Gremainings Gdone 4 contextsWithLeast Actions(LtoA, Gaone) > Retrieve LLCs
T for g in G, omaining do

8 w +—ASP-Planner(A, s, g) - Call planner
9 if m.length() > 0 then

10: return = > Return first plan found
11: while G, crmaining-length() >0

12: return | |

19

Walkthrough Example

State O
Domain model: Empty
Agent Location: 1,1

wall | wall | wall | wall | wal Closed
Door
Wall
Wall wall Wall Wall Wall
Agent Wall
1 2 3 4 5 6 8

20

Walkthrough Example

State 15: Agent has successfully moved east
after trying a number of failed random actions

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

Agent Location: 2,1

Closed

Wall Wall Wall Wall Wall
Door
Wall
Wall Wall Wall Wall Wall
Agent Wall
1 2 3 4 5 6 8

21

Walkthrough Example

State 41: Agent has moved west

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 1,1

Closed

Wall Wall Wall Wall Wall
Door
Wall
Wall Wall Wall Wall Wall
Agent Wall
1 2 3 4 5 6 8

22

Walkthrough Example

State 41: Agent has moved west

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 1,1

At this point the agent has taken all actions in the current state (all

active LLCs) — this triggers exploratory planning

Closed

4 Wall Wall Wall Wall Wall
Door
Wall
Y 3
2 Wall Wall Wall Wall Wall
1 | Agent Wall
1 2 3 4 5 6 8

23

Walkthrough Example

State 41: Agent has moved west

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 1,1

Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}

Closed

4 Wall Wall Wall Wall Wall
Door
Wall
Y 3
2 Wall Wall Wall Wall Wall
1 | Agent Wall
1 2 3 4 5 6 8

24

Walkthrough Example

State 41: Agent has moved west

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 1,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a
closed-door cell.

/
Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}
Yl
5
4 Wall | wall | wall | wall | wal Closed
oor
v 3 Wall
2 | Wall Wall Wall Wall Wall
1 | Agent Wall
1 2 3 4 5 6 8 9

25

Walkthrough Example

Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}

State 41: Agent has moved west

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 1,1

Exploratory Plan is:

1
2
3.
4.
5
6
7

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a

closed-door cell.

move-east
move-east
move-east
move-east
move-east
move-east
move-east

/
Goal
v
wall | wall | wall | wall | wall Az
Door
Wall
Wall Wall Wall Wall Wall
Agent Wall
1 2 3 4 5 6 8 9

26

Walkthrough Example

State 42: Agent has moved east

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 2,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a
closed-door cell.

/
Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}
!
5
4 Wall | wall | wall | wall | wal Closed
oor
Exploratory Plan is: y 3 Wall
I—move-east
2. Mmove-east 2 | wall | wall | wall | Wwall Wall
3. move-east
4. move-east 1 Agent Wall
5. move-east
1 2 3 4 5 6 8 9
6. move-east
/. move-east

27

Walkthrough Example

State 43: Agent has moved east

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 3,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a
closed-door cell.

/
Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}
!
5
4 Wall | wall | wall | wall | wal Closed
oor
Exploratory Plan is: y 3 Wall
I—move-east
2—moeve-east 2 | wall | wall | wall | Wall Wall
3. move-east
4. move-east 1 Agent Wall
5. move-east
1 2 3 4 5 6 8 9
6. move-east
7. move-east

28

Walkthrough Example

Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}

State 44: Agent has moved east

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 4,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a

closed-door cell.

Exploratory Plan is:

I—move-east
2—move-east
3—move-east
4. move-east
5. move-east
6. move-east
/. move-east

/
v
wall | wall | wall | wall | wal S
Door
Wall
Wall Wall Wall Wall Wall
Agent Wall
1 2 3 4 5 6 8 9

29

Walkthrough Example

State 45: Agent has moved east

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 5,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a
closed-door cell.

/
Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}
!
5
4 Wall | wall | wall | wall | wal Closed
oor
Exploratory Plan is: y 3 Wall
I—move-east
2—moeve-east 2 | wall | wall | wall | Wall Wall
3—move-east
4—move-east 1 Agent Wall
5. move-east
1 2 3 4 5 6 8 9
6. move-east X

7. move-east

30

Walkthrough Example

State 46: Agent failed to move east

Domain model:
move-east(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(east ?X2 ?X1)
(not (wall ?X2 ?Y1)))

move-west(?X1, ?Y1):
pre: (and
(agent-at ?X1, ?Y1)
(west ?X2 ?X1))

Agent Location: 5,1

A 4

This LLC represents the context where an
agent is in a tile that shares a X-value with a
closed-door cell.

/
Exploratory planning chooses the following goal:
{(agent-at ?X1, ?Y1), (closed-door ?X1, ?Y2)}
!
5
4 Wall | wall | wall | wall | wal Closed
Exploratory Plan is: y 3 Wall
I—move-east
2—moeve-east 2 | wall | wall | wall | Wall Wall
3—rrove-east
4—move-east 1 Agent Wall
5. move-east (FAIL)
1 2 3 4 5 6 8 9
6. move-east X

7. move-east

31

Outline

* Research Problem

e Lifted Linked Clause (LLC)
* Self-Directed Exploration
* Empirical Results

* Summary

Experimental Setup

 Domain model with no preconditions and effects for actions
* Predicates and action signatures are given

* 24 actions:
* 8 cardinal directions
e 8 actions to open door in each cardinal direction
» 8 actions to close door in each cardinal direction

e Static and fully observable scenarios
* Pre-processing step: generate all LLCs up to a certain size (n=2) for each agent

* Three agents:
 Random
* Explore Local: Choose action taken the least among all currently active LLCs
* No planning, only choosing next action
* Planning:

* Same as explore local, except when current state is fully explored -> attempt planning to reach
state with an active LLC for which no actions have been tried

Experimental Setup

* Two scenarios inspired by DCSS

5
4 wall | wall | wall | wall | wall Closed
Door
3 Wall
2 | wall | wall | wall | wall Wall
1 | Agent Wall
1 2 3 4 5 6 8
X
Scenario 1

Agent Wall Wall
Wall Wall
Wall Wall Wall
wall | wal | ©osed
Door
Wall
1 2 3 4 5
X
Scenario 2

34

Hypotheses

[H1] All agents will be able to learn some action preconditions from
collected interactions.

[H2] The Explore Local Agent will learn better preconditions for more
actions than a baseline agent taking only random actions.

[H3] The Explore Local Agent will explore more of its environment than
the random baseline agent.

[H4] The Planning Agent will learn better preconditions for more
actions than both Explore Local Agent and the random baseline agent.

[H5] The Planning Agent will explore more of its environment than
both the Explore Local Agent and the random baseline agent.

Results: Exploration of Scenario 1

Number of Unique Tiles Visited

Unique Tiles Visited per Action Selection Approach

30

25 A

20+

15 ~

10 ~

=== Random gl
= Explore Local
= Planning

e

T T T T T T T T
500 1000 1500 2000 2500 3000 3500 4000
Number of Actions

Average performance over three trials

36

Results: Exploration of Scenario 2

Unique Tiles Visited per Action Selection Approach

14
== Random
= Explore Local |-|

12 1w Planning

=
u
=
0]
:; 10 1 F
i
a
= [——
g 87
=4
=
=2
T 6
e
4]
0
E
Z 49
2_
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Actions

Average performance over three trials

F1 Scores per Each Action Model

 Special evaluation required

e Cannot just compare action models learned vs. static hand-coded “correct”
models — what if agent learns a valid action model that’s different?

* Example:
move-east(?X1, ?X2): move-east(?X1, ?X2):
pre: (and pre: (and
(agent-at ?X1, ?Y1) — (agent-at ?X1, ?Y1)
(east ?X2, ?X1) (west ?X1, ?X2)

(not (wall ?X2, ?Y1))) (not (wall ?X2, ?Y1)))

Careful Evaluation of F1 Scores

* Need to create test scenarios, compare resulting state from learned
action against ground-truth action

W W |W|W|W W W W[W|W W W|W| W|W W i W| W W,|Ww
W | A W w A w W A | W w w
w CcD W w Ccb W W CcD w W Ch| A | W
w W W W W w W w
W W |W|W|W W W |W|W|W W W|W| W|W W W| W W|W
W W |W|W|W W W | W[W|W W W|W| W|W W W| W W|W
w W W W W w w w
W | A |CD W W CD W W CcD w W CD w
w W W | A W W A w W A | W
W W | W|W|W W W| W[W|W W i W|W| W W W W| W W|W

16 scenarios used to test all actions (8 open-door test scenarios not shown)

100

00
00
00

100
100
100
100

100
100
100
100

41

65
54
0

x
g

100 | 97

0
0
0

0

MovVe_swW
move_se

close_door_.w
close_door_e
close_door_n
close_door_s

close_door nw | 0

close_door_ne
close_door_sw

F1

Results

Score of Each

Action —

Scenario 1

0
0

OPED_dO{EI' _SW

close_door _se
open_door_w
open_door_e
open_door_n
open_doornw | 0
open_door_ne

open_door_s

:
a8

=

2 2

Sk

Results: F1
Score of Each
Action —
Scenario 2

2BEE
2RE2 LY L

Eg:g:::::::&gag::ac:ggﬁﬁggﬁg"|:|

=

c¥ococoocofooocooRRBERrRYILRIAE
SRR

cREocRFoLoFroZ

P
90
94
90
100
75
88
100
94 | 100 | 97
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

C O oo oo o oo oo oo
KollcocoooXogoococoodBRRSE SRR

c oo ocoooCcooooc o oo

e
e
[
(=

Outline

* Research Problem

e Lifted Linked Clause (LLC)
* Self-Directed Exploration
* Empirical Results

* Summary

summary

e Strong evidence for hypotheses H1 and H5:

* [H1] All agents will be able to learn some action preconditions from collected
interactions.

* [H5] The Planning Agent will explore more of its environment than both Explore
Local Agent and the random baseline agent.

e Support for hypotheses H2, H3, H4, however not strictly true:
* [H2] The Explore Local Agent will learn better preconditions for more actions than a
baseline agent taking only random actions.
e Scenario 2 —random learned a better model for ‘move_se’ than explore_local

* [H3] The Explore Local Agent will explore more of its environment than the random
baseline agent.

* Only after enough actions taken

e [H4] The Planning Agent will learn better preconditions for more actions than both
the Explore Local Agent and the random baseline agent.

* True for most actions

Summary (2)

* Solution to guiding planning and acting with
incomplete action model

e Lifted Linked Clause (LLC) is a potential approach to
representing contexts to guide exploration

* Potential scaling issues, small LLCs are still useful

e Exploratory planning increases accuracy of learning
action model over time vs. baselines

* Many avenues for future work:
* Learning goals vs. achievement goals
* Dynamic environments
* Partially observable environments
* Integrate into a larger cognitive architecture

Additional Material

References

. Iilgegter, T., & Stone, P. (2017). Intrinsically motivated model learning for developing curious robots. Artificial Intelligence, 247, 170-

* Hayes-Roth, F. and McDermott, J. (1978). An interference matching technique for inducing abstractions. Communications of the
ACM, 21(5):401-411.

* Law, M., Russo, A., & Broda, K. (2015). The ILASP system for learning answer set
* programs. https://www.doc.ic.ac.uk/~mI1909/ILASP.

* Sequeira, P.,, Melo, F. S., & Paiva, A. (2011, October). Emotion-based intrinsic motivation for reinforcement Iearnin% agents. In
International Conference on Affective Computing and Intelligent Interaction (pp. 326-336). Springer, Berlin, Heidelberg.

. \1/e|(’§$ 513/3 %980). Multilevel counterfactuals for generalizations of relational concepts and productions. Artificial intelligence,
4(2): -164.

* Watanabe, L. and Rendell, L. A. (1990). Effective generalization of relational
descriptions. In Proceedings of the 8th National Conference on Artificial
Intelligence, pages 875-881.

. Wan?, X. (1995). Learning by observation and practice: An incremental ap)oroach
for planning operator acquisition. In Proceedings of the 12th Internationa
Conference on Machine Learning, pages 549-557.

Lifted Linked Clause (LLC)

We say an LLC having n terms is of
size n.

An upper bound C on the number of

possible LLCs for a given size n is:

(M! X 2 ><|P|>
C =
n

Given P predicates in a domain, and
M maximum number of arguments
for a single predicatep € P

n (LLC size) Upper Bound on LLCs
5 2 190
5 2 1,140
5 2 4,845
10 2 780
15 2 34,220
20 2 1,581,580
10 3 7,140
15 4 61,949,040
20 5 22,090,762,558,800

47

Learning Task

Brave Induction
[Sakama, Inoue 2009],
XHAIL [Ray 2009],
ASPAL [Corapi et al 2011],

RASPAL [Athakravi et al
2013],

ILED [Katzouris 2015],
Inspire [Schiiller 2016]

Cautious Induction
[Sakama, Inoue 2009]

Induction of Stable Models
[Otero 2001]

Induction from Answer Sets
[Sakama 2005]

LAS [Law et al 2014]

LOAS [Law et al 2015]

Context-dependent LOAS
[Law et al 2016]

Normal Choice
Rules Rules

v/

S SN XS XX
S NS NS 8 ¥ <

v/

X

SN N NSNS % %

Classical ,

vV vV

S NN S %

X

S N XS X ¥ <

Weak

Constraints

X

S N N ¥ X X X%

X

S NS % X X X X%

Algorithm for

optimal solutions

<

S 8 X 8 8 X & AN H

SN SN NSNS ¥ 8 %

PDDL for Scenario 1

(define (problem dcss)
(:domain dcss)
(:objects
x1 x2 x3 x4 xb x6 x7 x8 x9 - xcoord

c y1l y2 y3 y4 y5 - ycoord)
(:init
_ (agentat x1 y1) (wall x1 y2)
4 Wall | Wall | wall | wall | Wall Door (north y2 y1) (wall x2 y2)
(north y3 y2) (wall x3 y2)
y 3 wall (north y4 y3) (wall x4 y2)
(north y5 y4) (wall x2 y4)
2 | Wall | wall | Wall | Wall Wall (west x2 x1) (wall x3 F4)
(west x3 x2) (wall x4 y4)
1 | Agent Wwall (west x4 x3) (wall x5 y4)
(west x5 x4) (wall x6 y1)
1 2 3 4 5 6 7 8 9

(west x6 x5) (wall x6 y2)
(west x7 x6) (wall x6 y3)

(a) Graphic Representation (west x8 x7) (wall x6 y4)
(west x9 x8) (cdoor x8 y4)))

(b) PDDL Representation

Agents Using LLCs

Generate all LLCs up to a certain size (n=2)
Determine all LLCs active in the current state
Track which actions are executed per LLC (if active)

B W

Use step 3 to inform action selection and goal selection
1. If in a state with a new active LLC, try out new actions

2. If fully state is fully explored w.r.t. actions, choose LLC that has never been
visited as new goal

