

Conclusion-Verified Analogical Schema Induction

Joseph A. Blass JOEBLASS@U.NORTHWESTERN.EDU

Kenneth D. Forbus FORBUS@U.NORTHWESTERN.EDU

Qualitative Reasoning Group, Northwestern University

Abstract

Learning general concepts from examples requires synthesizing shared information from those ex-
amples. The way in which the examples are compared and synthesized affects what concepts are
learned through a generalization process. We present Conclusion-verified Analogical Schema In-
duction, a modified version of the Sequential Analogical Generalization Engine (SAGE). Conclu-
sion-verified Analogical Schema Induction (CASI) verifies that the mapping that will be used to
generalize solved cases would actually have been able to solve those same cases were one of the
conclusions unknown. This increases the likelihood that generalizations learned will include con-
ceptual information supporting the desired conclusions. We evaluate CASI on the domain of legal
torts, a complex domain where cases often are highly dissimilar to each other.

1. Introduction and Background

Learning useful concepts from examples is a core area of research in Artificial Intelligence. AI
researchers have undertaken an enormous variety of approaches to this task: demonstrating how to
solve tasks to robotic learners (Chernova & Thomaz, 2014), learning logical definitions from in-
stantiated relational examples (Quinlan, 1990), learning tasks from observations of human perfor-
mance (Gulwani et al., 2015), learning hierarchies of concepts using Bayesian probabilistic reason-
ing (Grant et al., 2019), using near-misses to strengthen category boundaries (McLure et al., 2015,
Rabold et al., 2022), learning event schemas from graphical event representations using neural net-
works (Jin et al., 2022), and more. Many of the recent advances underlying Deep Learning can be
understood as using examples to learn underlying concepts (Lecun et al., 2015).
 In some cases researchers might have few preconceived opinions about the concepts underlying
their data and the purposes for which those concepts can be used – they toss their data into a ma-
chine learning algorithm and see what concepts the algorithms reveal (Bengio, 2012). In other cases
the researchers have specific concepts in mind, and use supervised learning to learn what underlies
those concepts (Krizhevsky et al., 2012). This is particularly useful when developing systems de-
signed to reason about and solve problems: researchers might know that particular concepts are
core to a problem domain, but rely on their learning algorithm to carve the boundaries of those
concepts for generalized reasoning purposes (Fitzgerald et al., 2019).
 This paper presents a modification of the Sequential Analogical Generalization Engine (SAGE;
Kandaswamy & Forbus, 2012), a system that uses analogical reasoning to generate schemas from
examples that share underlying structures. SAGE’s design is inspired by psychological evidence
regarding how humans learn concepts through comparison. SAGE learns concepts by positive
examples, in the form of structured, relational examples, added incrementally. As usual with struc-
ture-mapping (Forbus et al., 2017), higher-order relations help indicate which lower-order relations

© 2022 Cognitive Systems Foundation. All rights reserved.

are relevant to conclusions, and the mapping of deeper structure drives the quality of the match.
But what about when the relevant higher-order structures that encode the causal relationships within
a case are missing? Not every example is fully explained, when provided by an informant who
assumes background knowledge, or when the example comes from observations. Another common
problem in concept learning is when cases are dissimilar at the surface level or share confounding
similarities. When a specific form of conclusion is available in a concept learning task, the Con-
clusion-Verified Analogical Schema Induction (CASI) method introduced here can be useful to
overcome both these obstacles. CASI modifies how SAGE evaluates whether a mapping is a good
candidate for generalization by replacing its reliance on the mapping’s similarity score with a con-
sistency check that scrutinizes the mapping. Though SAGE is a model of human analogical gener-
alization and concept learning, CASI’s modified algorithm is not presented as such a model.
 We next review the structure-mapping models we use, introduce CASI, describe two experi-
ments, and close with discussion and future work.

2. Structure Mapping

Analogy is an important tool in human conceptual learning (Christie & Gentner, 2010). Compari-
son of similar cases invites abstraction and helps us discern the principles underlying common
cases (Gentner et al., 2009). According to Structure Mapping Theory (Gentner 1983; Gentner &
Smith, 2013), analogical reasoning proceeds by first finding an alignment, or shared relational
structures, between two mental descriptions of cases. Inferences are then drawn by projecting enti-
ties present in one case into the other. The Structure Mapping Engine (SME) (Forbus et al., 2017)
is a computational model of analogy and similarity based on Structure Mapping Theory. SME takes
in two structured, relational cases, a base and a target, and computes up to three mappings between
them. Each mapping is composed of the set of correspondences between entities and expressions
in the cases, candidate inferences projected from one case to another, and a similarity score that
grades the quality of the match. The similarity score can be normalized according to the size of the
base or target to assess how much of a case participates in a mapping.
 Running SME across every case in memory would be prohibitively expensive and is cognitively
implausible given the scale of human memories. MAC/FAC (Forbus et al., 1995) is a model of
analogical retrieval inspired by evidence on how humans retrieve cases from memory. MAC/FAC
takes a probe, a case like those used by SME, and a case library of other such cases. MAC/FAC
uses the probe to retrieve one or more cases which are approximately most similar to the probe.
MAC/FAC proceeds in two stages. First, it efficiently computes dot products between content vec-
tors of the probe and each case in the case library. Content vectors are a compact representation of
the entity types and relations of a case. This first step provides a fast, coarse measure of similarity
between the probe and the cases in memory. Up to the three most similar cases are passed to the
second stage, in which SME calculates mappings between each retrieved case and the probe.
Again, up to three cases with their mappings are returned. At each stage fewer than three cases
might be output if the second or third are much lower in score than the first.
 SAGE (Kandaswamy & Forbus, 2012) performs analogical generalization. Each concept is rep-
resented by a generalization pool (gpool), a case library that contains generalizations and outliers
(i.e. ungeneralized examples). When a case arrives, SAGE uses MAC/FAC, with the new case as
the probe, to retrieve the most similar cases from the gpool. Each gpool has an assimilation thresh-
old. If the similarity score from the top mapping is above that threshold, the case is assimilated
into what is retrieved. If not, it is added to the gpool as an outlier. Outliers might subsequently be
generalized with future cases. SAGE can also make use of analogy control predicates that require

correspondences between expressions or entities in the cases, or that require a particular expression
to participate in the mapping (without specifying the expression to which it must correspond).
 SAGE generalizations include all facts from the cases underlying the generalization. Correspond-
ing facts are combined, with non-identical corresponding entities replaced by abstract entities. Each
fact is assigned a probability that reflects the frequency with which it was present in the assimilated
cases. For example, a fact with probability 1/3 was present in one third of cases assimilated into
that generalization, while a fact with probability 1 was present in all the cases and participated in
each of the mappings. These probabilities are updated each time a new case is assimilated. Finally,
when reasoning with generalizations SAGE uses a probability cutoff, such that only facts above a
certain probability are put into the generalization’s case for SME mappings. That means that facts
idiosyncratic to individual cases are discarded when doing analogical reasoning against the gener-
alization of those cases. Thus, as the number of assimilated cases grows, the generalization becomes
more representative of its constituents’ shared structures.

3. Conclusion-Verified Analogical Schema Induction

SAGE’s basic function relies on SME’s computation of similarity to discern the proper basis around
which to build generalizations. SME generates the mapping between the new case and the case
retrieved by MAC/FAC, and if the mapping score is sufficiently high, the mapping is used to as-
similate the new case into the existing generalization (or to form a new generalization if MAC/FAC
retrieved an outlier). Analogy control predicates allow a certain amount of fine-tuned control over
the mapping generated, for example by indicating that specific expressions in the base and target
cases must map to each other, or that some expression in the case(s) should be mapped. There are
circumstances, however, where SME may be led astray by distractor facts shared across cases.
Furthermore, SME’s similarity score is driven by shared higher-order structures within cases, i.e.,
statements that take other statements as arguments, such as causal relationships and constraining
relations. When those higher-order structures are missing from the case representations, SME may
assign cases a similarity score that is so low as not to be useful as a metric for determining whether
cases should be assimilated. However, just because cases do not share the higher-order structures
that are the most significant contributor to SME’s similarity score does not mean that no good
schemas can be formed from such cases, only that SME may be unable to detect where those good
schemas might come from. Under those circumstances, if SAGE is to learn useful information it
will require alternative criteria for when a mapping should be used for generalization.
 Imagine one wants to learn about a principle and has a set of cases illustrating it. Crucially, the
principle is unknown: the facts relevant to the principle are assumed to be present in the case, but
the higher order structure tying some of those facts to the conclusions are missing. Each case has
an outcome, and it is understood that the outcome is derived from the operation of the unknown
principle over other facts of the case. The goal is to isolate the facts consistently associated with
the outcomes, even if the specific principles that explain why those facts and outcomes are associ-
ated are unknown. By identifying those patterns of facts across a series of cases, the facts associated
with particular conclusions – the facts that illustrate the unknown principle – can highlighted. The
goal is to build generalizations that will allow the system to understand future cases relying upon
that principle, cases whose conclusions – unlike those of the training cases – are unknown.

 The training cases, though potentially missing the explanation linking the facts to the outcomes,
all have the information of what outcome was associated with which set of facts. We call these

Table 1. Two cases from our dataset (case text simplified from original)

 Case 1: Trout v Bank of Belleville Case 2: Conklin v. Newman

C
as

e
T

ex
t

The defendant is a bank. The bank has a parking

lot. The parking lot's exit was blocked with a

chain. The chain was hard to see at night. The

plaintiff was riding his motorcycle at night. The

plaintiff drove into the bank's parking lot. The

plaintiff collided with the chain. The plaintiff died.

The plaintiff's father owned land. A fence divided the land into

two pieces. The plaintiff lived on one piece of the land. The

defendant lived on the other piece of the land. The fence was

on both pieces of the land. Then the plaintiff's father gave her

her piece of the land. Then the defendant destroyed the fence.

Then the plaintiff's father died.

P
re

d
ic

at
e

L
o
g
ic

 R
ep

re
se

n
ta

ti
o
n
s

(e
x
tr

ac
te

d
 b

y
 C

N
L

U
) (deathOf die68193 plaintiff67673)

(defendants Trout_v_Bank_of_Belleville

defendant66716)

(degreeOfDifficulty see67334

(HighAmountFn LevelOfDifficulty))

(doneBy block67045 chain67121)

(doneBy have66867 defendant66716)

(driverActor ride67699 plaintiff67673)

(eventOccursAt ride67699 night67454)

(instrument-Generic block67045 chain67121)

(instrument-Generic collide68054

chain67121)

(isa block67045 ObstructionEvent)

(isa chain67121 Chain)

(isa collide68054 Collision)

(isa defendant66716 BankOrganization)

(isa defendant66716 Defendant)

(isa die68193 Dying)

(isa drive67891 TransportInvolvingADriver)

(isa exit66971 Exit)

(isa have66867 Possession)

(isa motorcycle67743 Motorcycle)

(isa night67454 Night)

(isa parking-lot66896 ParkingLot)

(isa plaintiff67673 Plaintiff)

(isa ride67699 TransportInvolvingADriver)

(isa see67334 VisualPerception)

(isa Trout_v_Bank_of_Belleville CourtCase)

(objectActedOn block67045 exit66971)

(objectActedOn collide68054 chain67121)

(objectActedOn have66867 parking-lot66896)

(objectFoundInLocation plaintiff67673

parking-lot66896)

(occursDuring see67334 night67454)

(performedBy drive67891 plaintiff67673)

(plaintiffs Trout_v_Bank_of_Belleville

plaintiff67673)

(possessiveRelation defendant66716

parking-lot66896)

(possessiveRelation parking-lot66896

exit66971)

(possessiveRelation plaintiff67673

motorcycle67743)

(primaryObjectMoving collide68054

plaintiff67673)

(to-Generic drive67891 parking-lot66896)

(topicOfIndividual see67334 chain67121)

(transporter ride67699 motorcycle67743)

(cardinality group-of-piece14864 2)

(comesFrom-Generic piece15433 land14512)

(deathOf die16855 father14430)

(defendants Conklin_v_Newman defendant15339)

(doneBy destroy17908 defendant15339)

(doneBy divide14674 fence14618)

(doneBy own14480 father14430)

(elementOf piece14864 group-of-piece14864)

(elementOf piece15433 group-of-piece14864)

(eventOccursAt destroy17908 piece14864)

(eventOccursAt destroy17908 piece15433)

(father plaintiff14417 father14430)

(fromAgent give18445 father14430)

(isa Conklin_v_Newman CourtCase)

(isa defendant15339 Defendant)

(isa destroy17908 DestructionEvent)

(isa destroy17908 (CausingFn DamageOutcome))

(isa die16855 Dying)

(isa divide14674 Parcellation)

(isa father14430 HumanFather)

(isa fence14618 Fence)

(isa give18445 GivingSomething)

(isa group-of-piece14864

SetOfTypeFn SeparatePhysicalPartOfObject))

(isa land14512 RealEstate)

(isa live15010 ResidingSomewhere)

(isa live15347 ResidingSomewhere)

(isa own14480 OwningSomething)

(isa piece14864 SeparatePhysicalPartOfObject)

(isa piece15433 SeparatePhysicalPartOfObject)

(isa plaintiff14417 Plaintiff)

(objectActedOn destroy17908 fence14618)

(objectActedOn divide14674 land14512)

(objectActedOn own14480 land14512)

(objectGiven give18445 piece14864)

(on-UnderspecifiedSurface fence14618 piece14864)

(on-UnderspecifiedSurface fence14618 piece15433)

(outputsCreated divide14674 group-of-piece14864)

(owns plaintiff14417 piece14864)

(parts land14512 piece14864)

(parts land14512 piece15433)

(plaintiffs Conklin_v_Newman plaintiff14417)

(possessiveRelation plaintiff14417 father14430)

(possessiveRelation plaintiff14417 piece14864)

(residence-Role live15010 piece14864)

(residence-Role live15347 piece15433)

(residents-Role live15010 plaintiff14417)

(residents-Role live15347 defendant15339)

(startsAfterStartingOf destroy17908 live15010)

(startsAfterStartingOf die16855 destroy17908)

(startsAfterStartingOf give18445 live15347)

(to-Generic divide14674 group-of-piece14864)

(toAgent give18445 plaintiff14417)

C
o

n
c.

(trespassOnPropertyByAction plaintiff67673

parking-lot66896 drive67891)

(trespassOnPropertyByAction defendant15339

land14512 destroy17908)

solved cases, with the particular piece of information that may be missing in future cases labeled
as the conclusion, that can be differentiated from all other case facts. (The conclusion must have a
form that can be prespecified so that CASI can recognize conclusions in the cases where they ap-
pear.) The goal is to learn from solved cases to reliably infer that conclusion when appropriate.
 Ordinarily one would trust SAGE to learn to extract the relationships between the problem facts
and the conclusions. But when the higher-order relationships between the problem facts and con-
clusions are not included in training cases, and especially when the cases contain distractingly sim-
ilar but irrelevant facts, SAGE does not always produce reasonable answers. While there is always
the risk of setting SAGE’s assimilation threshold too high (leading to too few generalizations) or
too low (leading to generalizations that do not capture useful information), we have found that in
at least one dataset of cases there is no sweet spot where relying on SME’s similarity score to
control assimilation is enough to get useful generalizations. Instead, a mapping to be used for gen-
eralization must be examined to determine whether it in fact captures the information that is being
used by SAGE to learn, before that mapping can be used for generalization.

To illustrate this, consider the domain of Tort Law, in which our experiments were conducted.
Under the law of Trespass, a person is liable for trespassing on another’s private property if the
first person was on the property without permission or excuse. But imagine we do not know that
principle. Instead, we are trying to build a schema of facts that illustrate the trespass rule, from
cases that contain a set of facts and the conclusion of whether those facts encode a trespass. Our
dataset contains 29 cases where one party trespassed on the property of another; the cases in Table
1 are taken from our dataset and are typical of the cases in it.

Unfortunately, neither of these cases contain higher-order structures, so they cannot share any
such structures. The required higher-order structures connecting the conclusion facts to the rest of
the facts in the case are too complex to be expressible using the current capabilities of the language
system that was used to translate the cases (Blass & Forbus, 2022). Because of that lack of shared
higher-order structure, SME generally scores the similarity of these cases quite low. In fact, if the
assimilation threshold is set even to 0.1 (a very low score), only 3 of the 29 cases in the dataset will
be assimilated together. And if it is set lower still (say, 0.01), generalizations are generated, but of
poor quality and do not capture the information that defines a trespass and that is shared across
many cases. There is no “sweet spot” between these scores. Why does this happen?

Examining these two cases, it should be clear to the reader that, from the perspective of trespass,
the proper analogs here for the trespassers are the plaintiff in Case 1 and the defendant in Case 2,
the proper analog for the property being trespassed upon are the parking lot and the land, and the
trespassees should be the defendant in Case 1 and the plaintiff in Case 2. But SME gets distracted
by the facts that both plaintiffs own something (in Case 1, a motorcycle, and in Case 2, a piece of
land), and by the presence of death. In particular, it gets distracted by multiple statements involving
a relation (like objectActedOn and possessiveRelation) and aligns things it should not align (Fig-
ure 1). Because the trespass statements are not aligned, if this mapping is used to create a general-
ization, the system will have learned nothing about trespass.

Perhaps all that is needed is simply to require that the trespass conclusions (the statements de-
scribing the trespass) correspond with each other? Unfortunately, that does not solve the problem

Figure 1: Default mapping between Case 1 and Case 2.

in these cases: SME will put those two facts—and therefore the entities in the specific conclusion
facts—in correspondence, without properly aligning the other statements involving those same en-
tities that explain why those entities play the role they do in the conclusion statement (Figure 2).
And having correctly aligned the plaintiff in Case 1 with the defendant in Case 2, but incorrectly
aligned the Death statements with each other, it cannot even align the role relations attached to the
Death statement, since doing so would violate SME’s 1:1 mapping constraint (by aligning the plain-
tiff in Case 1 – who is already aligned with the defendant in Case 2 – with the father in Case 2).
Thus this is a mapping that puts the conclusions into correspondence, but does not provide much
useful information about trespass.

In fact, while these two cases were chosen for illustration purposes because SAGE consistently
assimilates them together when using the lower assimilation threshold, they actually should not
generalize together, because SME will not generate a useful mapping from them for learning about
trespass. Trout should assimilate with an as-yet-unseen case, while our experiments suggest
Conklin is an outlier that should not assimilate with other cases in the dataset (at least, not without
rerepresenting the facts of the case). Unfortunately, the only way to prevent SAGE from generating
a generalization from them is to set the assimilation threshold sufficiently high that no other useful
generalizations are made either. Thus, when similarity scores are sufficiently low because of a lack
of higher-order structure shared across cases and because of shared distractor entities and relations,
SME’s similarity score becomes an ineffective standard by which to determine whether two cases
should be assimilated. That holds true even when the relevant information (the case conclusions)
are required to be mapped. In such a situation, will SAGE simply be unusable for datasets that have
these qualities?

Fortunately, this is not the case. We can use a variant of SAGE to construct useful generaliza-
tions by ensuring that a task-specific conclusion predicate plays a very specific role in the mapping
(described below). SME is perfectly capable of generating the mapping that both maps the conclu-
sion and those relevant statements, but it might not get a chance to, either because a higher-scored
mapping is used for generalization first, or (as we found in our experiment) the cases that should
be usefully generalized together cannot be because they have already been assimilated with other
cases in ways that occlude the useful information about those cases. In other words, in tasks where
there is a known type of conclusion to be drawn when learning a concept, the algorithm can use
that constraint to search for the most productive prior generalizations or outliers for assimilating a
new example. That is what CASI does.
 Conclusion-verified Analogical Schema Induction (CASI) is essentially a consistency check that
replaces SAGE’s reliance on an assimilation threshold when learning in tasks where there is a
known type of conclusion to be drawn. The algorithm is presented in Figure 3. CASI works by
withholding the conclusion from the probe case (step 1) when performing an analogical retrieval
for generalization (step 3). It then checks whether that conclusion is among the candidate inferences
from the retrieved mapping (steps 4-7). That is, it checks whether the mapping from the retrieved
(solved) case to the probe’s case facts without the conclusion would allow SME to generate the
probe’s withheld conclusion. The held-out conclusion thus verifies the mapping. If the mapping

Figure 2: Mapping between Case 1 and Case 2 with Required Correspondence of Conclusion Fact.

generates the held-out conclusion, the conclusion is reintegrated into the probe case and the map-
ping, and SAGE uses the mapping to assimilate the probe with the retrieved case (steps 8-9). (If
there is more than one conclusion statement, CASI will use the first mapping that generates one of
them.) Otherwise, it examines another mapping for the same retrieval, followed by additional re-
trievals, (steps 10-11) until it finds one that works or runs out of candidates.
 The key idea is to ensure that the mapping used to generalize example cases captures the con-
nections between the case facts and the case conclusions, connections that might be implicit and
only revealed across multiple cases governed by the same principle. This is using analogy for in-
ductive reasoning: SME constructs a mapping that explains what is common across cases, and
CASI verifies that the mapping in fact can explain that which the system is meant to learn. Thus
CASI checks whether the facts SME has identified as shared can be used to project the conclusions
to the cases in question. The reason this works is not because CASI necessarily forces SAGE to
construct and use a good mapping, but rather that CASI will lead SAGE to reject assimilating cases
with useless mappings, leaving those cases available to be assimilated with once the right future
case (and mapping) comes along.
 There is to our knowledge no evidence that humans engage in this kind of reasoning when learn-
ing concepts, though it is not implausible that they might. Humans can inspect the analogies they
form between cases and the inferences they draw from those analogies, and they might well do so
when they use those same analogies to learn about concepts. But CASI was developed to achieve
more accurate performance on a machine learning task, not to implement a model of human cog-
nition or make predictions about human performance. As such, we evaluate its performance against
baseline SAGE and against a large-language model’s performance, rather than against human data.

Figure 3: the CASI Algorithm.

Given case c, gpool g, conclusion predicate cp:

CASI(c, g):

 1. Probe pc = nonConclusionFacts(c)

 2. Conclusions SC = {conclusion(c)} [each of form cp(X)]

 3. Reminding r = reminding(pc, g)

 4. If r:

 5. For mapping m in r:

 6. For sc ∈ SC:

 7. If sc ∈ candidate-inferences(m):

 8. RetrievedCase retr = baseOfMapping(m)

 9. doSageGeneralizeWithMapping(c, retr, m)

 Else: [do nothing; go to next conclusion]

 Else: [do nothing; go to next mapping]

 If no mapping:

 10. CASI(c, caseLibMinus(g, retr)

 11. [perform another reminding sans retrieved cases]

 Else: [no retrieved cases, add c ungeneralized]

4. Experimental Validation

4.1 Experiment 1: Examining Generalizations

 CASI was evaluated on Trespass, Assault, and Battery cases from the Illinois Intentional Tort
Qualitative Dataset (Blass & Forbus, 2022). This dataset of historical Illinois cases includes the
original statement of case facts, syntactically simplified statements of those facts, machine transla-
tions of the simplified facts into predicate logic using the Companions Natural Language Under-
standing system (Tomai & Forbus, 2009), predicate logic representations of case conclusions, and
information about the cases such as the decision year, the court, the legal claim at stake, and whether
the claim was successful or not. A positive case is one where the legal claim is found to have
occurred, i.e., one of the parties trespassed; a negative case is one where the claim failed. Our
experimental validation only used CASI to create generalizations from positive cases, because in
the legal domain only positive cases should be expected to have relevant information in common.
That is, positive cases are the ones that encode the events in which the claim at issue happened, and
often negative cases only have in common the fact that they are not positive cases (unless there is
a particularly common set of facts under which people repeatedly bring failing legal claims). While
negative cases can be useful for delineating category boundaries (McLure et al., 2015), using neg-
ative cases in this way was not a part of our initial experiments for CASI. In all, CASI was tested
on 29 positive cases in Trespass, 12 positive cases in Assault, and 30 positive cases in Battery.
 CASI was first tested in comparison to the traditional method of using SAGE, with a match
constraint to ensure that a legal case conclusion participated in the mapping. That is, the control
condition involved feeding cases into SAGE as usual and letting SAGE pick the best mapping with
which to generalize, provided the mapping included an expression correspondence that mapped the
conclusion fact of the probe.1 The experimental condition used the CASI algorithm as described
above in Figure 3. Cases were assimilated within gpools specific to the case doctrine (i.e., there
was one gpool for Trespass cases, another for Assault cases, etc.). Cases were given to both algo-
rithms in the same order, a hand-generated ordering designed to group like cases together. This
manual ordering was designed to help SAGE and CASI find the best generalizations they could, to
make those generalizations as useful as possible for automated legal reasoning. (Our automated
legal reasoning results are reported in Blass & Forbus (in prep), which also investigates using a
random order of cases).
 One of the motivations for developing CASI is that legal cases that feature the same claim may
be extremely dissimilar, or similar in ways that can be distracting to SAGE. We therefore tested
both algorithms using assimilation thresholds of 0.01 (a low standard of similarity reflecting the
dissimilarity between cases)2 and of 0 (relying on CASI’s conclusion check in the experimental
condition and the mapping constraint in the control condition rather than SME’s similarity score).3
CASI’s consistency check is meant to replace reliance on SME’s similarity score, and we indeed
found that CASI using a threshold of 0 performed better than when using any threshold at all.

1 We do not require that the solution statements in the probe and the retrieved case map to each other because some cases have more
than one solution statement. SME’s 1:1 mapping constraint prevents any statement in a case from corresponding to more than one
statement in the other. When mapping a case with two solutions to a case with one, requiring solutions to correspond would involve
arbitrarily deciding which solutions should correspond (or trying to break the 1:1 mapping constraint, thus producing no mapping).
Requiring only that the probe’s solution facts be mapped allows SME the flexibility of mapping as many such facts as it can, and if not
all of them can be mapped, picking the best one(s) for the mapping.
2 Pilot investigation found that SME assigned almost no pairs of cases a normalized similarity score of even 0.1, leading us to use a very
low similarity threshold in order to produce any generalizations at all.
3 An assimilation threshold of zero has been used to produce joint probability tables for other ML algorithms (Halstead & Forbus, 2005).

Similarly, when using a threshold of 0, SAGE will assimilate all cases into a single useless gener-
alization. We therefore only report results of CASI using a threshold of 0 and SAGE using a thresh-
old of 0.01. A probability cutoff of 0.6 was used, meaning that when a case is constructed for
analogical reasoning from a generalization, facts below 0.6 probability are excluded from the case.
We selected a probability cutoff of 0.6 as a sweet spot, high enough to include only facts present
in a majority of cases in a generalization (to isolate the facts core to a legal claim), but low enough
to include facts present in two of three cases in three-case generalizations.
 The two approaches were evaluated by examining the generalizations generated by each ap-
proach in each doctrine. We looked at the facts in each generalization that were above the proba-
bility cutoff (i.e., the facts SME would put into a case constructed from that generalization) to see
whether they contained the facts relevant to the legal doctrine at issue. To avoid the possibility of
user bias, we pre-generated the facts necessary to find the legal claim. We verified whether those
facts were in a generalization, rather than make a judgment call as to whether the generalization
was somehow “sufficient.” The facts relevant to each doctrine are presented in Table 2. Note that
our representation system uses neo-Davidsonian event representation, so the sentence “Pat walked
into the house,” for example, would be represented with three statements: one defining a walking

Table 3. Results

M
et

h
o

d

Doctrine # Genl’ns
Produced

Un-
genl’d
Cases

% Genl’d
Cases

Correct
Genl’ns

Partial
Genl’ns

False
Genl’ns

Proport.
Correct
Genl’ns

Proport.
Partial+
Genl’ns

C
A

S
I

Trespass 9 5 83 4 2 3 0.444 0.667

Assault 3 3 75 2 1 0 0.667 1

Battery 6 6 80 2 2 2 0.333 0.667

S
A

G
E

 Trespass 5 14 52 0 1 4 0 0.2

Assault 3 2 83 2 0 1 0.667 0.667

Battery 6 12 60 2 1 3 0.333 0.5

Table 2. Facts sought in each generalization.

Doc-

trine

Facts Necessary to Infer Doctrine # Necessary

Facts

Tres-

pass

(1) Trespassee owns property; (2) Trespasser is on property OR

(a) Trespasser owns an object AND (b) the object is on the

property; (3) The trespassing event is done by the trespasser OR

by the trespasser’s object; (4) The trespassing event brings the

trespasser or the trespasser’s object onto the property.

4-5

Assault (1) A threat occurred; (2) The threat was performed by the as-

saulter; (3) The threat was against the assaultee.

3

Battery (1) A touch occurred; (2) The touch was offensive OR the touch

was harmful; (3) The batterer performed the touch; (4) The vic-

tim was the person touched.

4

event, one identifying Pat as the doer of that event, and one defining the event as being into the
location of the house (plus statements declaring the house to be a house, and Pat to be a human).

Generalizations were coded into three categories: a correct generalization contained all the nec-
essary facts; a partial generalization contained all but one necessary fact; and a false generalization
was missing more than one necessary fact. The data are reported in Table 3.

CASI outperforms SAGE on trespass cases. Indeed, SAGE was essentially unable to learn useful
generalizations from trespass cases. Moreover, the proportion of generalizations that are correct or
partially correct using CASI substantially exceeds those using SAGE. And closer examination re-
vealed that the missing high-probability statement in many of the partial generalizations using
CASI was the role relation indicating the perpetrator of the action. An examination of those gener-
alizations revealed that these role relations often differed across cases (e.g., doneBy, performedBy,
bodilyDoer, etc.). If these statements were re-represented to reflect their shared nature (i.e., they
connect an action to its actor), we hypothesize that many partial CASI generalizations would be-
come correct generalizations. On the other hand, SAGE generalizations in this domain often con-
tained high-probability facts that had nothing to do with the outcomes of cases, for example, that
the parties in both cases were walking dogs or driving a car at the time the tortious behavior oc-
curred. Experiment 1 suggests that in this domain, CASI will synthesize more cases together and
in a better way, resulting in more generalizations that will be potentially usable for reasoning by a
different system, such as the one described in Blass & Forbus (in prep). Whether this is the case is
the subject of Experiment 2.

4.2 Experiment 2: Using Generalizations

Constructing generalizations from cases is not done for its own sake, but so that learned concepts
can be used for some task. We examined the performance of a legal reasoning system that reasons
about legal cases using analogical generalizations, comparing its performance when using SAGE
versus CASI generalizations. These legal reasoning techniques are described and evaluated in
greater detail in Blass & Forbus (in prep, manuscript available upon request). We tested two legal
reasoning systems and compared them to a large-language model baseline. Both experimental sys-
tems involve holding out a case from the dataset, constructing generalizations from the remaining
positive legal cases (using either SAGE or CASI), then using the resulting generalizations to reason
about the held-out case.
 In Analogical Reasoning with Positive Generalizations (ARPG), the generalizations are applied
to the held-out case directly by analogy. As mentioned previously, in the legal domain cases illus-
trating the same legal principle can be highly dissimilar to each other except for the facts that define
that legal principle. When learning from such dissimilar cases, properly formed generalizations
ought only to encode those facts that define the claims at issue, with facts incident to individual
cases having low probabilities and therefore not participating in the case constructed from the
schema for analogical reasoning.4 ARPG relies on this idea by examining the candidate inferences
generated by a mapping from the generalization to the held-out case: if there is only one candidate
inference, in the form of a conclusion statement, then all other facts in the generalization—and thus
core to the legal claim—participate in the mapping and therefore have a corresponding fact in the

4 The assumption that generalization will strip away cases’ idiosyncratic facts is specific to the legal domain, where concepts underlying
legal doctrines are fairly abstract and can be grounded in a wide variety of different specifics. We do not assume in general that a schema-
building process will strip away all facts incident to cases illustrating some concept. Cases contain all sorts of facts that may be correlated
with a case’s outcomes, and if enough of the cases in a generalization share those correlates, then the generalization will as well.

held-out case. If the held-out case contains all facts core to the legal claim (other than the legal
conclusion), then the held-out case contains an instance of that legal claim being met. On the other
hand, if there are candidate inferences in addition to one for the legal conclusion, then there are
facts present in the generalization that are not present in the held-out case. These missing facts
correspond to what legal facts would be required for the held-out case to be a positive example of
the legal claim in question. ARPG thus concludes whether a legal case is positive or negative simply
by counting the extra candidate inferences: if the only candidate inference is the legal conclusion,
then ARPG concludes that the case is a positive instance; if there are extra inferences besides the
conclusion, it concludes that the case is a negative instance.5 (ARPG only reasons with generaliza-
tions because ungeneralized cases will contain extra facts and therefore generate many candidate
inferences.)
 We tested ARPG using Precision@6, meaning the system checked that it generated the correct
answer in the first six mappings it tried. We did this to separate the system’s ability to generate the
proper answer from its ability to do so using the first mapping from its first retrieval, that is, to
separate the system’s reasoning ability from its ability to retrieve the right case for reasoning on
the first try. (Given the low SME similarity scores when comparing cases in this dataset, the re-
trieval task poses its own problems and is its own area of research.) For our experimental validation
we also ran several conditions varying the number of additional candidate inferences ARPG would
tolerate before concluding that a case was negative. The claim that legal generalizations should
encode only facts relevant to the legal claim at issue is a theoretical postulation, and the results of
experiment 1 demonstrated that these generalizations do not yet perfectly encode the legal claims
at issue. The generalizations often contained extra facts incidental to the legal claim that we theorize
would fall away with more cases assimilated, but that did not in our experiments. Therefore we ran
ARPG with a tolerance for 0, 1, and 2 extra candidate inferences, to compare its performance on
SAGE and CASI generalizations. Allowing extra candidate inferences acknowledges that there
may be facts incidental to a claim that participate in a generalization.
 We also compared SAGE and CASI generalizations using a technique called Reasoning with
Rules Learned from Generalizations (RRLG). RRLG constructs Horn clauses from generalizations
and uses those rules to reason about a case using backchaining. RRLG constructs its Horn clauses
by first replacing the generalized entities in the generalization with logical variables. It then extracts
the conclusion statement and installs it as the Horn clause’s consequent (conclusion predicates are
known, so conclusion statements are identifiable), and installs the other facts of the generalization
as antecedents of the Horn clause. RRLG filters out Horn clauses whose antecedents will not bind
all consequent variables. RRLG’s performance is evaluated by checking that it can correctly derive
legal conclusions in positive cases, and correctly fail to derive a legal conclusion in negative cases.
 We compared the performance of RRLG and ARPG to themselves when reasoning with legal
schemas created using SAGE versus when using CASI. (For a comparison of these reasoning tech-
niques relative to each other, see Blass & Forbus (in prep).) We also compared their performance
to that of legalBERT, a LLM BERT model specialized on legal cases. LegalBERT was not used to
develop legal schemas (or trained on those schemas); it was tested instead by turning each case into
a multiple-choice question by varying the original case conclusion (reversing the parties’ roles,

5 Again, extra candidate inferences might simply correspond to additional correlate facts, and not be evidence that some concept is
inapplicable. By hypothesis, the legal domain is an exception: because the facts common across legal cases in some domain operate at
a fairly high level of abstraction, they are less situationally-specific and will therefore will share fewer correlates. As a corollary, any
high-probability facts that survive in a sufficiently large generalization will also generally be present in the cases being reasoned about,
and therefore will not be proposed as candidate inferences. Thus if a sufficiently large legal generalization includes facts other than the
consequent or its antecedents, those correlative facts should generally also be in the new case being reasoned about, and so will not
impede ARPG’s performance.

reversing the legal outcome, and reversing both the parties and the outcome). Its performance was
assessed by prompting it with the simplified text description of a case’s facts and checking which
answer it selected. These results are presented in Table 4.
 Results were compared using proportion tests (all significance results reported at p<0.05). ARPG
with 0 additional CIs performed statistically the same with both CASI and SAGE forming the gen-
eralizations used. However, with 1 or 2 additional CIs tolerated, ARPG using CASI generalizations
performed significantly better than when using SAGE generalizations. Notably, these techniques
using CASI generalizations not only performed significantly better overall, but also specifically on
Trespass cases. This is consistent with the results from Experiment 1 showing that CASI made the
greatest improvement in schema learning for Trespass cases.
 RRLG did not perform significantly differently when using CASI generalizations than when us-
ing SAGE generalizations. However, there was a non-significant trend of RRLG performing better
on Trespass cases and on Positive cases when using CASI than when using SAGE, and performing
better on Assault and Battery when using SAGE than when using CASI. RRLG performed signif-
icantly better on negative cases when using SAGE than when using CASI (indeed, when using
SAGE, RRLG got all the negative cases correct).
 The trend in RRLG’s results, though not significant, support the claim that CASI leads to better
legal generalizations from this dataset. Consider RRLG’s evaluation: if a case is positive, then to
solve the case, RRLG must successfully fire one of the rules it learned from a generalization of
other cases in the same legal doctrine. But when a case is negative, successfully solving the case
means that all of RRLG’s learned rules failed to fire. Perversely, this means that the worse RRLG’s
rules are at encoding some legal doctrine, the better it will perform in close negative cases, even as
it performs worse on positive cases. Thus, the fact that RRLG using CASI’s performance trends
better on positive cases than when using SAGE, despite (and consistent with) its worse performance

Table 4. Results (Experiment 2). Numbers represent the number of cases correctly solved by each ap-

proach, in absolute terms and as percentages, and Precision. ARPG algorithms tested using Accuracy@6.

Technique Method Overall
Cases

Assault
Cases

Battery
Cases

Trespass
Cases

Positive
Cases

Negative
Cases

Pos
Prec.

Neg
Prec.

ARPG 0CIs CASI 35 (35%) 6 (35%) 10 (25%) 19 (44%) 7 (10%) 28 (97%) .778 .308

ARPG 0CIs SAGE 31 (31%) 6 (35%) 12 (30%) 13 (30%) 4 (6%) 27 (93%) .571 .290

ARPG 1CIs CASI 47 (47%) 9 (53%) 16 (40%) 22 (51%) 19 (27%) 28 (97%) .905 .354

ARPG 1CIs SAGE 33 (33%) 7 (41%) 12 (30%) 14 (33%) 10 (14%) 23 (79%) .588 .277

ARPG 2CIs CASI 58 (58%) 9 (53%) 22 (55%) 27 (63%) 30 (42%) 28 (97%) .938 .412

ARPG 2CIs SAGE 36 (36%) 9 (53%) 22 (55%) 13 (30%) 10 (14%) 26 (90%) .714 .302

RRLG CASI 47 (47%) 8 (47%) 21 (53%) 18 (42%) 23 (33%) 24 (83%) .793 .338

RRLG SAGE 48 (48%) 10 (59%) 24 (60%) 14 (33%) 19 (27%) 29(100%) .95 .363

legalBERT - 33 (33%) 9 (53%) 14 (36%) 10 (23%) 23 (33%) 10 (35%) .535 .175

on negative cases, is an encouraging signal that CASI’s generalizations are actually capturing rel-
evant information about the legal principles governing these cases.
 The observation that the quality of learned legal principles is better revealed by performance on
positive cases than on negative ones holds true for ARPG as well. And in ARPG with 1 or 2 extra
CIs, performance is not only significantly improved on Trespass cases when using CASI relative
to SAGE, but on positive cases as well.
 Even as performance was better on negative cases, precision was higher for positive cases: the
systems were more likely to be correct when identifying a positive case than a negative case. For
ARPG, precision was higher on both negative and positive cases when using CASI generalizations
than SAGE generalizations. For RRLG, precision was higher (and performance trended better)
when using SAGE generalizations.
 Comparing our techniques to the baseline, RRLG when using both CASI and SAGE significantly
outperformed legalBERT. ARPG when using SAGE was never able to significantly outperform
legalBERT. When using CASI, ARPG with 0 extra CIs allowed did not significantly outperform
legalBERT, but allowing 1 or 2 extra CIs allowed ARPG using CASI to significantly outperform
legalBERT.

5. Discussion, Limitations, & Future Work

These results demonstrate that Conclusion-verified Analogical Schema Induction can be an effec-
tive tool for learning generalizations of facts underlying concepts. Our experiments demonstrate
that while CASI cannot guarantee that perfect generalizations are formed from our dataset, the
generalizations formed capture useful conceptual information about the domain. More importantly,
where CASI had the greatest effect improving generalizations in Experiment 1 (i.e., on Trespass
cases), that improvement was reflected in improved performance when reasoning with those gen-
eralizations in experiment 2.
 CASI is similar to Inductive Logic Programming (Muggleton & De Raedt, 1994) in that it is a
form of inductive inference that operates over symbolic representations. Both involve examples
that start with irrelevant information which is stripped away. ILP always produces rules, whereas
analogical generalization produces probabilistic schemas and maintains outliers, both of which are
applied via analogy, rather than unification. ILP typically operates offline, in batch mode, whereas
analogical generalization is incremental. ILP uses both positive and negative examples in crafting
its rules, to maximize coverage of positive examples and minimize coverage of negative examples,
whereas CASI currently only uses positive examples. While SAGE has been extended to incorpo-
rate automatically-derived near-misses, and thereby benefit from negative examples (McLure et al
2015), extending CASI to use near-misses is an avenue for future work.
 CASI is only applicable in domains where the learning system knows ahead of time the specific
form of the conclusion facts within its training data, because CASI requires removing the conclu-
sion from a case during the first step of generalization. CASI has been shown to be useful when
learning from case sets that give SME little to grasp onto in guiding generalization, for example,
when causal information connecting case facts to outcomes is unknown, or in domains where cases
may be dissimilar to each other or share irrelevant distractor features. Legal reasoning is such a
domain because cases illustrating legal principles may be dissimilar in every way except for the
specific facts directly relevant to the purportedly illegal conduct. It remains to be seen whether
CASI leads to improved learning and performance in areas where SAGE is already an effective
learning system.

 The twin observations that CASI’s performance relative to SAGE is more improved for Trespass
cases than for Assault and Battery, and that CASI performs better with a threshold of 0 than 0.01,
supports the conclusion that CASI is most useful for use in datasets where SME will consistently
assign very low similarity scores to case comparisons. CASI’s improved performance with a thresh-
old of 0 suggests that even the vanishingly low assimilation threshold is an impediment to gener-
alizing useful cases in this domain. Furthermore, because of the nature of the dataset and how it
was generated, Assault and Battery cases contained more information specific to legal claims than
did Trespass cases. That is, Assault cases consistently represent legally relevant information with
the predicates threateningAgent and threatenedAgent, while legally relevant infor-
mation in Battery consistently involves an entity that is a TouchingEvent. In contrast, the facts
describing legally-relevant information in Trespass cases use role relations used to represent many
different kinds of events in the cases. These common and repeated role relations make cases dis-
tractingly similar to each other even as similarity scores remained low. For datasets such as this
one, SME’s similarity score is ineffective at signaling to SAGE when two cases should assimilate.
 CASI has a clear limitation relative to SAGE, which is in its efficiency. SAGE efficiently uses
MAC/FAC and SME to find mappings, and if the mappings score high enough, produces a gener-
alization. Using CASI requires scrutinizing each mapping’s candidate inferences, and potentially
going back to the well repeatedly until a mapping either produces the required conclusion or all
cases in the library have been exhausted (although it would be trivial to set a maximum number of
retrievals CASI could perform). This efficiency limitation is related to the fact that SAGE is a
model of how humans naturally learn concepts through comparison of similar cases, one that re-
produces human psychological results (Forbus et al., 2017), while CASI represents a substantially
more deliberative, conclusion-oriented problem-solving approach and is not a model of everyday
human reasoning. We were inspired by our domain: lawyers not only use analogies, but legal rea-
soning and argument is more deliberative and rigorous than the everyday learning that humans
naturally engage in. Determining whether CASI in fact tracks with deliberative human cognition is
one potential area of future work; another is to test CASI on more cases and more domains. It
remains to be seen whether CASI will only lead to improved performance in complex domains
featuring highly dissimilar cases such as legal reasoning, or whether it is a useful technique for
concept learning in general.
 Blass & Forbus (in prep) report detailed results of a study extending Experiment 2, using CASI
generalizations to reason about new legal cases. Curious readers are directed to that work.

Acknowledgements

This research was supported by the Computational Cognition and Machine Intelligence Program
of the Air Force Office of Scientific Research under award #FA9550-20-1-0091.

References

Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer learning. In
Proceedings of ICML workshop on unsupervised and transfer learning (pp. 17-36). JMLR
Workshop and Conference Proceedings.

Blass, J.A., & Forbus, K.D. (2022). The Illinois Intentional Tort Qualitative Dataset. In Proceed-
ings of the 2022 JURIX Conference on Legal Knowledge and Information Systems. Saar-
brucken, Germany.

Blass, J.A., & Forbus, K.D. (in prep). Analogical Reasoning, Generalization, and Rule Learning
for Legal Reasoning about Common Law Torts. (Manuscript available upon request.)

Chernova, S., & Thomaz, A. L. (2014). Robot learning from human teachers. Synthesis Lectures

on Artificial Intelligence and Machine Learning, 8(3), 1-121.

Christie, S., & Gentner, D. (2010). Where hypotheses come from: Learning new relations by
structural alignment. Journal of Cognition and Development, 11(3), 356-373.

Fitzgerald, T., Short, E., Goel, A., & Thomaz, A. (2019). Human-guided trajectory adaptation for
tool transfer. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems (pp. 1350-1358). Montreal, Canada.

Forbus, K. D., Ferguson, R. W., Lovett, A., & Gentner, D. (2017). Extending SME to handle
large‐scale cognitive modeling. Cognitive Science, 41(5), 1152-1201.

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC: A model of similarity‐based retrieval.
Cognitive Science, 19(2), 141-205.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science,
7(2), 155-170.

Gentner, D., Loewenstein, J., Thompson, L., & Forbus, K. D. (2009). Reviving inert knowledge:
Analogical abstraction supports relational retrieval of past events. Cognitive Science, 33(8),
1343-1382.

Gentner, D., & Smith, L. A. (2013). Analogical Learning and Reasoning. In D. Reisberg (Ed.),
Oxford Library of Psychology (pp. 668-681). New York, NY: Oxford University Press.

Grant, E., Peterson, J.C., & Griffiths, T. (2019). Learning deep taxonomic priors for concept

learning from few positive examples. In Proceedings of the 41st Annual Conference of the Cog-
nitive Science Society (CogSci) (pp. 1865-1870). Montreal, Canada

Gulwani, S., Hernandez-Orallo, J., Kitzelmann, E., Muggleton, S.H ., Schmid, U., & Zorn, B.
(2015). Inductive programming meets the real world. Communications of the ACM, 58(11), 90-
99.

Halstead, D. T., & Forbus, K. D. (2005). Transforming between propositions and features: Bridg-

ing the gap. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI)
(pp. 777-782). Pittsburgh, PA.

Jin, X., Li, M., & Ji, H. (2022). Event Schema Induction with Double Graph Autoencoders. In
Proceedings of the 2022 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (pp. 2013-2025). Seattle, WA.

Kandaswamy, S. and Forbus, K. (2012). Modeling Learning of Relational Abstractions via Struc-

tural Alignment. Proceedings of the 34th Annual Conference of the Cognitive Science Society
(CogSci). Sapporo, Japan.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6), 84-90.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

McLure, M., Friedman, S., & Forbus, K. (2015). Extending analogical generalization with near-

misses. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (pp. 565-571).
Austin, TX.

Muggleton, S. & De Raedt, L. (1994). Inductive Logic Programming: Theory and Methods. Jour-
nal of Logic Programming 19(20), 629-679.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5(3), 239-

266.

Rabold, J., Siebers, M., & Schmid, U. (2022). Generating contrastive explanations for inductive
logic programming based on a near miss approach. Machine Learning 111(5), 1799-1820.

Tomai, E., & Forbus, K. D. (2009, March). EA NLU: Practical Language Understanding for Cog.
Modeling. In Proceedings of the 22nd International Florida Artificial Intelligence Research
Society Conference, FLAIRS-22 (pp. 117-122). Sanibel Island, FL.

