
Advances in Cognitive Systems X (20XX) 1-6 Submitted X/20XX; published X/20XX

Transforming Environments to Evaluate Agent Adaptation

Dustin Dannenhauer DUSTIN.DANNENHAUER@PARALLAXRESEARCH.ORG

Noah Reifsnyder NOAH.REIFSNYDER@PARALLAXRESEARCH.ORG

AJ Regester AJ.REGESTER@PARALLAXRESEARCH.ORG

Matthew Molineaux MATTHEW.MOLINEAUX@PARALLAXRESEARCH.ORG

Parallax Advanced Research Corporation, Beavercreek, OH 45431 USA

Abstract
There is considerable recent interest in agents that can achieve goals and maximize performance
in transformed environments. The ability of an agent to maintain performance after an environ-
ment transformation is sometimes referred to as novelty robustness. However, current test beds for
open-world novelty require domain-specific processes to modify environment dynamics to achieve
transformations that both require and permit agent adaptation; these processes are time consum-
ing and biased. We introduce a novel, domain-independent environment transformation generator
that randomly selects meaningful transformations meeting these requirements. We claim that this
generator produces transformations that are learnable: i.e., after such a transformation occurs to
its environment, a suitable learning agent can improve its performance online in the environment
without human intervention. First, the generator creates permutations of an existing environment
model, then it filters them to find those transformations that are relevant to, noticeable to, and con-
trollable by the agent. We report the following contributions: a domain-independent algorithm and
implementation for automatically generating environment transformations, an analysis of the space
of possible transformations, and experimental evidence that the transformations selected by our
generator are learnable.

1. Introduction

AI systems fail during deployment because real-world environments are unpredictable. The prob-
lem of responding to “unknown unknowns" that may crop up in an agent’s environment is large;
we refer to this as open-world novelty, and consider evaluating an agent’s response to it. Specif-
ically, this type of novelty concerns changes (or apparent changes) to the structure or dynamics
of the environment an agent inhabits, referred to as an environment transformation. Recent work
emphasizes robustness and adaptation to such transformations (McLure & Musliner, 2022). From
an evaluation perspective, existing studies create ad hoc examples of environment transformations
that are human-designed, and therefore biased. It is not clear that robustness to human-generated
transformations indicates the ability to respond to unknown unknowns. To better evaluate these ca-
pabilities, we introduce the first automated novelty generator that randomly generates environment
transformations to study open-world novelty.

© 20XX Cognitive Systems Foundation. All rights reserved.

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

We claim that novelty can be found by sampling a space that is too large to fully enumerate. Our
generator searches through a space of environment transformations for examples that are learnable;
that is to say, they meet certain basic criteria that allow and motivate an agent to learn: relevance,
noticeability, and controllability. We focus here on the space of learnable novelties, as the space of
unlearnable transformations are uninteresting. By definition, to be unlearnable they would have no
affect on agents operating in the environment. Learnable environment transformations challenge an
agent to respond differently than in their original environments. Our approach to novelty generation
is consistent with Wiggins’ (2006) Creative Systems Framework (CSF). To our knowledge, our
novelty generator is the first instantiation of CSF for relational state-action environment creation.

Other work in AI sometimes uses the term "novelty" to refer specifically to novel agent expe-
riences (e.g., Muhammad et al, 2020; Boult et al, 2021; Gamage et al, 2021); this perspective is
valid, but we intentionally avoid any reference to an agent’s knowledge in this work so as to avoid
experimentation issues across agents with different knowledge representations.

In this paper, we describe a space of transformations over PDDL environments, and a novelty
generator that samples that space to find challenging problems in open-world novelty. To demon-
strate the success of this algorithm, we present experimental results describing the change in perfor-
mance of a replanning agent that attempts to achieve goals in the presence of such transformations.
We claim that the novelty generator selects transformations without bias, and that the transforma-
tions selected present a challenge to an agent.

2. Defining Environment Transformations

We describe environment transformations over a space of discrete-time, turn-taking environments.
An environment σ can be described as a tuple (S,A,O,Ag, Tu, γ, ω) where S is the space of possi-
ble states, A is the space of possible actions, O is the space of observations, Ag the space of agents,
Tu is a turn function S → Ag that determines which agent acts in a given state, γ is the proba-
bilistic transition function S × A × S × Ag → R, and ω is the probabilistic observation function
S × O × Ag → R. The agent itself is an argument to the observation and transition functions, as
different agents may have different perceptual interfaces and action capabilities. During environ-
ment interaction, each actor α ∈ Ag receives an observation o when it enters a state s according
to probability ω(s, o, α). Then, one environment-selected agent Tu(s) selects an action a, and the
environment transitions to a new state s′ with probability γ(s, a, s′, Tu(s)). The probability of
transition due to an action from any other agent is 0:

α ̸= Tu(s) =⇒ γ(s, a, s′, α) = 0 (1)

An environment transformation, or novelty, is a tuple (σ, σM , α) that describes two environ-
ments that produce different experiences for an agent. Here, σ is the original environment, σM =
(SM , AM , OM , AgM , TuM , γM , ωM) is a modified environment, and α is an agent that can interact
with either environment. To produce different experiences, the environments’ transition functions
(γ, γM) must differ, or their observation functions (ω, ωM) must sometimes produce different ob-
servations for agent α. While we include the agent α in our definition of novelty (σ, σM , α), we

2

TRANSFORMING ENVIRONMENTS TO EVALUATE AGENT ADAPTATION

stress that the only change that occurs is between σ and σM and therefore, novelty as its defined
here, is environment-based and not agent-based. Other theories of agent-based novelty distinguish
whether observations are novel based on the agent’s internal AI approaches (i.e. what is novel for
an reinforcement learning agent may not be novel for a classical planning agent). In our formalism,
environments refer to agents but do not refer to those agents’ policies.

3. Transformation Space Description

We formally define and implement 24 transformations on PDDL+ domain descriptions; these trans-
formations are the mechanism by which a new, novel domain description is produced. A summary
of these transformations and a lower bound on the size of the space of novelties they produce are
given in Table 2. Each transformation yields a number of novel domains; this value is given in the
Number of Instances column. We argue that since it is unrealistic to expect a human to enumerate
all transformations to an environment, the space of new environments created by performing these
transformations will contain novelty. Applying multiple transformations to an original environment
yields a space of novelties that is significantly large, increasing in size with each iteration of ap-
plying an additional transformation. While the space of novelties given for most transformations
is straightforward, we highlight a few individual transformations here: addDerivedPredicate has
2 · |

(
C
j

)
| · 2 · (j− 1)! instances because

(
C
j

)
are the conditions chosen for the preconditions, then the

first 2 is because each condition can be positive or negated, and then the conditions are arranged in
and and or (hence the second 2) and we will consider all combinations (explaining the !) of up to
j− 1 pairs of conditions; addNewType has an optional argument of typeParent and if no type parent
is given, the number of instances is 1, similar to addProcess. In cases where a new predicate or type
is added to the domain, the dynamics of the environment do not change; the added construct must
be part of a state transition to affect an agent’s experience (i.e. part of an action/event/process’s
preconditions or effects).

A lower bound number of new environments N produced by applying all transformations is:

1 + |F |+ |A|+ |D|+ 2|U |+ 3|E|+ (4 + k)|T |+
|T × T |+ |U × C|+ |(A+ E)× Cex| +

2 · |
(
C

j

)
| · 2 · (j − 1)! +

4|(A+ E)× C × V | +

2|
(
C

n

)
×
(
C

m

)
|

where each variable is defined in Table 2. Such a formula allows us to determine the space of
transformed environments that can be produced by a single transformation. As an example, in Table
1 we take three domain files from the International Planning Competition in 2018, and show size of
novel environments from a single applied transformation.

3

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

Key: Parameters
m=2, n=2, k=2, j=2, v=100

Domain Space of Novelties after 1 Transformation
Data Network 1,570,323

Termes 42,794
Snake 48,573

Table 1. Estimate Lower Bound Space of Novel Domains for the Data Network, Termes, and Snake domains

4. Filtering to Find Learnable Novelties

It is easy to construct novelties that are clearly distinct but very difficult to learn about. For example,
states may be different between two environments only in some subtle way that is not visible to an
agent’s sensors. Some unobservable novel event might cause an agent’s immediate destruction,
allowing no response and providing no useful information the agent could use to avoid that event
in the future. Novel transitions might occur only in a distant region of the state space that the
agent never encounters in practical situations. Therefore, we consider conditions that ensure an
agent has an opportunity (and reason) to learn about an environment transformation. We say that a
transformation is learnable if it changes the environment in the following ways:

Relevance: Affects an agent’s performance

Noticeability: Causes different observations

Controllability: Rewards policies differently

To formally define these qualities, we require the following definitions and assumptions. A trajec-
tory τ is a linked list where each element is either the empty trajectory ∅ or a tuple (a, o, τ ′). Here,
a is the agent’s selected action if it is the agent’s turn, or yield if it is not; o is the subsequent ob-
servation received; τ ′ is the remaining trajectory. We define an extension of a trajectory τ with new
action an and observation on as a copy of that trajectory with a new final element (an, on, ∅):

extension(∅, an, on) ≡ (an, on, ∅)
extension(τ = (a, o, τ ′), an, on) ≡

(a, o, extension(τ ′, an, on))

The length of a trajectory τ is defined as 0 for ∅, and 1 + the length of the subtrajectory for all others:

length(∅) ≡ 0

length(τ = (a, o, τ ′)) ≡ 1 + length(τ ′)

Due to nondeterminism, an agent α with policy π and initial state s may experience any one of
multiple possible histories τ of any given length. We define an agent’s decision-making policy

4

TRANSFORMING ENVIRONMENTS TO EVALUATE AGENT ADAPTATION

Key: Variables for PDDL+ Domain Constructs
F is the set of functions C is the existing set of possible conditions, where a

condition is a, possibly negated, predicate or fluent
statement: |C| = 2 · ((3 · |F |) + |P |). The 3 in (3 ·
|F |) reflects that each fluent condition may have a <,
>, or = comparison (we do not assume nested fluent
conditions, which while possible, results in an infinite
number of conditions).
Cex is the set of existing preconditions and effects
across all existing actions and events.

V is the set of values for a numeric range
T is the existing set of types
P is the existing set of predicates
A is the existing set of actions
E is the existing set of events
D is the existing set of derived predicates
U is the existing set of processes

Key: Transformation-specific Parameters
n: preconditions; m: effects; k: arguments for new predicate; j: upper bound on conditions

ID Transformation Function Signature Number of Instances
1 changeEffectProbability(actionOrEvent, effect, value) |(A+ E)× C × V |
2 changeTypeParent(typeChild, typeParent) |T × T |
3 addEffect(actionOrEvent, effect, probability) |(A+ E)× C × V |
4 addPrecondition(actionOrEvent, precondition) |(A+ E)× C × V |
5 addNewAction(name, parameters, preconditions, effects) |

(
C
n

)
×
(
C
m

)
|

6 addNewEvent(eventName, parameters, pre, eff, freqDist) |
(
C
n

)
×
(
C
m

)
|

7 addNewPredicate(newPredicateName, arguments) k|T |
8 addFunction(newFluentName, existingType) |T |
9 addNewType(newTypeName, typeParent) |T |
10 removePreconditionOrEffect(action/event, condition) |(A+ E)× Cex|
11 removeAction(action) |A|
12 removeEvent(event) |E|
13 removeFluent(fluent) |F |
14 removeType(typeName) |T |
15 addDerivedPredicate(name, pred expression) 2 · |

(
C
j

)
| · 2 · (j − 1)!

16 changeFluentEffectVal(action/event, prec/effect, val) |(A+ E)× C × V |
17 changeFrequencyDistributionEvent (event, newValue) |E|
18 removeDerivedPredicate(derivedPredicateName) |D|
19 removeProcess(processName) |U |
20 addConstant(name, type) |T |
21 addProcess(processName) 1
22 changeProbability(eventName, probability) |E|
23 addProcessCondition(processName, condition) |U | × |C|
24 addProcessChange(processName, change) |U |

Table 2. Environment Transformations.

π : τ → A as a mapping from the space of trajectories to an action to take at the end of that

5

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

trajectory. The probability p(τ |τP , s, σ, π, α) of an agent α experiencing a particular trajectory τ
using policy π starting in state s with history τP in environment σ is given by:

p(∅|τP , s, σ, π, α) = 1

p(τ = (a, o, τ ′)|τP , s, σ = (S,A,O,Ag, Tu, γ, ω), π, α)

=
∑
s′∈S

γ(s, π(τP), s′, Tu(s))
∗ ωM (s′, o, α)
∗ p(τ ′|extension(τ, a, o), s′, σ, π, α)

We assume that an agent is motivated by some environment-independent performance measure
that is known or observable to it. This function, Performance: T × S → R is some mapping from
the space of possible trajectories T and actual states traversed to the real numbers; this function is
calculated over the full sequence of states and actions in the agent’s past trajectory. The space of
final states of an environment σ, SF (σ) ⊂ S is defined as the set of states which have no outgoing
transitions:

SF (σ = (S,A,O,Ag, Tu, γ, ω)) ≡
{s ∈ S | ∀a ∈ A, s′ ∈ S : γ(s, a, s′) = 0}

(2)

We define the Expected Performance of a Policy (EPP) in an environment based on a past trajec-
tory τP , state history s, and policy π as the performance of the past trajectory in any final state,
or otherwise as the average expected performance of the policy over each possible next state and
observation as given by recursion over the next state and updated trajectory.

EPP (τP , π, s = (s0...sn ∈ SF (σ)), α, σ) ≡
Performance(τP , s)

EPP (τP , π, s = (s0...sn /∈ SF (σ)), α,

σ = (S,A,O,Ag, Tu, γ, ω)) ≡∑
s′∈S,o∈O

γ(sn, π(τ

P), s′, α)
∗ ω(s′, o, α)
∗ EPP (extension(τP , π(τP), o),

π, concat(s, s′), α, σ)

(3)

Formally, an environment transformation (σ, σM , α) is relevant if there is some policy π that
produces different expected performance starting in some state s0 in σ and σM .

6

TRANSFORMING ENVIRONMENTS TO EVALUATE AGENT ADAPTATION

Relevant(α, σ, σM) ≡
∃π, s0 : EPP (∅, π, s0, α, σ) ̸= EPP (∅, π, s0, α, σM)

An environment transformation is noticeable if, from any starting state, there is some agent
policy π that results in different trajectories in the modified environment σM than the original σ.
Generally, this means that there is some set of trajectories T such that an agent will almost al-
ways experience a trajectory in T using π in σM , but almost never in σ. In any fully observable,
deterministic environment, every environment transformation that maintains full observability and
determinism is necessarily noticeable: the observation function cannot be changed without also
changing the transition function, and any changed transition is immediately apparent.

Noticeable(α, σ = (S,A,O,Ag, Tu, γ, ω), σM) ≡
∃n, π, T :

∀τ ∈ T : length(τ) = n

∧
∑
s∈SM

∑
τ∈T

p(τ |∅, s, σM , π, α) > 1− ϵ

∧
∑
s∈S

∑
τ∈T

p(τ |∅, s, σ, π, α) < ϵ

An environment transformation (σ, σM , α) is considered controllable if there is some policy
π′ that performs better for α in the modified environment σM than the optimal policy π∗ for the
original environment σ.

Controllable(α, σ, σM) ≡
∃π∗ ∀π, s ∈ S :

EPP (∅, π, s, α, σ) ≤ EPP (∅, π, s, α, σ)
∧ ∃π′ ∀s ∈ SM :

EPP (∅, π∗, s, α, σ′) ≤ EPP (∅, π′, s, α, σ′)

We strive to approximate these conditions so as to efficiently find learnable environment transfor-
mations.

5. Related Work

Unlike work that seeks to define novelty relative to an agent’s experiences (e.g., Muhammad et al.
(2021); Boult et al. (2021); Gamage et al. (2021), we intentionally avoid any reference to an agent’s
knowledge. Such frameworks are useful because they can identify how prepared an agent is for
new challenges. However, they cannot usefully describe how environment challenges differ in a
way that cuts across different agents and different knowledge representations. For historical and
language reasons, both currently use the term “novelty”, but in different ways.

7

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

Boult et al. (2021) defined a theory of open world novelty where novelty occurs when an agent
experiences an environment sufficiently different from its prior experiences. This is fundamentally
different from our definition in several ways; first, in our framework, novelty exists independent of
any given agent’s experiences or knowledge, for reasons given above. Second, our framework does
not define novelty as occurring at a point in time, but rather as encompassing the time-independent
difference between two environments. This means that novelty can exist without any changes to
the observation or state space. While valuable for considering what experiences could be new to
a particular agent, two agents cannot truly be compared on the “same” novelty unless they have
identical prior experiences; such comparisons are a key feature of our framework.

Langley (2020)’s work provides a set of broad requirements for a theory of environmental
change that can help explain and measure progress in open-world learning. He suggested that such
a theory would propose a formalism for environments and transformations on them. Our framework
provides both, and so can be consider an example “theory” in this regard that describes environmen-
tal changes and provides specific language for characterizing how environment changes vary.

Current benchmark domains [Goel et al. (2021); Xue et al. (2022); Kejriwal & Thomas (2021);
Balloch et al. (2022)] test an agent’s ability to respond to novelty using carefully constructed sce-
narios by domain experts. These testbeds provide novelties of varying difficulties and type. Almost
all of these novelties are learnable (relevant, noticeable, and controllable) due to the human design
process, yet remain limited in quantity and coverage. To our best knowledge, our testbed is the first
to systematically provide infinite novelties that are not hand curated by domain experts. Instead our
system randomly generates new environments and then filters them according to our learnability
criteria: relevance, noticeability, and controllability.

Wiggins (2006)’s framework for creative systems in AI describes novelty as a property of a
creative output which previously did not exist. While our description of environment transforma-
tion novelties makes no restriction on the generating process, it is related: part of the purpose of
our framework is to describe constraints on the generation of pairs of environments pre- and post-
transformation, where the later one has properties that did not previously exist in the earlier one.
Thus we are broadly consistent with Wiggins’ definition.

MacGyver problems (Sarathy & Scheutz, 2018) are those where the goal for an agent is un-
reachable with the agent’s current domain model. The agent must update its model (e.g. by learning
a new macro action) in order to solve the problem. When novelty occurs in the environment and an
agent’s goal is no longer achievable, such a scenario can be considered a MacGyver problem. Not
all novelties are MacGyver problems, since a novel environment may still permit reaching the orig-
inal goal. Extending our framework to generate MacGyver problems would be possible by adding
an additional filter that, given a starting state and goal, selects a new environment where that goal,
from the same starting state, is no longer achievable.

6. Empirical Results

6.1 Experimental Setup

In order to test the capabilities of our novelty generator, we designed a set of experiments to deter-
mine if the generated novelties are relevant. As a test-bed, we used the data-network domain from

8

TRANSFORMING ENVIRONMENTS TO EVALUATE AGENT ADAPTATION

the IPC competition. Since we were pulling from the IPC competition, we were provided with a
domain file and 20 problem files. At this time our experimental setup only evaluates relevance; we
leave noticeability and controllability for future work. The experimental procedure follows multiple
steps:

Step 1: Read in the domain file for the domain, creating an objectified representation of the domain
in python.

Step 2: Search over all the possible 1-step alterations on the domain that affect the transition model.
This provides a total of 136 novelties for the data-network domain. There is some initial
filtering during this generation stage that begins to guide the generation towards relevant
novelties. The filtering at this stage looks only for new effects (using transformation 3 from
Table 2) such that the arguments to the predicate or fluent being added can be matched to
existing parameters in the action or event to which the effect is being added. Since we exclude
no possible alterations during the generation process, we avoid bias’ that come from human
perceptions.

Step 3: After the novelties are generated, create a set of 10 problems in the domain. These problems
are created from one of the given problem files of the IPC domain. We add in an additional
set of init clause facts to the problem such that the novel action or event is executable from
the initial state. This is done to make sure that the novel action has every chance to be taken
so we have the best chance of witnessing if the novelty is relevant.

Step 4: With these generated problems, run the planning and simulation agent to test the novelty.
The simulation always runs in the modified domain, however we generate 2 separate plans:
one using the modified domain and one using the unmodified domain. We run both plans
through the simulator, and collect the metric data. This metric value is either the defined
metric for the domain, or if no metric is defined we use the number of actions executed.
This default metric is used to prioritize shorter plan traces in environments where action costs
are not defined. If the metric cost between the plan using the modified domain and the one
using the unmodified domain differ for any of the 10 created problems, we say the novelty is
relevant.

Step 5: After determining relevance (Step 4), we perform a verification test as well as data collec-
tion on the relevant novelties. Since the problems used during the determination process were
biased, we now use the provided sample problems to verify the relevance on the novelty and
acquire meaningful data. Consequently, we perform step 4 again, using the given problems
instead of the generated problems, saving the difference in metric score for the plans made
using the modified and unmodified domain. Thus, we represent the relevance of the novelty
by the average difference in metric cost seen across the given problems. These scores can be
seen in Figure 1.

9

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

Figure 1. Showcasing the impact of novelties on the Data-Network domain from the IPC competition. The
impact is measured by the change in metric value between the modified and unmodified domain

6.2 Discussion on Results

Analyzing Figure 1 gives us a few insights into the performance of our novelty generator. Firstly,
we can see there is a wide variety of impact caused by the generated novelties. For context, the
average metric cost of the unmodified domain was 647. There were a few novelties that made the
given problems trivial to solve, a good number that made the problems easier, a lot that had a small
impact, and a few that made the problems slightly harder. While this distribution is specific to this
domain, it still showcases the variety of impacts provided by our generator.

Secondly, while its hard to see in this graph, none of the novelties has 0 impact on the verification
problems. This means that the novelties outputted by our generator all had at least some impact on
an agent acting in the domain. It should be noted however, that there are likely many relevant
novelties that our generator is currently not finding.

Thirdly, in this paper we only report results on relevance of novelties generated. Future work is
needed to provide tests for controllability and noticeability. Currently, the domains we are using are
fully observable, so all novelties are noticeable.

7. Conclusions

We introduce the first automated, domain-independent novelty-generator capable of generating in-
finite environment-based novelties for relational, state-action environments. Our formalism defines
learnable novelties as those that are relevant to an agent, noticeable, and controllable. We pro-
vide an experimental setup to automatically generate novel environments to obtain new learnable
novelties independent of human bias. Using the data-network IPC domain, we evaluated a planning
agent on 136 automatically generated novelties, showing that all of these novelties were relevant.

While we believe important steps have been taking with generating relevant novelties, there are
paths forward still to explore. While testing relevance, our current methods focused on novelties
that affected the transition model. We would like to expand our filtering methods to other novelty
types. Besides relevance, we would also like to collect data on the controllability of the generated

10

TRANSFORMING ENVIRONMENTS TO EVALUATE AGENT ADAPTATION

novelties. Controllability in short is the ability of the agent to make use of the novelty introduced
in the domain. We would also like to expand our testing to more domains, which requires a larger
representation language. Currently, the language used by the novelty generator can not represent all
PDDL domains, and that is a future goal.

11

D. DANNENHAUER, M. MOLINEAUX, N. REIFSNYDER, AND A. J. REGESTER

References

Balloch, J., Lin, Z., Hussain, M., Srinivas, A., Wright, R., Peng, X., Kim, J., & Riedl, M.
(2022). Novgrid: A flexible grid world for evaluating agent response to novelty. arXiv preprint
arXiv:2203.12117.

Boult, T., et al. (2021). Towards a unifying framework for formal theories of novelty. Proceedings
of the AAAI Conference on Artificial Intelligence (pp. 15047–15052).

Gamage, C., Pinto, V., Xue, C., Stephenson, M., Zhang, P., & Renz, J. (2021). Novelty generation
framework for ai agents in angry birds style physics games. 2021 IEEE Conference on Games
(CoG) (pp. 1–8). IEEE.

Goel, S., Tatiya, G., Scheutz, M., & Sinapov, J. (2021). Novelgridworlds: A benchmark envi-
ronment for detecting and adapting to novelties in open worlds. International Foundation for
Autonomous Agents and Multiagent Systems, AAMAS.

Kejriwal, M., & Thomas, S. (2021). A multi-agent simulator for generating novelty in monopoly.
Simulation Modelling Practice and Theory, 112, 102364.

Langley, P. (2020). Open-world learning for radically autonomous agents. Proceedings of the AAAI
Conference on Artificial Intelligence (pp. 13539–13543).

McLure, M. D., & Musliner, D. J. (2022). A changepoint method for open-world novelty detection.
IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 5329–
5332). IEEE.

Muhammad, F., Sarathy, V., Tatiya, G., Goel, S., Gyawali, S., Guaman, M., Sinapov, J., & Scheutz,
M. (2021). A novelty-centric agent architecture for changing worlds. Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems (pp. 925–933).

Sarathy, V., & Scheutz, M. (2018). Macgyver problems: Ai challenges for testing resourcefulness
and creativity. Advances in Cognitive Systems, 6, 31–44.

Wiggins, G. A. (2006). A preliminary framework for description, analysis and comparison of cre-
ative systems. Knowledge-Based Systems, 19, 449–458.

Xue, C., Pinto, V., Zhang, P., Gamage, C., Nikonova, E., & Renz, J. (2022). Science birds novelty:
an open-world learning test-bed for physics domains.

12

