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Abstract
Neuro-symbolic AI and deep learning models have been used to mimic logical reasoning. In this
paper, we provide a path guidance system for logical inference. We train a feed-forward neural net-
work to provide a backward chaining reasoner with information on which order to attempt subgoals
and which rules to apply first. A key element of our approach is learning embeddings for logical
atoms that are informed by unification. By using these embeddings to construct a guided reasoner,
we saw large reductions in the number of nodes explored by the reasoner.

1. Introduction

Despite the recent breakthroughs in deep learning and neural networks, symbolic learning and
knowledge representation still play a vital role in AI advancements and practical uses in domains
such as the medical field. Statistical AI and deep learning are adept at finding trends in large data
samples, and can be applied without comprehensive preexisting knowledge about the subject mat-
ter. While the results they output are often convenient and easy to use, they are also known to be
black boxes in that it is difficult to generate a convincing explanation of these results. On the other
hand, symbolic AI systems can often provide human-readable proofs of their conclusions, but are
generally only useful when the problem is already well understood. These algorithms also can not
handle edge cases or exceptions well if they are not explicitly coded into the model. Neuro-symbolic
AI emerged to combine these two fields in order to harness the power of deep learning while also
remaining explainable.

This paper goes in a different direction than previous work in the field in that all actual reasoning
will be done by a traditional backward chaining reasoner. Backward chaining is sound with proper
implementation, but it is not complete as there are multiple issues that can lead to inefficiency or
even infinite loops. In a "pure" version of the algorithm, which rule to apply and which atom to
expand next is arbitrary. In languages like Prolog, the path through the search tree is a depth first
search, which requires knowledge base (KB) designers to order rules specifically and intentionally
in order to optimize the search. If a knowledge base is poorly designed, it can lead to cycles that
jeopardize the completeness of the algorithm. These issues require targeted human intervention, and
as knowledge bases grow larger, such engineering becomes increasingly difficult. Various heuristics
have been used to successfully speed up logical inference, but they often require training on all
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axioms in the knowledge base or storing information in a database (Sharma & Goolsbey, 2017).
Groundbreaking work such as AlphaGo (Silver et al., 2017) has provided insights into how deep
learning can be used to make a seemingly impossible graph search possible. Given the vast size of
current knowledge bases, incorrect backward chaining paths can lead to large inefficiencies. The
goal of this paper is to create a sub-symbolic representation using atom unification in order to then
design a path guidance system for reasoning algorithms, which would prevent some costly incorrect
choices that arbitrary searches would take. This is the first step in a larger research program that
aims to make it possible to design KBs in a purely declarative fashion, and to avoid optimizing them
for specific queries.

2. Background

2.1 Neuro-symbolic AI

One of the major ongoing research areas in neuro-symbolic AI is conducting logical inference us-
ing deep learning. Approaches like TransE (Bordes et al., 2013) and work based on it are able
to add new facts without inputting new knowledge into the system using novel representations of
symbolic relationships. Previous work has also attempted to create neural networks that function
as pseudo-reasoners on logic problems. Work like First Order Logical Neural Networks (Kijsirikul
& Lerdlamnaochai, 2016) have created feed-forward neural networks that can function on noisier
data than traditional reasoners, and therefore can deal with exceptions better than other reasoners.
Traditional reasoning techniques like backward chaining have been used as inspiration for recursive
neural networks that represent logical operations and replaces steps like unification with differen-
tiable processes (Rocktäschel & Riedel, 2017). Other work has taken inspiration from AlphaGo
and NLP systems by using reinforcement policy based learning and attention in order to improve
problem solvers (Crouse et al., 2021). Mathematical proofs have also been a subject of research,
with automated theorem provers being used to predict which proven statements will be needed to
prove a given theorem (Kaliszyk et al., 2015). Our work is most similar to these last two, in that we
seek to predict which rules will be needed to solve a given query and the best path through a search
tree.

2.2 Meta-reasoning

Our work also falls under the field of meta-reasoning. Meta-reasoning refers to the control of
time, effort, and strategies put towards reasoning, and the amount of each is chosen based on some
chosen heuristic (Ackerman & Thompson, 2017). Meta-reasoning approaches can take inspiration
from meta-cognition, or humans own reasoning about their own thought processes.

2.3 Horn Logic and Unification

In First Order Logic, atomic sentences are the most basic statements. They consist of a predicate or
function and a list of arguments that can be either constants (denoted with lowercase characters in
Datalog) or variables (denoted with upper case characters in Datalog). For example, the intended
interpretation of daughterOf(arya_stark, ned_stark) is that “Arya is the daughter of Ned.” If
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an atom appears in the knowledge base as a fact (or can be inferred through the use of other rules) it
is said to be true. We used a subset of first order logic known as Horn logic. Horn logic clauses can
be written as an implication of the form A1 ∧ A2 ∧ ... ∧ Ai → B, where An and B are all positive
atoms. The atoms on the left are body, while the single positive atom is the head. If the body is
empty, then the rule is considered a fact. An added benefit of using Horn logic is that contradictions
are impossible, as negation is not a valid logical operator.

Datalog is a function-free version of Horn logic that uses a Prolog syntax. Additionally, existen-
tial variables are not allowed in the head of the clause.Like Prolog, the head of a rule is written on
the left hand side and the “:-” symbol is used for implication. Terms that begin with a capital letter
are variable, while all other terms are constants. A short example knowledge base is listed bellow.

Example Knowledge Base
• childOf(arya_stark, ned_stark).
• childOf(ned_stark, rickard_stark).
• childOf(arya_stark, catelyn_stark).
• parentOf(X,Y) :- childOf(Y,X).
• grandparentOf(X,Y) :- parentOf(Z,Y), parentOf(X,Z).

This small knowledge contains four facts and two inference rules. Additional facts, such as par-
entOf(rickard_stark, ned_stark), can be inferred using reasoning algorithms.

Reasoning in first-order logic (and its fragments) depends on the concept of unification to deter-
mine if a one atom can be substituted for another. Formally, two logical expression unify if there is a
substitution that makes them syntactically identical. For two Datalog atoms, this means they have to
have the same predicate and cannot have different constants in the same term position. Furthermore,
a variable cannot appear in the same position as different constants. For example, p(X,X) would
unify with p(a, Y ) or p(a, a), but not m(X,X) or p(a, b).

2.4 Forward and Backward Chaining Reasoners

Two of the most common reasoners for horn logic knowledge bases are forward and backward
chaining (Poole & Mackworth, 2018). Each start with an atomic query, but work towards an answer
in opposite ways. Forward chaining starts with all the facts (rules with no body) and uses inference
rules to generate facts until it can no longer generate any new facts. Backward chaining starts with
the query and attempts to unify it with heads of rules and recursively prove the sub-goals until all
sub-goals are proven. Backward chaining tends to be preferable when there is a specific query in
mind while forward chaining is more useful to infer all of the new facts from an existing knowledge
base. Each can be represented as a tree search problem. Backward chaining starts at the root,
while forward chaining starts at the leaves. Forward chaining is less efficient when trying to prove
only one query, but is better at inferring many or all possible facts in a knowledge base. Backward
chaining will therefore be the algorithm this work seeks to optimize.

2.5 Logical Embeddings

In order to apply neural networks to the problem, one must first find a way to convert facts and rules
into a numeric vector form. The result of such a conversion is called an embedding. We argue that
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logical embeddings have to meet two criteria: they have to be accurate representations, and they
have to be applicable to multiple knowledge bases. Structure must be the only feature that embed-
dings take into account, and they must not take into account any semantic meaning of the symbols
themselves. The embeddings of childOf(arya_stark, ned_stark) should not rely on the meaning
of arya_stark, since this can lead to the model over-fitting to the knowledge base used in training
(Ebrahimi et al., 2021). Therefore, all names should be represented as meaningless symbols, as that
is more representative of how actual reasoners interpret them. The order of arguments in atoms must
be preserved to retain properties for unification, but the order of rule bodies is irrelevant, although
in contemporary knowledge bases order is integral to backward chaining execution. Previously,
rules have been represented using a bag-of-words style approach and “chain-based vectorization”
for atoms based on unity (Crouse et al., 2021) and others utilized the semantic meanings of words
in the knowledge base to create embeddings of symbols (Socher et al., 2013).

The method used by Crouse et al. (2021) is most similar to ours. Their approach involved
breaking down clauses into multiple different “patterns” that are each linear chains from a predicate
symbol to a variable or constant. These were intended to provide representations that could be used
to determine structural similarity. This approach to vectorization is carefully engineered based on
intuitions about first-order reasoning, and the final vector was created by hashing the pattern and
setting specific bits of the vector based on how many times each pattern appeared in a clause. If not
careful, this approach can either results in vectors that are much larger than needed, or in collisions
between different patterns.

3. Methods

In order to created a guided reasoning system, we first created embeddings of atoms that were
informed by unification. We then created random knowledge bases to reason on, and represented
the rules and facts using the previously created embedding model. A feed-forward neural network
was then created to score goal/rule pairs in the random knowledge base by how likely that path was
to lead to a solution. A guided reasoner then used this model to choose which paths to attempt first.

3.1 Embeddings that Respect Unification

The first step to generating embeddings based on unification was to create a vector encoding of an
atom. This work is most similar to Crouse et al. (2021), who were also inspired by atom unity as
a basis for atom representation. However, our key contribution is that the embeddings are actually
learned, rather than engineering. Since the semantic content of the atoms are not important, we
created random atoms from a pool of ten predicates (p0, p1, . . . p9) with a random arity from one
to four, ten variables (X0, X1, . . . X9), and 100 constants (a0, a1, . . . a99).1 Unary and binary
predicates were set to be more common to reflect conditions in real-world knowledge bases. Other
work has allowed semantically similar predicates such as "grandpaOf" and "grandfatherOf" to unify
(Rocktäschel & Riedel, 2017), but this is not possible in classical logic (where predicates must
match exactly) and will not be considered here since the random predicates lack any meaning at all.

1. More complex KBs could be supported by starting with a larger pool, but this will lead to larger training times
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Individual predicate arity was held constant across all experiments, so if p3 had an arity of two when
generating embeddings, it retained the same arity when training and testing on a specific KB. To
construct the input representation, we concatenate a one-hot encoding of the predicate with a one-
hot encoding of each argument in the atom. If there were less than four arguments, the encoding was
padded with zeros to keep a consistent length for all encodings. Each encoding had a length of 560
(10 for the representation of the predicate and 110 each for five possible arguments).2 The output
embedding space had a dimensionality of 20, resulting in a significant reduction in dimensionality
that should capture the most important commonalities between atoms. An example of this process
on a shortened atom is shown below in Figure 1.

Figure 1. One-hot encoding of an example atom, p1(a2,X2), with two possible predicates, variables, and
constants and a maximum arity of two

This approach can be used without loss of generality because any knowledge base can be canon-
icialized into a sufficiently large pool of standard predicates, variables, and constants. Their names
do not matter so long as they are unique, so a straight-forward renaming can be applied without
changing the semantics of the KB. Real world knowledge bases have a much larger number of pred-
icates, variables, and constants, but an appropriate pool can be generated, and embeddings can be
learned.

To learn our embeddings, we constructed a feed-forward neural network with one hidden layer.
Our learning goal was that the cosine similarity of the embeddings of two atoms that unify would be
closer than two atoms that did not unify. To achieve this, we used triplet loss as the loss function for
the model. Triplet loss is a classless loss function, and has found success in the fields of computer
vision and facial recognition (Chechik et al., 2010). It has also been used successfully to represent
relationships in knowledge bases (Bordes et al., 2013). Triplet loss maximizes the distance between
an anchor and a negative example and minimizes the distance between the anchor and a positive
example. In this case, the anchor can be any atom. The positive example atom will be chosen to
unify with the anchor atom, while the negative example will be chosen so that it does not unify with
the anchor atom. In order to construct the triplets, a set of atoms was randomly generated and all

2. Our training data did not make full use of this input representation, as it had no predicates with arity greater than four.
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possible unifying pairs were found to create the anchors and positive cases, and the anchor atom was
“corrupted” by randomly changing the arguments in order to create a negative case. If this process
was not able to create a non-unifying case with the same predicate, a random atom was selected to
be the negative case.

3.2 Knowledge Bases and Reasoners

We generated random knowledge bases using the same predicates as those used to train the atom
embedding model. They were kept to a limited rule length to reflect real world knowledge bases
that do not tend to have overly long or complex rules (Russell & Norvig, 2009). Generated facts
also only contained constants to retain a manageable computation time. Due to the properties of
Horn logic stated above, these random knowledge bases could not contain contradictions that would
complicate the generation process. A random knowledge base of size 150 was created with 80%
facts and 20% rules with body lengths of up to 4, with smaller rules being more likely than larger
rules to reflect conditions in many real world knowledge bases.

In order to create a model that predicts the best path, both forward and backward chaining
reasoners were needed to construct training examples. All possible facts that could be inferred
from a knowledge base were inferred using forward chaining, and a random fact was selected and
random arguments replaced with variables to create new queries. The main advantage of using
Datalog is that the deductive closure of any knowledge base is finite since Datalog lacks functions.
This guarantees that forward chaining will eventually complete and find all possible facts. Backward
chaining was then used to find all possible solutions to the query and generate a representation of
the search tree. In the tree, a node consists of subgoals that remain to be proven. We choose one
subgoal at random and then find all rules that apply to this subgoal (i.e., the head of the rules unify
with the subgoal). We also selected the rules in a random order for each subgoal. This process is
repeated recursively until a solution is found or a depth limit is reached. We extracted all (g, r) pairs
from the tree, where g was a chosen subgoal and r was the rule that was chosen to expand the node.
If a (g, r) pair was extracted from a path that eventually led to a solution (regardless of depth), we
assigned it a score of 1. Otherwise, we assigned it a score of 0. We used a dynamic depth limiter
to prevent infinite cycles. Since paths to shallower solutions are more efficient than those to deeper
ones, so deeper paths were less pertinent than shallower ones. When the reasoner finds a solution,
it only searches up to 1.5 times deeper in the search tree from then on.

The output of this process is a set of training examples, each consisting of a subgoal g, a rule r,
and a binary classification of whether the rule ultimately leads to a solution of the original problem.
Note, that this process will produce many more negative examples (where the rule does not lead to a
solution) than positive ones. This an example of a class imbalance problem, which will be addressed
in the next section. Additionally, we cannot sample the entire answer space, and the initial queries
used in the test set were not present in the training data generated from this process. That being
said, it is possible for them to share sub-trees within each search tree.
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3.3 Binary Classifier for Path Guidance

Given our set of training examples, we can learn a binary classifier that determines whether a par-
ticular rule is a good step in the search for a solution to reasoning problem. This model would
determine a “score” for how likely it is that a particular rule will lead to an overall solution for
each subgoal. We used the data generated from the previous process to train this model, where the
inputs to model are the subgoal atom and the rule used, and the target is a binary variable indicat-
ing whether the subgoal/rule combination led to a solution. All inputs were constructed using the
embeddings generated with the model we introduced in 3.1.

An important question is how to create an embedding of a rule, given that we have embeddings
for its constituent atoms. For a (g, r) pair, our algorithm constructs the embedding by concatenating
the unity embedding of subgoal g, the unity embedding of the head of rule r, and the sum of
unity embeddings of each atom in the body of r. We hypothesize that adding them together will
still capture the semantics of all of the body atoms while also having the desirable property of
ignoring the ordering of the atoms in the body. Since our embedding process of each atom tends to
place unifiable atoms close together, our rule embeddings will also tend to have close embeddings
if they only differ in a variable renaming. We selected a supervised learning approach and used
feed-forward neural networks. The network contained three linear layers and sigmoid activation
functions.

As mentioned above, our training data has a class imbalance problem, where there were many
more negative examples than positive examples. It is well-known that unbalanced classes can lead
to problems in machine learning. We used a common solution, which is to oversample the examples
(add additional copies of them).

In a reasoner guided by these results, both the query/subgoal and rule used would be chosen in
accordance to the model above. The score given by the binary classification will rank all possible
subgoal/rule combinations, and the reasoner will search the tree in that order as opposed to from left
to right as in a standard reasoner or randomly as in our data generation reasoner. To test if this is
more efficient, we evaluated against a traditional depth first search backward chaining reasoner. We
then utilized the same methods with embeddings generated via an autoencoder as a baseline. Our
evaluation metric was the number of nodes explored, and runtime was not considered.

4. Experiment and Results

4.1 Unification Embeddings

To learn the embeddings of atoms, we created a dataset with 53k atom triplets (anchor, positive
example, negative example). The model was trained for 30 epochs and achieved a training loss
of 0.2022. We then compared the embeddings of unifying pairs with those of non-unfying pairs
(Figure 2). As desired, unifying atoms tended to have a very high cosine similarity, while non-
unifying atoms tends tended to have a cosine similarity closer to 0.

A Kolmogorov-Smirnov two sample test was run to determine if the two samples are signifi-
cantly different. With a test statistic of 0.755 and p < 0.001, there is statistically significant evidence
that the two distributions are different. This indicates that the embeddings were able to sufficiently
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Figure 2. Cosine similarity of unifying and non-unifying atom pairs

capture whether two atoms unify, as well as some representation of their structure. These embed-
dings were then used to represent all the atoms in subsequent experiments.

4.2 Path Guidance

To evaluate our our approach, we generated a random knowledge base with 150 statements using the
approach described in Section 3.2. The same knowledge base was used to train the rule classifier
and to test the reasoners. The model was trained for 500 epochs and achieved a training loss of
0.31434.We note that because we are not training on all possible queries, the system still needs to
learn to generalize. We argue that such a process could still be useful for large, frequently-used KBs
that might benefit from more efficient reasoning, as the training process would be a one-time, up-
front cost that can be fully automated. Nevertheless, our long-term goal is to learn from a collection
of KBs, and generalize to a previously unseen KB.

4.2.1 Experiment 1

Two reasoners were constructed for the purpose of testing. Neither had cycle checking, but both
utilized a depth limiter to prevent infinite cycles. The standard reasoner always picked the leftmost
goal to expand and chose rules from the knowledge base in the order they appear in the knowledge
base. In the guided reasoner, the order was chosen by using the model to score each goal/rule
combination and sorting them from largest to smallest score. Each reasoner still performed a depth-
first search. Using the forward-chaining reasoner, we generated 100 novel random queries that
were not used to train the model, and each query was evaluated by both reasoners. The guided
reasoner utilized path guidance for goals that were of depth three or less then switched over to
using the traditional reasoner as the current implementation is still not optimized for a large number
of nodes. We calculated the number of nodes explored by the guided reasoner minus the number
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nodes explored by the standard reasoner. Figure 3 show the differences by query, sorted from best
improvement over the standard reasoner to worst.

Figure 3. Change in nodes explored between standard and guided reasoner, plotted on a logarithmic scale.

The traditional reasoner on average explored 199, 175.1 nodes with a median of 140, 888.5,
while the guided reasoner on average explored 122, 919.4 with a median of 5.0. This indicates that
the guided reasoner was often able to find solutions with a small search, but there were occasionally
significant outliers. In 62% of cases the guided reasoner explored fewer nodes than the traditional
reasoner, while it explored the same number 31% of the time and only performed worse 7% of the
time. However, it must be noted that the three worst examples had increases of over 1000%.

While the reasoner seemed to get lost in a rabbit hole a few times, for the majority of cases
it provided a significant improvement compared to a standard reasoner, often with over a 99%
decrease. There is certainly more work to be done to improve the guidance system and avoid costly
drops in efficiency, but these preliminary results are promising.

4.2.2 Experiment 2

To evaluate the contribution of our unification-based embedding approach, we decided to compare
against an alternative form of generating embeddings. We chose an autoencoder (Rumelhart et al.,
1985) as our baseline. An autoencoder is a neural network that learns encodings of unlabeled data
by trying to map them to a lower-dimensional vector, and then minimize the loss when recovering
the original data by inverting the mapping. It was not provided any additional information about
the properties of the atom, such as atoms it unifies with. So that our experiment would only have
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one independent variable, we used the same training set, represented inputs using the same one-hot
vectors, and output a vector in an embedding space with the same dimensionality as our proposed
embedding approach (20).

A third reasoner was constructed that utilized the autoencoder model to provide inputs to the
network that evaluated goal/rule pairs. The autoencoder was trained for 200 epochs and achieved
a training loss of 0.00701. Both reasoners were trained on the same 3798 training examples. The
autoencoder reasoner was also trained for 500 epochs and achieved a training loss of 0.33144. One
hundred new queries that were not used to train either model were generated. We calculated the
number of nodes explored by the autoencoding guided reasoner minus the number nodes explored
by the unification embedding reasoner, as shown in Figure 4.

Figure 4. Change in nodes explored between autoencoder and unification embedding guided reasoners

The guided reasoner based on autoencodings performed much worse than our proposed guided
reasoner on the majority of queries, with the former exploring one million or more additional nodes
than the latter in 98% of queries. These results provide additional evidence embeddings that respect
unification capture beneficial information about atoms and rules that can improve path guidance.

These results were also compared against the standard reasoner. We found the minimum solu-
tion depth found by one of the three reasoners and compared it against the average nodes explored
for that depth (Figure 5). We found that across the board, the autoencoder reasoner performed
worse than the standard reasoner, while the unification-based reasoner performed either similarly
or better than the standard reasoner regardless of solution depth. Overall, the standard reasoner ex-
plored 224, 918.55 on average, the autoencoder reasoner explored 6, 171, 486.49, and the unification
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guided reasoner only explored 187, 885.66. Although we expected our unification-aware approach
to perform better, we were still surprised by the how poorly the autoencoder performed. We suspect
that its performance could be improved by significantly increasing the number of training examples
for the goal/rule evaluation stage.

Figure 5. Minimum solution depth vs average number of nodes explored found by the reasoner

5. Conclusion and Future Work

In this work we introduced a model for generating atom and rule embeddings that respect unification
and used those embeddings to create a guided reasoner that is able to reason more efficiently on the
majority of queries compared to standard reasoners. This reasoner did not require manual optimiza-
tion of knowledge bases to see marked improvements in the number of nodes explored. This work
was a preliminary step towards a larger goal of creating models that can generalize across much
larger knowledge bases through the use of transfer learning and training on multiple knowledge
bases. We believe these results are a promising first step towards this overall goal.

Additionally, other training approaches like regressors and reinforcement learning should be
considered. Training and testing on larger real world knowledge bases is essential as well. We are
also interested in expanding to full first-order logic that includes more complex rules.
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