
LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

Lara – Human-guided collaborative problem solver:
Effective integration of learning, reasoning and communication

Harsha Kokel1 HKOKEL@UTDALLAS.EDU

University of Texas at Dallas, TX, USA

Mayukh Das1,2 MAYUKHDAS@MICROSOFT.COM

M365 Research, Microsoft, Bangalore, India

Rakibul Islam3 MDRAKIBUL.ISLAM@WSU.EDU

Washington State University Pullman, WA, USA

Julia Bonn4 JULIA.BONN@COLORADO.EDU

Jon Cai4 JON.Z.CAI@COLORADO.EDU

University of Colorado at Boulder, CO, USA

Soham Dan5 SOHAMDAN@SEAS.UPENN.EDU

University of Pennsylvania, PA, USA

Anjali Narayan-Chen6 NRYNCHN2@ILLINOIS.EDU

Prashant Jayannavar6 PAJ3@ILLINOIS.EDU

University of Illinois at Urbana-Champaign, IL, USA

Janardhan Rao Doppa3 JANA.DOPPA@WSU.EDU

Washington State University Pullman, WA, USA

Julia Hockenmaier6 JULIAHMR@ILLINOIS.EDU

University of Illinois at Urbana-Champaign, IL, USA

Sriraam Natarajan1 SRIRAAM.NATARAJAN@UTDALLAS.EDU

University of Texas at Dallas, TX, USA

Martha Palmer4 MARTHA.PALMER@COLORADO.EDU

University of Colorado at Boulder, CO, USA

Dan Roth5 DANROTH@SEAS.UPENN.EDU

University of Pennsylvania, PA, USA

1



Abstract
We consider the problem of human-machine collaboration in the context of a collaborative building
task in Minecraft. To this effect, we present an integrated system (Lara) that builds on advancements
in several related fields - NLP, knowledge representation, inductive logic programming, planning,
and statistical relational AI. Specifically, Lara consists of a language parser and generator for effec-
tive communication, a rich representation based on first-order logic that allows for generalization,
a concept learner that is capable of generalizing from a small number of instances by effectively
exploiting human guidance and a planner capable of exploiting domain knowledge effectively. The
resulting integrated system has been demonstrated and presented in detail here.

1. Introduction

It is well known that human-machine collaborative planning and problem-solving is quite challeng-
ing as it requires shared perception of the world, sophisticated language understanding, glitch free
execution, bi-directional communication, and contextual understanding. Specifically, we consider
the task of collaborative building in Minecraft (Kokel et al., 2021) and develop an integrated sys-
tem that builds on several different areas – hierarchical planning (Bercher et al., 2019; Erol et al.,
1994; Nau et al., 1999), knowledge representation and reasoning (Brachman & Levesque, 2004),
inductive logic programming (Cropper & Dumancic, 2022; Muggleton & Raedt, 1994; Raedt &
Kersting, 2008), knowledge-based learning (Towell & Shavlik, 1994; Kokel et al., 2020), natural
language processing (Banarescu et al., 2013; Bahdanau et al., 2015; Sutskever et al., 2014) and
generation (Gatt & Krahmer, 2018), a nd statistical relational AI (Raedt et al., 2016).

It is natural to focus on the modality of communication such as gestures, or natural language
when building human-AI collaborative systems. However, it is also essential to establish a common
vocabulary for communication. This is especially important in a complex domain such as Minecraft
where given the basic definitions of elementary shapes and sizes, higher-order concepts should be
built. The key requirement is that the common vocabulary of concepts keeps growing as more tasks
are solved and the interactions increase. The set of concepts should be easily learnable (with a
small number of examples) and generalizable. To this effect, we assume the existence of a basic
vocabulary and build upon an inductive logic programming based concept learner (Das et al., 2020).
This concept learner learns a set of hierarchical concepts based on a very small (possibly one)
number of examples using domain knowledge as an inductive bias.

While learning these generalized concepts, there is a necessity for the system to continue in-
teracting in the environment and modifying its interactions based on the induced concepts and the
feedback both from the environment and the human. The induced concept must be both generaliz-
able and compositional. Generalizable to different dimensions, sizes, and color and compositional
so as to effectively employ the hierarchies of concepts that are induced by the concept learner. The
induced concepts are used as preconditions to guide a hierarchical task planner (Das et al., 2018)
in our framework. The planner uses domain knowledge and actively seeks human guidance in the
form of knowledge constraints that are then used for both efficient and effective planning.

Finally, for effective communication, both the modality and the representation need to be estab-
lished. For modality, we employ the use of NLP parsers (both rule-based and neural-based parsers)
to translate the commands from the humans in natural language to a formal internal representation.

2



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

And for the reverse communication from the internal representation to natural language, we restrict
ourselves to specific forms and templates. Extending this to allow for richer neural language gener-
ators is our envisioned future work. For the internal representation, we employ the use of abstract
meaning representations (Banarescu et al., 2013) that allow for capturing generalized knowledge.

We make the following key contributions: (1) we present an integrated system called Lara
(Planning and learning via communication), that obtains instructions and knowledge in rich natural
language, reasons with the observations and knowledge, and executes the plan automatically; (2) the
system is capable of obtaining human “advice" as constraints both to learn the hierarchical concepts
and to perform planning; (3) most importantly, the system is capable of soliciting this advice in
an active manner, thus reducing the effort needed from the human in collaborative planning and
execution.

Unlike a traditional research paper, the integrated system paper is organized as follows: we
introduce the necessary background of the components in the system, then present the overall system
design with example scenarios and provide images of the demonstration (along with the link to the
full video), then we review some related work, and finally we conclude the paper by discussing the
salient features of the system and outlining areas of future research.

2. Background

2.1 Hierarchical planning

Hierarchical planning (Erol et al., 1994; Nau et al., 1999) consists of two types of tasks: primitive
and compound. A primitive task is defined using preconditions and effects (equivalent to operators
in classical planning). A primitive task is a single-step action that can only be executed in a state
which satisfies the task preconditions. Upon executing a primitive task the propositions of the state
change as dictated by the task effects. A compound task is a temporally extended action that requires
one or more primitive tasks to be executed in a partially ordered manner.

In hierarchical planning, one or more methods are defined for each compound task. A method is
described as a three tuple, consisting of compound tasks, preconditions, and a sequence of partially
ordered tasks (primitive or compound). When a state satisfies the method precondition, the com-
pound task can be decomposed in that state to the sequence of partially ordered tasks. The problem
of achieving a goal condition, starting from a given initial state, is also posed as a compound task
(or set of compound tasks). Each compound task is recursively decomposed using methods, till
a satisfying sequence of primitive tasks is identified. A sequence of primitive tasks is considered
satisfying if executing that sequence starting at the initial state results in a state that satisfies the goal
condition.

While classical planners use a common input language called Planning Domain Description
Language (PDDL) (Fox & Long, 2003), PDDL does not support compound tasks and methods.
Recently, Höller et al. (2020) proposed a Hierarchical Domain Description Language (HDDL) as
an extension of the STRIPS fragment of PDDL2.1 defined in Fox & Long (2003). Both PDDL and
HDDL are first-order languages and use first-order formulas over predicates for goal description.

3



2.2 Concept learning

Inductive logic programming (ILP) learns rules or relations inductively from the given set of back-
ground knowledge and positive as well as negative examples (Muggleton & Raedt, 1994). The
rules or relations in ILP are learned as decLarative logic programs, often as horn clauses. Concept
learning in ILP, essentially, reduces to learning a clausal theory (a first-order logic program) that
covers as many positive examples of the target concept as possible and as few negative examples as
possible (Raedt, 1997). ILP employs background knowledge as a search bias to constrain the space
of the hypothesis. Golem (Muggleton & Feng, 1990), FOIL (Quinlan, 1990), Progol (Muggleton,
1995), TILDE (Blockeel & Raedt, 1998), Aleph (Srinivasan, 1999), FOCL (Pazzani et al., 1991)
are some examples of ILP systems that learn the target concept by induction. One important aspect
of a cogent concept learning framework is that it should represent concept hierarchies, allowing us
to induce more complex concepts given previously learned ones, as opposed to learning traditional
logic programs with one level of abstraction (Fu & Buchanan, 1985)

2.3 Neural parsers

Abstract Meaning Representation (AMR) is a semantic representation of natural language (Ba-
narescu et al., 2013), where concepts are represented as nodes and relations between concepts are
represented with edges. AMR can be systematically translated to first-order logic (Bos, 2016) and,
hence, is a suitable representation for integration with ILP systems. With the tremendous success of
neural networks to solve various sequence-to-sequence problems (Bahdanau et al., 2015; Sutskever
et al., 2014), multiple neural models are proposed for parsing text to AMRs (Xu et al., 2020; Konstas
et al., 2017; Zhang et al., 2019; Peng et al., 2017).

2.4 Minecraft

Minecraft is a popular computer-based game developed by Mojang Studios and released in 20111.
Minecraft exposes a virtual 3D world where player avatars can explore the world, travel on adven-
tures, build structures, hunt for food, harvest raw materials, craft tools, and kill zombies. It poses
many challenging problems which have intrigued researchers to use it as a test bed for various open
problems in AI (Kanervisto et al., 2021; Salge et al., 2020; Shah et al., 2021). Project Malmo (John-
son et al., 2016), built on top of Minecraft, exposes an API for flexible AI experiments.

3. Lara - Planning and learning via communication

We now present the details of our collaborative problem-solving system and discuss each of the
components in detail.

3.1 Problem definition

This work considers the problem of human-machine collaboration in a Minecraft environment. A
collaborative building task (Jayannavar et al., 2020; Kokel et al., 2021; Narayan-Chen et al., 2019;

1. https://minecraft.net

4



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

(a) (b)

Figure 1: (a) Minecraft builder screen showing the 3D build region and the chat interface. (b)
Example of a target structure in the oracle screen. The architect can see both screens.

Narayan-Chen, 2020) is defined in the context of Minecraft where a human and a machine have
to collaborate to build a target structure by block placements. Blocks are restricted to be one of
six colors: red, blue, green, purple, orange, and yellow. A fixed 3D grid of size 11 × 9 × 11 is
defined as a build region, as shown in Figure 1a. The avatar can only move and place blocks in
this build region. The task is to build a target structure in this stipulated build region. The target
structure candidate is sampled from a preset list of complex shapes and displayed in a separate oracle
window. An example of a target structure is shown in Figure 1b. Two players, an architect and a
builder, collaborate and communicate using natural language via the chat interface. The architect
and the builder take turns on the chat window.

The architect can view the target structure in the oracle window and can also see the current state
of the build region. The builder can not see the oracle window. It can move in the build region to
place and remove blocks. The role of the architect is played by humans and the role of the builder is
played by Lara. The game begins with a simple target structure in the oracle window and a greeting
from the builder Lara to the architect (as seen in Figure 1a).

For a successful target structure construction and most importantly, generalization of the learned
concepts, the architect must decompose the target structure into smaller structures and instruct Lara
to achieve those subtasks. Lara must parse the instructions, seek clarifications as appropriate, and
execute the subtask(s). A sample interaction between an architect and the builder Lara is shown in
Figure 2, where the target structure is a red L. The challenges posed by the Minecraft-based blocks
world task are as follows:

1. The communication between the architect and the builder is inherently bi-directional (see for
example Figure 2).

2. The builder should be able to seek clarifications as required.

5



Figure 2: Target structure on the left is visible only to the architect (A). The architect instructs the
builder (B) to build a red tower. B seeks clarification about the size and then proceeds to build the
tower in the build region.

3. Both players must share some initial structures in the vocabulary, expand the vocabulary with
experience, agree upon the changes and reuse the learned higher-level concepts as appropriate.
This requires an effective reasoning process over the learned concepts.

These problems of the proposed task highlight the key challenges of the collaborative planning
problem: bi-directional communication, contextual understanding, composable vocabulary, and
a powerful concept learner that can induce new, rich concepts based on limited interaction and
experience.

Our key contribution in this work is the demonstration of our collaborative planning and
problem-solving agent that addresses these key challenges. Our system has the capability to under-
stand, quantify and measure “what-it-doesn’t-know" (dearth of relevant information) and leverage
that understanding to elicit “advice/knowledge/constraints" at the most appropriate decision points
from the humans and potentially learn better plans for increasingly complex structures. Some re-
cent works (for e.g. Narayan-Chen et al. 2019 and Köhn et al. 2020) introduced a similar Minecraft
environment, but focused on the dialogue generation and instruction giving; instead of the dialogue
understanding, concept induction, and planning challenges we focus on here.

3.2 System setup

For the collaborative building task in Minecraft, a few essential pieces of prior knowledge (domain
information) are assumed to exist in both the builder and the architect. These essentials include
directions, primitive structures, block indicators, and six colors. For simplicity, we only use the
directions w.r.t the architect’s viewpoint. Eight primitive structures include a block, tower, row,
column, cube, cuboid, square, and rectangle. Five of them are shown in Figure 3a. Three primitive
shapes not shown here include a single block, a square lying on the floor, and a rectangle lying
on the floor. Block indicators include guides for pointing to a single block that is a component of
the structure, a few examples are shown in Figure 3b–3d. Additionally, the terms height, width,
and length are used to represent the size of the structure from top-end to bottom-end, left-end to
right-end, and front-end to back-end, respectively. So, the tower size is its height, the row size is

6



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

its width, and the column size is its length. These elements of initial knowledge primitives of the
domain are later expanded upon by the learner.

With this initial knowledge, the architect instructs the builder to build the target structure. In our
system, the architect can either write a natural language text to instruct the builder or write “UNDO"
to revoke the last instruction. Upon receiving the instruction, the builder can either execute the
instruction or seek additional information for clarification (see for e.g. Fig. 2), provide prompts so
that the architect can provide instruction in a fashion that is comprehensible to the builder. Once the
target structure is constructed, the architect states “done". This would instruct the builder that the
task of building the target structure is accomplished in the build region. When the structure building
is completed, the builder offers to remember the structure for reuse. The architect can then provide
a name for the structure and describe its height, width, and length to the builder. The builder might
ask some yes/no questions to induce a generalized concept of the structure (Das et al., 2020). If
the builder is successful, the new structure is then added to the builder’s capabilities and can then
be treated as a lower-level structure. The process continues so that more complex concepts are
introduced as needed.

3.3 System Architecture

The architecture of our system Lara is illustrated in Figure 4 that integrates different research com-
ponents to develop a human-machine collaborative system. It primarily consists of four key compo-
nents: Minecraft simulator, NLP engine, Planner, and Concept learner. The Minecraft system and
the interfacing APIs form the Minecraft simulator. The module processing natural language

(a)

(b) (c) (d)

Figure 3: (a) Five of the eight primitive structures: tower, row, column, cube, and cuboid. Block
indicators that point to a single block of the structure. (b) top-end and bottom-end, (c) left-end and
right-end, (d) back-end and front-end. For complex structures, these indicators can be combined,
for example, the front-bottom-left block of a cube.

7



M
in

ec
ra

ft
si

m
ul

at
or

lo
gi

c
pa

rs
er

hi
er

ar
ch

ic
al

pl
an

ne
r

re
po

si
to

ry
di

al
og

ue
m

an
ag

er

ag
en

t
co

nt
ro

l

te
m

pl
at

e-
ba

se
d

pa
rs

er
A

M
R

-b
as

ed

pa
rs

er

N
L

P
en

gi
ne

Pl
an

ne
r

IL
P

le
ar

ne
r

C
on

ce
pt

le
ar

ne
r

B
ui

ld
a

to
w

er
of

4
re

d
bl

oc
ks

t
o
w
e
r
(
a
)

∧
h
e
i
g
h
t
(
a
,
4
)

∧
c
o
l
o
r
(
a
,
r
e
d
)

2

1

(
(
p
l
a
c
e

b
1

0
0

0
r
e
d
)

(
p
l
a
c
e

b
2

0
0

1
r
e
d
)

(
p
l
a
c
e

b
3

0
0

2
r
e
d
)

(
p
l
a
c
e

b
4

0
0

3
r
e
d
)
)

4

(v
v1

/b
ui

ld
-0

1
:A

R
G

0
(v

v3
/y

ou
)

:A
R

G
1

(v
v4

/t
ow

er
:c

on
si

st
-o

f
(v

v5
/b

lo
ck

:c
ol

or
(v

v7
/r

ed
):

qu
an

t4
))

:m
od

e
im

pe
ra

tiv
e)

3

A
dd

a
ro

w
of

si
ze

2
on

th
e

ri
gh

t

5

6

7

R
em

em
be

r
th

is
st

ru
ct

ur
e

as
L

.
8

Fi
gu

re
4:

A
rc

hi
te

ct
ur

e
of

L
ar

a.
It

co
ns

is
ts

of
a

M
in

ec
ra

ft
si

m
ul

at
or

,N
L

P
en

gi
ne

,p
la

nn
er

,a
nd

co
nc

ep
tl

ea
rn

er
.

A
n

ex
am

pl
e

flo
w

of
bu

ild
in

g
th

e
“L

”
sh

ap
e

is
ill

us
tr

at
ed

.
1 ⃝

N
at

ur
al

la
ng

ua
ge

in
st

ru
ct

io
n

by
th

e
ar

ch
ite

ct
to

bu
ild

a
re

d
to

w
er

.
2 ⃝

A
M

R
re

pr
es

en
ta

tio
n

of
th

e
in

st
ru

ct
io

n
pa

rs
ed

by
A

M
R

pa
rs

er
.

3 ⃝
L

og
ic

re
pr

es
en

ta
tio

n
of

th
e

in
st

ru
ct

io
n.

4 ⃝
B

lo
ck

pl
ac

em
en

tp
la

n
ge

ne
ra

te
d

by
th

e
pl

an
ne

r.
5 ⃝

A
ge

nt
co

nt
ro

le
xe

cu
te

s
th

e
pl

an
in

th
e

bu
ild

re
gi

on
.

6 ⃝
N

ex
ti

ns
tr

uc
tio

n
fr

om
th

e
ar

ch
ite

ct
to

ad
d

a
ro

w
.

7 ⃝
A

ge
nt

co
nt

ro
le

xe
cu

te
s

th
e

ne
xt

in
st

ru
ct

io
n

in
th

e
bu

ild
re

gi
on

.
8 ⃝

St
ru

ct
ur

e
sa

ve
d

as
“L

".

8



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

text forms the NLP engine. The module generating the action plan for the Minecraft avatar consti-
tutes the planner. Finally, the module learning new structures forms the concept learner component.
We now describe each of these components in greater detail.

3.3.1 Minecraft simulator

Project Malmo (Johnson et al., 2016) is extended for our collaborative building task by adding a dia-
logue manager and agent control module. The dialogue manager has two major responsibilities, 1.
to triage the messages from the architect and 2. to generate natural language text for bi-directional
communication. A message from the architect could either be a build instruction, a clarification, a
concept explanation, or an UNDO operation. Dialogue Manager would accordingly pass forward
the request to either the NLP engine, the planner, the concept learner, or the agent-control module,
respectively. For bi-directional communication, the dialogue manager maintains a fixed set of tem-
plate sentences with slots. These slots are then populated accordingly as required and sent via the
chat interface. The set of template sentences maintained by the dialogue manager is provided in the
Appendix2. The agent control module processes the plan generated by the planner and sends the
action commands to MALMO API for execution in the Minecraft environment.

Predicates:
{block/1, tower/1, row/1,
cube/1, cuboid/1, square/1,
rectangle/1, width/2
height/2, length/2, size/2,
color/2, spatial_rel/3,
top_end/2, bottom_end/2,· · · }

Objects:
{red, blue, green, purple,
orange, yellow, east, west,
north, south, top, bottom,
a, b,· · ·, z, aa, ab,· · ·, zz, 0,
1, 2, · · ·, 10}

Build a tower of 4 red blocks.
tower(a) ∧ height(a,4) ∧
color(a,red)

Build a tower of 4 red blocks and
add a row of size 2 on the right.
tower(a) ∧ color(a,red) ∧
height(a,4) ∧ row(b) ∧
color(b,red) ∧ width(b,2)
∧ block(b1) ∧ block(b2)
∧ bottom_end(a,b1)
∧ left_end(b,b2) ∧
spatial_rel(west,b1,b2)

(a) (b)

Figure 5: FOL representation of collaborative building task. (a) FOL language (Complete list of
predicates is deferred to Appendix) (b) Example FOL instructions.

3.3.2 NLP engine

The main job of the NLP engine is to parse the natural language instructions from the architect
and provide a generalized semantic representation of such instructions for processing. We lever-

2. Appendix and demos available at https://starling.utdallas.edu/papers/lara/

9



age first-order logic (FOL) to encode this semantic representation. We choose this for two specific
practical reasons. First, FOL representation is compatible with the ILP-based concept learner. Sec-
ond, Planning Domain Description Language (PDDL) is also a first-order predicate representation.
Given the compatibility of FOL representation with the two components (the concept learner and
the planner), it was a natural choice. While the above two reasons are from a pragmatic point of
view, the use of FOL is necessary as there is a necessity to learn conceptual knowledge at multiple
levels of abstraction – individual object level (ex., the red block), sets of objects (ex., the red blocks)
or over all the objects. Learning and reasoning in such a rich space of abstractions is facilitated by
the use of ILP and relational planners.

However, while it is possible to represent the complete semantics of the natural language in-
struction in FOL, it is also clear that for the purposes of this task, a restricted form of FOL would
suffice. This restriction is necessary to maintain the tractability of learning and reasoning. The
essential knowledge discussed earlier in Section 3.2 comprises the predicates of this language. Fig-
ure 5a presents the first-order language used to describe the collaborative building tasks. Figure 5b
shows examples of FOL representations of natural language instructions.

To translate the natural language to FOL, we developed two independent NLP parsers: template-
based and AMR-based. Our domain-specific template-based parser uses fixed set of templates
consisting of slots. These slots are filled by the parser by going through the sentence and looking
for matching short phrases. Once the slots are filled, the template is translated to the logic format. It
is similar in spirit to Template Matcher parser by Jackson et al. (1991), with output in FOL. While
our parser is quite fast, it has a few limitations. This parser maintains a fixed list of structures known
to the builder and their dimensions and thus has quite a limited vocabulary. It does not support all
possible phrasing of instruction and requires manual updates of templates to support new sentence
formulations. To overcome these limitations, we built an AMR-based parser.

While the template-based parser uses predefined templates for the translation of simpler sen-
tences, the AMR-based parser supports free-form sentences of varying complexity. As AMRs can
be systematically translated to FOL (Bos, 2016), we use a neural parser to parse natural language
text to AMRs. Figure 4 2⃝ shows AMR representation of the sample natural language instruction
presented earlier. AMR annotation had not been approached with spatial semantics in mind. Bonn
et al. (2020) extends AMR with a spatial addendum, which enables more expressive representation
for spatial relationships required in the three-dimensional domain of Minecraft. Minecraft-specific
3D structure building dialogues were collected between human architect and human builder and
annotated with the new inventory of spatial rolesets (Narayan-Chen et al., 2019). A state-of-the-art
neural AMR parser, STOG (Zhang et al., 2019), was trained on this Minecraft spatial AMR corpus
(Bonn et al., 2020).

3.3.3 Planner

This component is responsible for providing the action sequence of placing blocks in the Minecraft
environment. Wichlacz et al. (2019) show that a hierarchical planner is better suited than a classical
planner for the Minecraft building task. Consequently, a hierarchical planner, JSHOP2 (Ilghami,
2006), is employed in this system to generate build plans. JSHOP2 uses a restricted version of
HDDL, the same as SHOP2 (Nau et al., 2003), and expects the goal description as a logical com-

10



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

tower(a) ∧ height(a,4) ∧
color(a,red)
(tower 0 0 0 4 red)

tower(a) ∧ color(a,red) ∧
height(a,4) ∧ row(b) ∧
color(b,red) ∧ width(b,2)
∧ block(b1) ∧ block(b2)
∧ bottom_end(a,b1)
∧ left_end(b,b2) ∧
spatial_rel(west,b1,b2)
(tower 0 0 0 4 red)
(row 0 1 0 2 red)

L(c) ∧ color(c,red) ∧
height(c,4) ∧ width(c,3)

Active advice queries to the
architect (responses):

1. Is the new height same as the height of
the tower? (yes)

2. Is the new width one more than the
width of the row? (yes)

3. Should the height of an L be one more
than the width of the L? (no)

(a) (b)

Figure 6: (a) Goal description of the FOL instruction. (b) FOL representation of new structure “L”
and active advice queries to the architect.

bination of predicates defined in the planning domain. For a concise representation, we use the
following format to define predicates for all the primitive structures,

(structure-name x-location y-location z-location

[height] [width] [length] color).

Following a LISP format, the predicate name is the first element of the tuple which defines the name
of the structure. The first three arguments are the X, Y, and Z coordinates of a pivotal block of the
structure. The next three arguments represent the three dimensions of the structure. These dimen-
sions, denoted within square brackets are not mandatory for all. Different structures have different
dimensions, so the mandatory arguments change accordingly. For example, height is mandatory for
tower. So, the tower predicate has 5 arguments. "(tower 0 0 0 4 red)" represents a tower
with height 4. color red, and the pivotal block (i.e. lowest block) at the (0, 0, 0) location in the grid.
A complete list of predicates in the planning domain is presented in the Appendix.

The logic parser, translates the FOL instruction to the goal description in the above format.
Location coordinates are explicitly constrained within grid boundaries while achieving spatial rela-
tions. Figure 6 presents example goal descriptions of two FOL instructions presented earlier. When
any of the required dimensions are missing, the planner returns an INCOMPLETE GOAL DE-
SCRIPTION error highlighting the missing dimension. In that case the dialogue manager generates
a natural language question for that dimension and completes goal description from the response.

The repository contains all the concept representations known to the builder. Initially, the
repository only contains the mapping between the 8 primitive structures and dimensions; identifying
the required argument for each primitive structure. Gradually, representations of new structures are
also added to the repository (Further details in Section 3.3.4). A complete goal description and an

11



initial state (description of the current build region) is provided to the planner. The hierarchical
planner then provides a sequence of block placement or removal actions to transform the current
build region to the goal description. An example plan is presented in Figure 4 4⃝.

3.3.4 Concept learner

While there exists various ILP systems that learn concepts (Muggleton & Feng, 1990; Muggleton,
1995; Quinlan, 1990), they all require multiple (positive and negative) examples for each concept.
Our collaborative building task, on contrary, requires the agent to learn a new structural concept
from just one positive example of the structure. To this effect, we leverage the Guided One-shot
Concept Induction (GOCI) framework (Das et al., 2020). At its core, GOCI does use an ILP engine
to propose candidate hypotheses for a concept. But learning an suitably generalized concept rep-
resentation from a single example, where infinitely many generalizations are possible, is complex.
GOCI uses a powerful inter-representational distance as well as actively solicits advice from hu-
mans to prune such a hypothesis space. In our context, queries to obtain advice are posed as simple
yes/no questions to the architect. For instance, figure 6b illustrates the FOL representation and the
queries by GOCI for an example structure “L” of red color, height of 4, and width of 3, composed of
a tower and a row of sizes 4 and 2, respectively. Note that GOCI poses minimum possible number
of queries subject to complexity of the structure. However, as shown in Das et al. (2020), GOCI
poses an average of 5.5 ± 3 queries in Minecraft experiments, which is significantly less then the
sample complexity for learning the structural concepts outlined here with vanilla ILP.

On receiving responses from the architect, GOCI prunes the hypothesis space and finds the
most suitable hypothesis which represents the generalized concept of L which is a composition over
existing structures. In this current example, the concept L is learned as the following horn clause,

L(X) :- tower(A) ∧ color(A,C) ∧ height(A,H) ∧ row(B) ∧
color(B,C) ∧ width(B,W) ∧ block(R) ∧ block(S) ∧
bottom_end(A,R) ∧ left_end(B,S) ∧ spatial_rel(west,R,S) ∧
color(X,C) ∧ height(X,H) ∧ width(X,V) ∧ one_more(V, W).

Uppercase indicates variables and the only constant in this horn clause is west. Clausal represen-
tations of new structures are stored in the repository. On encountering such non-primitive structures
in the instruction, the logical parser would first replace the non-primitive structure with the primitive
structures from the clausal theory and then generate a goal description.

Generalization is an important factor here. It is not merely a composition of the representations
of the sub-concepts, but includes complex decisions about parameter tying, shared logical variables
and partial grounding such that we end up learning a suitable generalization of the given structure
and not other relatively similar structures. For instance, the spatial_rel() predicate represents
at which relative position the tower and the row connect and in which direction. Hence the clause
does not represent other concept classes like “inverted L”. Sammut & Banerji (1986) have, precisely,
outlined the nuances of such generalization via logic programs. Another aspect of generalization
is learning growing concept hierarchies in GOCI. For example, once an L structure is learned as a
combination of a tower and a row, a U structure can be learned as a combination of an L and a tower.

12



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

(a) (b)

(c) (d)

(e)

<B> Hello Architect, I’m ready!
<A> build a red tower
<B> What is the height of the tower?
<A> 4
<B> Okay, now what?
<A> done
<B> Thanks!
<B> This session is complete! Please start
a new mission to continue playing.

(f)

Figure 7: Illustration of Lara. (a) A new mission—red tower of height 4. (b) Greeting from the
builder and first instruction from the architect to build a red tower. (c) The builder enquires about
the height of the tower and the architect provides the height value 4. (d) The builder understands the
task, generates a plan, and placed red blocks in the build region. (e) After completing the instruction
the builder asks for the next instruction and the architect says done. This ends the mission. (f) The
complete chat of this mission is here in text for clarity ‘<B>’ and ‘<A>’indicates message from the
builder and the architect, respectively.

13



(a) Gamma structure (Γ) (b) Cap structure (⊓) (c) Box structure (□)

Build an orange row of
size 4.
Place an orange column
of size 3.
The first block of the
column is in front of the
left end of the row.
done

This is an orange Gamma
of length 4 and width 4.

Build a blue gamma of
size 4 by 6.
Place a blue column of
size 3 in front of gamma.
The backend of the col-
umn is in front of the left
end of the gamma.
done

This is a Cap of length 4
and width 6 in blue color.

Build a red cap of size 2
by 6.
Place a red row of size 6
in front of the cap.
The rightend of the row
is in front of the right end
of the cap.
done

This is a box of length 4
and width 6 in blue color.

(d) Instructions for Gamma (e) Instructions for Cap (f) Instructions for Square

Figure 8: Demonstration of the concept hierarchy. (a) Gamma structure (Γ) made from a row and
column. (b) Cap structure (⊓) made from gamma and a column. (c) Box structure (□) made from a
cap and a row. Subfigures (d), (e), and (f) present the natural language instructions.

So, generalization of ‘U’ to a composition of 2 towers and a row is achieved by resolving the
hierarchy graph. We demonstrate a concept hierarchy in Section 4s. If needed, the architect can
also ask the system to forget a learned concept. This can be done by the following command in the
chat interface, “Forget <structure-name>”.

4. Demonstration

Figure 7 demonstrates our system. We present screenshots of a mission of building a red tower from
the beginning till the end. Figure 7f reproduces the complete natural language conversation between
the builder and the architect.

Further capabilities of Lara are demonstrated in the videos available from the following URL:
https://starling.utdallas.edu/papers/lara/. Here we illustrate the capability of
Lara to learn concept hierarchies using the GOCI framework. Figure 8 presents three different
concepts, at three different levels of the hierarchy. The first structure Gamma (Figure 8a) is built as

14



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

a composition of a row and a column. The natural language instructions for this structure are shown
in Figure 8d. The next structure, Cap (Figure 8b) is composed of a gamma and a column. This
forms the second level of the hierarchy. Further, Figure 8c shows the third level of the hierarchy
where the concept Box is composed of a cap and a row.

5. Related Work

Blocks world and its variants have been used as toy examples in developing AI and automated
planning systems since a long time (Nau et al., 1999). Prominently, Winston (1970) used blocks
world for learning structural description from examples and SHRDUL, a dialog system by Winograd
(1972), used blocks world for natural language understanding in a 3-dimensional world. While
many follow-up work have used blocks world in various human machine interaction setting, our
work simulates the blocks world domain in a popular Minecraft environment.

Human-robot interaction has been addressed in context of collaborative task achievement by
various prior works (Blaylock et al., 2003; Clodic et al., 2008; Fiore et al., 2014; Devin & Alami,
2016; Lemaignan et al., 2017; Krishnaswamy et al., 2020). Of these, we find Lemaignan et al.
(2017) and Krishnaswamy et al. (2020) most relevant. Lemaignan et al. (2017) identifies and char-
acterizes the challenges in building a cognitive robot that shares space and task with humans. While
a few challenges in their setting are similar to ours (for eg. communication and shared vocabulary),
in our work humans and robots do not share the space. That is, only robots are able to modify
the environment and humans can only monitor it. Krishnaswamy et al. (2020) presents a situated
multimodal interactive agent, Diana. Diana understands vocal instructions, gestures and facial ex-
pressions. Like Lara, Diana is situated in a virtual world and interacts with humans to achieve a
task. However, Diana’s tasks are limited and do not require long term planning.

6. Discussion

We have considered the problem of human-machine collaboration in the context of a Minecraft task.
Our proposed system Lara, is an integration of several important areas of related research. Specifi-
cally, it uses NLP for communication with humans, knowledge representation for representing and
reasoning with generalized knowledge, inductive logic programming for efficiently learning higher-
order concepts, and hierarchical task planning for effective problem-solving. Lara has the following
salient features:

• It allows for rich natural language instructions from a human architect by employing an NLP-
based parser.

• It represents common knowledge in a rich FOL based knowledge-base that allows for effective
generalization while not sacrificing efficient reasoning.

• It uses an ILP-based concept learner that efficiently learns hierarchical, generalized concepts from
a very small number of (potentially single) examples.

• It uses a hierarchical planner that constructs plans in a stage-wise manner to effectively exploit
the concepts learned in earlier interactions.

15



• It computes its uncertainty over its plans/concepts and queries the human expert for additional
knowledge.

In effect, the system knows-what-it-knows and solicits information about what it does not know.
This additional information is then used to guide the concept learner and the planner in their tasks.

While successful, the system can potentially be improved in several directions. The richness
of natural language interaction can be improved by adding more recent neural-based parsers and
generators. Allowing for multiple modalities of communication including gestures is an important
future direction. Extending the planner and concept learner to handle complex hybrid data by allow-
ing for them to be differentiable is a necessary step. Finally, large-scale evaluation in more complex
domains is an interesting future direction.

Acknowledgements

We gratefully acknowledge the support of CwC Program Contract W911NF-15-1-0461 with the US
Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO). We do
not reflect the views of the DARPA, ARO, or the US government.
References

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align
and translate. ICLR.

Banarescu, L., et al. (2013). Abstract meaning representation for sembanking. Proceedings of the
7th Linguistic Annotation Workshop and Interoperability with Discourse, LAW-ID@ACL.

Bercher, P., Alford, R., & Höller, D. (2019). A survey on hierarchical planning - one abstract idea,
many concrete realizations. IJCAI (pp. 6267–6275). ijcai.org.

Blaylock, N., Allen, J., & Ferguson, G. (2003). Managing communicative intentions with collabo-
rative problem solving, (pp. 63–84). Dordrecht: Springer Netherlands.

Blockeel, H., & Raedt, L. D. (1998). Top-down induction of first-order logical decision trees. Artif.
Intell., 101, 285–297.

Bonn, J., Palmer, M., Cai, Z., & Wright-Bettner, K. (2020). Spatial AMR: Expanded spatial anno-
tation in the context of a grounded Minecraft corpus. LREC.

Bos, J. (2016). Expressive Power of Abstract Meaning Representations. Computational Linguistics,
42, 527–535.

Brachman, R. J., & Levesque, H. J. (2004). Knowledge representation and reasoning. Elsevier.

Clodic, A., Cao, H., Alili, S., Montreuil, V., Alami, R., & Chatila, R. (2008). SHARY: A supervision
system adapted to human-robot interaction. ISER (pp. 229–238). Springer.

Cropper, A., & Dumancic, S. (2022). Inductive logic programming at 30: A new introduction. J.
Artif. Intell. Res., 74, 765–850.

Das, M., Odom, P., Islam, M. R., Doppa, J. R., Roth, D., & Natarajan, S. (2018). Preference-guided
planning: An active elicitation approach. AAMAS (pp. 1921–1923).

16



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

Das, M., Ramanan, N., Doppa, J. R., & Natarajan, S. (2020). Few-shot induction of generalized
logical concepts via human guidance. Frontiers in Robotics and AI, 7, 122.

Devin, S., & Alami, R. (2016). An implemented theory of mind to improve human-robot shared
plans execution. HRI (pp. 319–326). IEEE/ACM.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. AAAI
(pp. 1123–1128). AAAI Press / The MIT Press.

Fiore, M., Clodic, A., & Alami, R. (2014). On planning and task achievement modalities for human-
robot collaboration. ISER (pp. 293–306). Springer.

Fox, M., & Long, D. (2003). PDDL2.1: an extension to PDDL for expressing temporal planning
domains. J. Artif. Intell. Res., 20, 61–124.

Fu, L., & Buchanan, B. G. (1985). Learning intermediate concepts in constructing a hierarchical
knowledge base. IJCAI (pp. 659–666). Citeseer.

Gatt, A., & Krahmer, E. (2018). Survey of the state of the art in natural language generation: Core
tasks, applications and evaluation. J. Artif. Intell. Res., 61, 65–170.

Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., & Alford, R. (2020). HDDL:
an extension to PDDL for expressing hierarchical planning problems. AAAI (pp. 9883–9891).

Ilghami, O. (2006). Documentation for jshop2. Tech Report.

Jackson, E., Appelt, D. E., Bear, J., Moore, R. C., & Podlozny, A. (1991). A template matcher for
robust NL interpretation. HLT . Morgan Kaufmann.

Jayannavar, P., Narayan-Chen, A., & Hockenmaier, J. (2020). Learning to execute instructions in a
minecraft dialogue. ACL (pp. 2589–2602).

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The malmo platform for ai experi-
mentation. IJCAI.

Kanervisto, A., et al. (2021). Minerl diamond 2021 competition: Overview, results, and lessons
learned. NeurIPS (Competition and Demos) (pp. 13–28). PMLR.

Köhn, A., Wichlacz, J., Schäfer, C., Torralba, Á., Hoffmann, J., & Koller, A. (2020). MC-saar-
instruct: a platform for Minecraft instruction giving agents. SIGDIAL (pp. 53–56).

Kokel, H., Odom, P., Yang, S., & Natarajan, S. (2020). A unified framework for knowledge intensive
gradient boosting: Leveraging human experts for noisy sparse domains. AAAI.

Kokel, H., et al. (2021). Human-guided collaborative problem solving: A natural language based
framework. ICAPS (Demo Track).

Konstas, I., Iyer, S., Yatskar, M., Choi, Y., & Zettlemoyer, L. (2017). Neural AMR: sequence-to-
sequence models for parsing and generation. ACL (1) (pp. 146–157).

Krishnaswamy, N., et al. (2020). Diana’s world: A situated multimodal interactive agent. AAAI (pp.
13618–13619). AAAI Press.

Lemaignan, S., Warnier, M., Sisbot, E. A., Clodic, A., & Alami, R. (2017). Artificial cognition for
social human-robot interaction: An implementation. Artif. Intell., 247, 45–69.

17



Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. New Generation Comput-
ing. Academic Press.

Muggleton, S. H. (1995). Inverse entailment and progol. New Gener. Comput., 13, 245–286.

Muggleton, S. H., & Raedt, L. D. (1994). Inductive logic programming: Theory and methods. J.
Log. Program., 19/20, 629–679.

Narayan-Chen, A., Jayannavar, P., & Hockenmaier, J. (2019). Collaborative dialogue in minecraft.
ACL.

Narayan-Chen, A. Y. (2020). Towards collaborative dialogue in minecraft. Doctoral dissertation,
University of Illinois at Urbana-Champaign.

Nau, D., Cao, Y., Lotem, A., & Munoz-Avila, H. (1999). Shop: Simple hierarchical ordered planner.
IJCAI (pp. 968–975).

Nau, D. S., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
an HTN planning system. J. Artif. Intell. Res., 20, 379–404.

Pazzani, M. J., Brunk, C., & Silverstein, G. (1991). A knowledge-intensive approach to learning
relational concepts. ML (pp. 432–436). Morgan Kaufmann.

Peng, X., Wang, C., Gildea, D., & Xue, N. (2017). Addressing the data sparsity issue in neural
AMR parsing. EACL (1) (pp. 366–375).

Quinlan, J. R. (1990). Learning logical definitions from relations. Mach. Learn., 5, 239–266.

Raedt, L. D. (1997). Logical settings for concept-learning. Artif. Intell., 95, 187–201.

Raedt, L. D., & Kersting, K. (2008). Probabilistic inductive logic programming. In Probabilistic
inductive logic programming, volume 4911 of Lecture Notes in Computer Science, 1–27.

Raedt, L. D., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical relational artificial intel-
ligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 10, 1–189.

Salge, C., Green, M. C., Canaan, R., Skwarski, F., Fritsch, R., Brightmoore, A., Ye, S., Cao, C., &
Togelius, J. (2020). The AI settlement generation challenge in minecraft. Künstliche Intell., 34.

Sammut, C., & Banerji, R. (1986). Learning concepts by asking questions (pp. 167-191). Machine
learning: An artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Shah, R., et al. (2021). Retrospective on the 2021 minerl BASALT competition on learning from
human feedback. NeurIPS (Competition and Demos) (pp. 259–272). PMLR.

Srinivasan, A. (1999). The aleph manual. From https://www.cs.ox.ac.uk/
activities/programinduction/Aleph/aleph.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.
NIPS (pp. 3104–3112).

Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks. Artificial
intelligence.

18



LARA – HUMAN-GUIDED COLLABORATIVE PROBLEM SOLVER

Wichlacz, J., Torralba, A., & Hoffmann, J. (2019). Construction-planning models in minecraft.
ICAPS workshop on HPlan.

Winograd, T. (1972). Understanding natural language. Cognitive Psychology, 3, 1–191.

Winston, P. H. (1970). Learning structural descriptions from examples.

Xu, D., Li, J., Zhu, M., Zhang, M., & Zhou, G. (2020). Improving AMR parsing with sequence-to-
sequence pre-training. EMNLP (1) (pp. 2501–2511). Association for Computational Linguistics.

Zhang, S., Ma, X., Duh, K., & Durme, B. V. (2019). AMR parsing as sequence-to-graph transduc-
tion. ACL (1) (pp. 80–94).

19


