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Abstract
While language models have impressive performance in prediction tasks, they often fail on exam-
ples that seem simple to humans. The failures can often be described as a result of models lacking
common sense. There have been a number of efforts to encode commonsense knowledge using
knowledge graphs, but the challenge remains of how best to perform commonsense inference in a
way that has the intuitiveness of the knowledge graphs and the coverage and predictive power of the
language models. Relational graph convolutional networks (RGCNs) hold promise for approximate
commonsense inference, because they perform a "local semantic averaging" operation. Just as con-
volutional neural networks (CNNs) aggregate neighboring pixels for computer vision tasks, GCNs
aggregate information from neighboring nodes of a graph. RGCNs use relational data to learn
how to aggregate this information. We introduce three methods to inject commonsense knowl-
edge into contextual language representations. We show that the representations learned from an
RGCN, although trained on considerably less data, still prove useful in a downstream information
retrieval task when combined with a transformer-based language model. We find that the earlier
the commonsense knowledge injection, the better the performance of the language model on such
tasks.

1. Introduction

Understanding language on a human level has two aspects: syntactic and semantic knowledge.
Syntactic knowledge captures the way grammar and sentence structure are used to form text, while
semantic knowledge captures the meaning of text. Natural Language Processing (NLP) attempts
use large, powerful models to learn natural language on a human level. Recently there have been
many advances in NLP due to the introduction of powerful pre-trained transformer-based language
models. These models implement attention mechanisms to generate useful contextual representa-
tions of text that allow for greatly improved performance of various NLP benchmarks [Vaswani
et al. (2017)]. Research has analyzed the weights of models to determine what information these
models leverage to perform these tasks. There is evidence that they use syntactic knowledge as well
as some semantic knowledge [Petroni et al. (2019)]. However, it appears that at times, some of the

© 2022 Cognitive Systems Foundation. All rights reserved.



C. YIN, P. COLON-HERNANDEZ, H. LIEBERMAN

semantic knowledge learned by these models is inaccurate. This causes the model to hallucinate
or produce false information in downstream tasks. This hallucination can be the result of biased or
noisy training data that simply induces the storage of incorrect knowledge [Colon-Hernandez et al.
(2021)].

This leads to the thought that these models lack some useful knowledge for understanding the
meaning of text and for performing well on NLP tasks. If this knowledge can be better captured by
these language models, then performance on NLP tasks can be further improved. One resource to
help do this is knowledge graphs. Knowledge graphs are collections of knowledge in a structured
manner, explicitly encapsulating information in the form of a graph data structure, where nodes
represent entities and edges represent relationships between the entities. If we can encode and
combine the information in these graphs, with that of the pre-trained transformer-based language
models, then we could supplement and correct information that may be missing or is wrong from the
pre-trained models. This gives us powerful language models that are rich with commonsense, thus
able to read between the lines, tackle more complicated language tasks, and be more interpretable
to humans.

In this paper, our goal is to answer the following questions:

1. Can we harness the power of large KGs to improve the performance of large language models
on downstream language-related tasks?

2. Is it possible to combine a relational graph convolution network with a transformer-based
language model to achieve performance gain in a downstream task?

We first implement a model to learn meaningful embeddings from knowledge graphs. We use
a relational graph convolutional network (RGCN), which exploits the multi-relational information
encapsulated by edges in graph data. In comparison to other knowledge graph learning models, the
RGCN is advantageous in that it allows for information to be effectively shared between neighboring
entities, therefore creating more contextually aware embeddings. After testing and validating the
RGCN model, we combine the entity embeddings along with the actual model with a transformer-
based language model (BERT) to see the effects in a downstream task. Namely, we explore an
information retrieval task to rank similar help questions. We test three methods for combining these
models, which will be introduced in more depth in chapter 3: input injection, architecture injection,
and output injection. We compare the performance of these three methods alongside other baseline
methods to determine whether KG can inform and improve learning for language tasks.

This paper will continue with a summary of previous works related to the proposed question.
In Section 3, we describe the model implementations, providing a thorough overview of the entire
pipeline. In Section 4, the experiments conducted will be described in detail. Section 5 presents
and discusses the results of the experiments, including proposed explanations and justification for
them. In Section 6, we discuss the future downstream tasks of the model. Section 7 concludes by
summarizing results and future work.

2



GETTING HELP FROM THE NEIGHBORHOOD

2. Prior Work

In the domain of natural language understanding, transformer-based models are large and powerful,
and can attain high performance on different tasks. One such model is BERT [Devlin et al. (2019)].
BERT stands for "Bidirectional Encoder Representations from Transformers" trains a transformer
encoder with a masked language modeling objective on a large dataset [Vaswani et al. (2017)]. This
pre-training in turns allows the BERT model to generate effective contextual representations for
input text. Because BERT is pre-trained on language data, the output layers of the model can be
fine tuned and adapted to a variety of NLP tasks and achieve good performance.

In comparison to our methodology, the most similar work is KagNet. Lin et al. (2019) explore
the use of GCNs, an architecture similar to RGCNs but lacking the capability of using relational
information. In order to answer commonsense questions, they use KagNet to score answers with
graph representations. The model trains on ConceptNet and achieves impressive performance on
CommonsenseQA.

Commonsense Knowledge

In our experiments, we will be using a subset of ConceptNet Liu & Singh (2004). Conceptnet is a
collection of facts which humans deem to be "common sense". Commonsense facts are typically
simple things that we humans take for granted, and assume that others also know. Because of
this, this knowledge is typically not written down. ConceptNet is a collection of these facts. It is
represented as a knowledge graph of entities connected by labeled and weighted edges. ConceptNet
data is is in the form of (subject, relation, object) triples, with subjects and objects as nodes and
relations as the labeled edges of the graph. The data are a compilation of "expert-created resources,
crowd-sourcing, and games with a purpose" Liu & Singh (2004); Speer et al. (2018).

Examples of assertions found in ConceptNet alongside their (subject, relation, object) triple
representations include:

• A dog has a tail ⇐⇒ (dog, HasA, tail)

• A vacuum is capable of cleaning the floor ⇐⇒ (vacuum, CapableOf, clean floor)

• A tool is an object ⇐⇒ (tool, IsA, object)

• Going for a jog causes you to sweat ⇐⇒ (go for jog, Causes, sweat)

• Bridges are used for crossing water ⇐⇒ (bridge, UsedFor, cross water)

Across all languages, the entire ConceptNet dataset contains over 21 million edges (relations)
between over 8 million nodes (entities). The subset that is in English contains approximately
1, 500, 000 nodes. The full data can be downloaded from the ConceptNet 5 GitHub 1. Due to
the large size and high connectivity, we work with subsets of ConceptNet. In our work we use a
subset generated from 2 Li et al. (2016).

Apart from ConceptNet, another popular commonsense knowledge graph is ATOMIC Sap et al.
(2019). ATOMIC is a collection of if-then facts, which complement ConceptNet’s taxonomic

1. GitHub available here https://github.com/commonsense/conceptnet5/
2. Available here https://home.ttic.edu/~kgimpel/commonsense.html
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knowledge. Although we do not use it in our work, we leave it as future work to add this knowledge
into our system.

Language models enhanced with commonsense knowledge

Many recent works explore methods for creating more commonsense aware language models, and
show how these methods can improve model performance. Zhou et al. (2020) introduce concept-
aware language models (CALM) as a method to pre-train language models on commonsense knowl-
edge without the use of knowledge graphs. The transformer-based model jointly uses a generative
objective and a discriminative objective to distinguish commonsense-aware sentences in a self-
supervised manner. Just pre-training on a small corpus of Wikipedia data, they show significant
improvement on natural language understanding (NLU) and natural language generation (NLG)
tasks.

Overfitting and bias in fine-tuned models

However, some studies show that such fine-tuned models may be prone to overfitting. Kejriwal
& Shen (2020) perform quality and consistency analyses to prove the lack of generalizability of
these models. Alongside, Ma et al. (2021) perform model training on different partitions of datasets
to measure generalizability. They find that fine-tuning, in comparison to other model adaptation
methods, performs well but generalizes poorly to unseen data.

Relational knowledge with language models

Other studies have explored how to combine relational information from knowledge graphs with
powerful transformer-based language models, but none have explored the use of RGCNs. One rele-
vant study introduces KnowBERT for architecture injection [Peters et al. (2019)]. They use contex-
tual word representations at the core of their model, augmenting them with explicit, commonsensical
embeddings from knowledge bases (KB). They use human-curated knowledge from Wikipedia and
WordNet to enhance a BERT model. This results in a knowledge enhanced BERT, hence Know-
BERT. Overall, their experiments show that KnowBERT has improved recall on facts in probing
tasks and relationship extraction, perplexity, entity typing, and defining ambiguous words. In addi-
tion to a significant improvement in task performance, KnowBERT also has a runtime comparable
to an ordinary BERT model. Their evaluations suggest that commonsense knowledge embeddings
can improve model quality and performance on predictive tasks. Another model is LP-BERT [Li
et al. (2022)] for the task of link prediction. They propose a knowledge graph BERT which first
undergoes multi-task pre-training on the knowledge graph. Then, the model undergoes knowledge
graph fine-tuning that uses negative sampling from positive samples of the KG. This model achieves
state-of-art results on link prediction tasks [Li et al. (2022)] for WordNet and Freebase datasets.

There has been additional work on evaluating what commonsense information is present in
language models such as BERT Da & Kasai (2019). The authors finde 5 categories of knowledge
(namely Visual, Encyclopedic, Functional Perceptual, Taxonomic) that BERT is lacking on. The
authors then sample from an additional dataset (RACE dataset Lai et al. (2017)) to find and fine
tune on passages in these categories that may be help a BERT model compensate deficiencies in
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the areas. In addition to this, the authors concatenate the fine tuned BERT embeddings with some
knowledge graph embeddings from simple LSTM encoded text assertions that involve the entities
that are present in the questions and passages they train their final joint model on (MCScript 2.0
Ostermann et al. (2019)). It is worth noting that the graph embeddings that they concatenate, albeit
simple, boost the performance of their system which shows that there is still some information in
KGs that is not in BERT.

3. Models

Our method infuses commonsense knowledge into language models and consists of two stages with
one model each. In the first stage, an RGCN creates commonsense-informed embeddings represen-
tations. In the second stage, we combine the knowledge with contextual language representations
to perform an information retrieval task that is described in the next section.

3.1 GCN

We explore GCNs as a method to produce knowledge embeddings from ConceptNet. A GCN func-
tions by performing updates to node features using aggregation functions over neighboring node
features. To do so, it encodes a graph structure directly with a stack of convolutional layers. The
model uses "an efficient layerwise propagation rule that is based on a first-order approximation of
spectral convolutions on graphs" and significantly outperforms preceding methods for graph learn-
ing [Kipf & Welling (2016)].

3.2 Single Relation GCN

A downside to GCNs is that they can only handle one kind of relation type. This hinders their
performance when applied to graphs that are multi-relational. RGCNs were developed to handle
multi-relational data. Compared to GCNs, which extract node representations on graphs with un-
typed edges, RGCNs can handle different relationships between entities. By encoding different
types of relations and connections alongside the structure of the data, RGCNs are capable of learn-
ing more meaningful node embeddings. This network is useful for tasks such as link prediction
between entities, and entity classification based on individual and relational information.

As an intermediate step, we build a single-relation RGCN, where the set of relation types R has
a size of 1. Similar to the GCN, the single-relation RGCN is incapable of distinguishing between
different edge types, so we also train each single-relation RGCN on a subset of the data.

3.3 RGCN performs local semantic averaging

Finally, we build an RGCN-based model consisting of relational graph convolution network (RGCN)
layers that is extended to multi-relational data. With the knowledge base in graph representation,
an RGCN can learn to encode multi-hop relational knowledge from ConceptNet using neural archi-
tectures thereby producing embeddings that give even more commonsense/knowledge relationships
between words. RGCNs can capture the context of entities by pooling information from related en-
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tities. They learn valuable latent features of relational graphs using message passing mechanisms,
directly extracting features of neighboring entities and creating contextually rich representations.

While GCNs [Kipf & Welling (2016)] are able to learn from unlabelled graph data by using
shared weights for each relation, RGCNs learn separate weights for each relation and thus are
adaptable to relational data, making it a very useful model for learning with knowledge graphs.
This model is based on the implementation of RGCN for link prediction by the DGL0.8 library
[Wang et al. (2019)].

3.4 Methods for injection of information into language model

For the language model, we use BERT. BERT leverages the transformer mechanism to model long-
range dependencies between text and learn from the left and right context of text. This modeling
encodes syntactic knowledge and, to a certain extent, some semantic knowledge contained in un-
structured texts. In our work we utilize the "bert-base-uncased" model from HuggingFace, which
consists of 12 encoder layers and contains 110 million parameters.

Using the BERT base model, we attempt three of the methods previously defined and investi-
gated by Colon-Hernandez et al. (2021): input injection, architecture injection, and output injection.
We build a separate model for each of the methods. Modifications and implementation details are
described below.

3.4.1 Input Model

To perform an input injection we modified the base BERT in the following way. After the token
embeddings are retrieved, and before the first transformer attention layer, we decode the token ids
to produce a sentence. We then run this sentence through a spaCy [Honnibal & Montani (2017)]
pattern matcher that has been modified to serve as an entity recognizer with the names of entities
(i.e., vocabulary) from the embeddings that we are injecting (i.e., NumberBatch or our RGCN re-
sults). We then find the corresponding input ids and their token embeddings, and to the ones that
have matching entities, we rescale and sum the entity embedding to the token embedding. We do
this rescaling and sum with the same injected embedding for every one of the tokens that encompass
the entity (e.g., for New York, for the tokens New and York, we use the embedding that corresponds
to New York). For the entities that are not in our vocabulary, we simply utilize a vector of zeros. It
is worth noting that we do not pre-train on any additional data for this model; we solely fine-tune it
on our downstream task which is the relevant question retrieval task. We will go into details on this
task in Chapter 4. The approach can be seen in Figure 1.

3.4.2 Architecture Model

To perform an architecture injection, we followed a similar approach to our input injection, however
instead of summing our rescaled embeddings at the input, we sum them at the beginning of each of
the the attention layers, except the first layer (otherwise it would be the same as the input injection).
This approach can be seen in Figure 2. We utilize a different rescaling linear layer in each layer, to
let the model inject information in the layers that it finds more effective.
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Figure 1. Input injection model.

Figure 2. KnowBERT model used for architecture injection.

3.4.3 Output Model

Lastly, to perform an output injection we modified the base BERT in the following way. After the
final layer, we perform the same process as in input injection to find the corresponding injected
embeddings for an input sequence and rescale and add them.

Figure 3. Output injection model.
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Figure 4. Figure showing RGCN with link prediction on ConceptNet adapted from Thanapalasingam et al.
(2021). After edge sampling, the correspoding node embeddings and graph structure are used by the encoder
(RGCN layers) to create enriched node embeddings. For triple (s,r,o), corresponding relation and entity
embeddings are element-wise multiplied to result in vector x. The elements of this vector are summed to give
a scalar x for the probability of (s,r,o) being true.

3.5 Pipeline Overview

Overall, the pipeline contains an RGCN Link Prediction model, as well as a knowledge injected
BERT model.

First, the RGCN link prediction model takes into account the ConceptNet dataset. It uses RGCN
layers to encode node embeddings and relation embeddings, and then predicts relations between two
entities. A concrete example is depicted in Figure 3.5. Suppose we take the subset of ConceptNet
in the red circle, with dog as the central node. We sample the edges connected to the dog entity and
retrieve node embeddings for each of the connected entities. Then, we feed those through the RGCN
layers of the encoder model. This gives us mixed node embeddings that convolute the subgraph to
update the embeddings of dog as well as its neighbors (pet, eat bone, etc.). We repeat this for all
nodes in the graph. This results in mixed node embeddings as well as relation embeddings that
the model updates through the training process. Using these two sets embeddings, we can perform
the link prediction task. We run these embeddings through the decoder, in this case the DistMult
function, resulting in predictions for each relation.
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We can then extract the embeddings learned by the RGCN Link Prediction model in order to
an information retrieval-based BERT model. To do this, we follow an approach as described in
Section 3.4.1, which utilizes a matcher to find the entities that overlap with the vocabulary of our
RGCN. We then rescale and sum these matched embeddings into a corresponding input, output, or
architecture injection. Finally, we pool the corresponding BERT model’s embeddings by averaging
them and utilize this as a sentence/input text representation. With this representation, we can then
utilize cosine distance to find the most similar embeddings to an input text. We describe this task
more formally in the Chapter 4.

4. Evaluation

4.1 RGCN Evaluation

We evaluate our GCN and single RGCN models to serve as baselines for the full RGCN model. For
these evaluations, we use the following performance metrics: area under the ROC curve (AUC),
accuracy, precision, and recall. We also evaluate the RGCN using two commonly used evaluation
metrics: mean reciprocal rank (MRR) and hits@k. As in Schlichtkrull et al. (2017), we investigate
the MRR values.

4.2 Evaluation of Injection Methods

Once we achieve an acceptable performance in our RGCN, we proceeded to combine the node
graph embedding output from this model into our various injected BERT models. We developed
each injection model following the descriptions in Chapter 3.4. With these models, and a spaCy
matcher for the vocabulary for our embeddings, we then applied the models to the task of related
question retrieval.

Baseline 1: BERT

As a first baseline, we perform link prediction using just BERT. Because this is an unenhanced
version of our final model, we expect significantly improved performance from this baseline.

Baseline 2: Numberbatch + BERT

As a second baseline, we combine pre-trained Numberbatch embeddings (pre-trained on the entirety
of ConceptNet’s 1M+ assertions) with the BERT model. We expect this combination to outperform
the single standing BERT model. This is one form of encoding structured information, and we
compare the results of our RGCN graph embeddings against this.

Downstream Task: Related Question Retrieval in the AskUbuntu Dataset

For testing our models, we chose the AskUbuntu [dos Santos et al. (2015)] dataset. The objective of
this dataset is to match a given help question with related questions. In the dataset, we get a list of
queries along with possible alternatives and confounder (unrelated) alternatives. We chose this task,
because to determine similar/unrelated questions, the model needs to form a semantic embedding of
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Figure 5. An example taken from Lei et al. (2015) that shows two similar questions in the AskUbuntu dataset.
A model trained on this dataset should predict that these questions are similar/highly related.

the actual input. What this means is that if we inject semantic information, this final representation
should contain the additional information and help in the task. Specifically, in our task we pool the
final layer embeddings by averaging, and use cosine similarity to rank the most similar question to
a Query in the given alternatives. An example of similar questions can be seen in Figure 5.

With our BERT models, the output of the task layers is used to calculate the cosine similarity
for the query and the possible alternative. A visualization of how this works is shown in Figure 6.
Our model tries to predict whether the two things are similar or not: similar, relevant questions are
given a label of 1, whereas dissimilar questions are given a label of 0. We use the cosine similarity
as a prediction input for the mean squared error loss. In doing this, we are asking the model to find
the relevant features that make questions similar/dissimilar.

5. Results and Discussion

In this section we present the results from our testing. We present our significance results in the
Appendix in A.

5.1 Results

5.1.1 Baselines: GCN and Single-relation RGCN

First, we perform baseline experiments with a GCN, a network that cannot encode distinct edge
types. Because of this, we train one model per relation and compute metric values averaged over
every relation type. To perform this training, we filter the training data based on the number
of relations. Specifically, we compute the median number of edges across all relation types in
train100k to be 961, and filter out relations that have less than 961 edges. We use this set of
relations across all three datasets. The results are shown in Table 1.
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Figure 6. An example based on Lei et al. (2015) that shows the architecture of a cosine similarity model.
During training, questions that are similar will achieve higher similarity scores while dissimilar questions
will receive lower/negative scores.

Second, we perform baseline experiments on an RGCN that can only encode one relation type.
As in the GCN training, we train an individual model on each of the top 16 unique relation types
and evaluate the model on accuracy, AUC, precision, and recall. We repeat this for each of the three
datasets. The average metrics across the 16 relations for each of the datasets are reported in Table
1.

5.1.2 RGCN

In comparison to the GCNs and single-relation RGCNs, the RGCN model is capable of encoding
different relation types. Thus, we train one model on the entire dataset, for each of the datasets
(train100k, train300k, train600k). We evaluate the RGCN using accuracy, AUC, preci-
sion, recall, and MRR. The results are shown in Table 1.

5.1.3 Injection Models

The results for each of the injection methods on the AskUbuntu dataset are shown below. in Table
2.

5.2 Discussion

5.2.1 GCN and Single-relation RGCN

Overall, the baseline, single-relation GCN achieves high accuracy and AUC (∼ 70 − 81%), and
lower precision (∼ 20− 46%) and recall (∼ 58− 65%).

For the single-relation RGCN, generally, the model’s performance in every metric except recall
experiences a slight decrease as the number of samples in the dataset increases. The decrease could
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Model Data Accuracy AUC Precision Recall MRR
train100k 71.35± 0.72% 74.41± 0.45 45.55± 0.62 58.07± 0.73 –

GCN train300k 79.82± 0.73% 80.83 ± 0.64 34.05± 3.15 64.17± 0.38 –
train600k 80.17 ± 0.40% 80.17± 0.72 20.61± 0.74 61.07± 0.71 –
train100k 72.02± 2.90% 77.28± 1.83 75.77 ± 4.24 63.48± 3.41 –

Single-relation RGCN train300k 71.39± 2.65% 73.90± 4.26 70.41± 3.97 72.15 ± 2.37 –
train600k 70.44± 1.19% 73.39± 2.45 67.75± 2.37 70.88± 1.99 –
train100k 84.67± 0.81% 90.01± 0.63 80.50± 1.77 91.58± 1.92 93.18± 2.60

RGCN* train300k 81.52± 1.01% 88.42± 0.79 74.11± 1.15 96.98± 0.40 79.92± 2.79

Table 1. The results for the GCN, single-relation RGCN, and RGCN experiments are shown above, along with
the confidence intervals from repeated experimentation. The accuracy, AUC, precision, and recall metrics
provide sufficient evidence that the RGCN outperforms the baseline models, with higher results in each
metric. Between the baseline models, the GCN model achieves higher accuracy and AUC, while the single-
relation RGCN achieves higher precision and recall. The overall top scores are underlined on the table, and
the top scores between the baseline models are bolded.

Validation Testing
Model MAP MRR P@1 P@5 MAP MRR P@1 P@5
Base Model 61.867 72.762 60.567 50.394 61.589 73.494 60.573 48.410
Input Injected Model (NumberBatch) 61.950 73.577 61.704 50.185 62.406 73.235 60.049 48.337
Input Injected Model (RGCN) 60.875 71.475 58.658 49.395 62.254 74.218 61.502 48.202
Architecture Injected Model (NumberBatch) 61.942 72.902 61.103 50.229 62.050 73.185 59.532 48.128
Architecture Injected Model (RGCN) 53.728 63.607 49.418 43.335 56.069 67.500 52.108 44.137
Output Injected Model (NumberBatch) 61.556 73.134 61.405 49.823 62.492 74.445 61.856 48.953
Output Injected Model (RGCN) 62.098 73.829 62.336 49.691 61.765 73.857 61.321 48.482
Output Injected Model (RGCN-Learnable) 61.479 73.079 61.411 49.844 62.153 73.813 61.664 48.585

Table 2. Results from injecting a BERT-base model in different settings (Input, Architecture, Output) with
NumberBatch and with the graph embeddings from the train100k trained RGCN. The overall top scores
are underlined and the top scores per injection type (input, architecture, output) are bolded.

be a result of the model’s hyperparameters being tuned on the train100k dataset, then being used
for training on each of the following datasets. It is possible that a larger model is needed to encode
the additional information found in the larger datasets.

The GCN outperforms the single-relation RGCN on accuracy and AUC, and the single-relation
RGCN achieves higher performance on precision and recall. From 3, 4, and 5, we see that the
discrepancies between the two models is insignificant in accuracy, but are significant in the other
metrics.

5.2.2 RGCN

In comparison to the baseline models, the RGCN shows significant improvement in performance
across all metrics except for precision when comparing the RGCN and single-relation RGCN trained
on train100k, as seen by the p-values in 3. Evidently, the ability to leverage the distinct relation
types allows the RGCN to share more features along the additional edges connecting neighboring
entities, and produces more effective representations of entities for the link prediction task.
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Additionally, we see that the metrics experience a decrease across each of the datasets (train100k,
train300k, train600k). Similarly to the single-relation RGCN, this behavior may be due to
the fact that the hyperparameters (e.g. learning rate, regularization coefficient, number of hidden di-
mensions, etc.) were specifically tuned for the RGCN trained on the smallest train100k dataset
and extended to the RGCNs trained on the larger datasets, while the RGCN may require higher
complexity to encode the additional information from the larger datasets.

5.2.3 Injection Models

In the results of the injection models, we can see various notable things. The first of these is that,
overall, any of the models that are injected (whether through NumberBatch or the RGCN graph
embeddings, and whether they are at input/architecture/output) perform better than the baseline
model. This would mean that by just adding in additional information in the naive way that we did,
the performance on downstream tasks can be improved.

Secondly, it seems that the input injection models tend to perform better in the validation set,
whereas the output injections perform better in the testing set. In both cases they perform better
than the baseline model for most metrics. Although unconfirmed, we have a suspicion that the
validation set is harder or more out of distribution than the testing set, given that the validation
set is a subset of ConceptNet triples that are labelled with lower confidence values than those of
the test set triples. With this in mind and considering that we have the same method to infuse the
information but at different points of the model, one explanation for this is that since we are adding
the signal at the beginning of the model, it will have the most effect and possibly generalization
capability. This is because it will affect every layer of the model rather than the internal layers or
the output layers. On the other hand, the output models performing better on the test set, if it is more
similar in distribution, may mean that these models tend to do better/faster on similar distribution
tasks, and would not generalize well to out of distribution tasks.

Thirdly, it appears that the NumberBatch injections tend to improve the base model’s perfor-
mance more than the RGCN injections do. This makes sense given that the NumberBatch embed-
dings are trained on all of ConceptNet (1M+ assertions) as compared to our RGCN, which is trained
on 100k assertions.

Fourthly, it seems that the Architecture injections underperformed in comparison to the Input
and Output injections, and even the base model. One possible explanation for this is that we are
introducing features at every part of the model, which may be useless or counterproductive at the
layer(s) that they are inserted in. In future work, it would be interesting to explore injection at
different layers and determine at which layers are the best to inject information.

Lastly, it seems that the Architecture Injected model that utilizes the RGCN embeddings has
considerably lower performance. This could be due to a bug in the implementation, as the other
ones seem to be on par with each other.

We would also like to note that performance does not decrease too drastically when unfreezing
and utilizing the RGCN model to generate embeddings. In future work, it would be useful to explore
adding in additional losses to combine both the downstream task model and the RGCN in training
to possibly attain greater performance.
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6. Future Work: Downstream Tasks

In our work, we used our combined model to perform related question retrieval. We recognize that
this may not be the most commonsensical (or related to our knowledge injection) task to test our
model in. One other downstream application to further measure our model performance may be test-
ing on the CommonsenseQA dataset, as done in Lin et al. (2019) [Talmor et al. (2019)]. The dataset
of question-answer pairs was written by crowd-workers and based on concept relationships found
in ConceptNet. In this task, the model is presented with a question along with three distinct answer
choices. Two answer choices can be added to increase difficulty of the task. Another downstream
task for evaluating our methodology is the SWAG dataset created by Zellers et al. (2018). This
dataset consists of multiple-choice commonsense questions created through Adversarial Filtering,
which de-biases the dataset through iterative replacement of "easy" samples. Both of these down-
stream tasks involve intense use of commonsense knowledge such as those found in ConceptNet
and in ATOMIC, possibly more so than our question retrieval task.

7. Conclusion

This paper examined a novel method to integrate commonsense knowledge into language models,
harnessing both the intuitiveness encoded by knowledge graphs and the power of transformer-based
language models. In comparison to existing commonsense inference methods, our methodology
uses RGCNs. RGCNs can exploit information stored in local graph neighborhoods and extend to
large-scale relational data, such as ConceptNet.

We introduced three injection methods: input injection, architecture injection, and output injec-
tion. Through our work, we show that: (1) the earlier the injection of RGCN embeddings, the more
effective the injection at improving the BERT model’s performance on the MRR and precision
@k metrics; (2) there is evidence that the combination of structured graph information and large
language models does benefit downstream tasks; (3) it is relatively simple to add commonsense
knowledge in the form of graph embeddings.

As we continue to seek ways to enrich artificial intelligence with more meaningful, explainable
knowledge that mimics human commonsense, methods that harness the power of knowledge graphs
will continue to be crucial and impactful. We demonstrate that these methods are very promising
ways to enrich model learning with the information in knowledge graphs, and set a strong foundation
for future examination of the methods. With more resources, the experiments could be extended
to incorporate the entirety of ConceptNet, which could yield even greater improvement in model
performance and create a powerful tool in building intelligent, commonsense-aware models.
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Appendix A. Significance Testing

In order to quantitatively compare the models and validate the observed results, we perform signifi-
cance testing. Within each set of models trained on the same dataset (train100k, train300k,
or train600k), we test between each pair of models: Single-RGCN vs. GCN, RGCN vs. GCN,
and RGCN vs. Single-RGCN. The significance test of model A vs. model B measures the confi-
dence in, or significance of, the difference in performances of the two models.

The results of our significance tests are found in Appendix 3, Appendix 4, and Appendix 5.
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p-value
Metric Single-RGCN vs. GCN RGCN vs. GCN RGCN vs. Single-RGCN
Accuracy 0.099 0.000014 0.00015
AUC 0.0080 0.0000078 0.00050
Precision 0.00024 0.000015 0.14
Recall 0.027 0.000073 0.00013

Table 3. The results of significance testing between models trained on train100k. The significant p-values
are bolded.

p-value
Metric Single-RGCN vs. GCN RGCN vs. GCN RGCN vs. Single-RGCN
Accuracy 0.0013 0.035 0.0024
AUC 0.0091 0.00092 0.0035
Precision 0.000074 0.0000032 0.041
Recall 0.0049 0.000000058 0.00012

Table 4. The results of significance testing between models trained on train300k. The significant p-values
are bolded.

p-value
Metric Single-RGCN vs. GCN
Accuracy 0.000025
AUC 0.0015
Precision 0.000000019
Recall 0.00020

Table 5. The results of significance testing between models trained on train600k. The significant p-values
are bolded.
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