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Abstract
We explore several subtleties of metareasoning in real time and their formalization in active logic.
These are then applied to new treatments of default reasoning and to reasoning about evolving
beliefs of self and other agents. We also touch on generality of the approach taken here across
agent types including humans.

1. Introduction

Metacognition – understood quite generally – refers to cognitions about cognitions, as in “I hate
the fact that I am so forgetful.” But commonly it is used to refer more specifically to knowledge
and/or reasoning about an agent’s knowledge and/or reasoning, whether one’s own or of that of
another. Metareasoning in particular is reasoning about (someone’s) reasoning. For a broad general
reference, see Cox & Raja (2011). This has been the focus of much attention in the AI literature,
in the subarea of commonsense reasoning. It also illustrates a well-known strong methodological
connection between AI and cognitive science.

Of the various so-called “aims” of AI, a major one is this: to foster deeper understanding of
what constitutes a mind, by looking carefully at the sorts of processing that arise in trying to build
systems (models) that can perform some of the sorts of things that minds appear to be able to do.
Two key examples are learning and reasoning, and much of AI has been devoted to one or the other
of these. With regard to reasoning in particular, AI – in the hands of people like McCarthy, Minsky,
and Reiter among others – led to the discovery in the 1970s of the necessity and centrality of non-
monotonic reasoning (NMR) in humans, something up until then almost entirely unexamined (and
largely unsuspected). This showcases a major kind of contribution AI can make in cognitive science:
revealing necessary types of processing – and suggesting specific mechanisms to perform them –
that in the absence of computationally informed models would remain cloudy or even unknown.

With regard to NMR in particular, despite enormous progress on many fronts, the story is far
from over. Standard models ignore at least two requirements for any realistic reasoning system
(biological or artificial) deployed in the real world: (i) computational tractability, and (ii) the need
for performing inferences that take account of time-passage as they are being performed.

Here is a quick example: Is 79 a prime number? I don’t immediately know, but after some
thinking, I come to realize yes, it is. What about 779779779? That’s a tougher one, and unless
there’s a quick trick (that eludes me at the moment) then I’ll need lots of time to figure it out. In
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this example, the agent responding to the questions notes that it lacks an immediate answer, that
it is engaged in thinking, that it has not yet finished, and then that it has come to a conclusion of
sorts, including about an ongoing time-interval during which it may do more thinking. The fact that
the topic is arithmetical is irrelevant, as the following example shows, drawn from but considerably
extending Fahlman et al. (1981). We envision an agent (human or artificial) that knows (has in its
KB) that cephalopods are a kind of mollusk, that mollusks have shells, and that cephalopods do
not. In step 1 the agent is informed that X in particular is a mollusk. The agent proceeds to draw
inferences as follows, where in step 3 additional information is given to the agent:

1. X is a mollusk.

2. So it has a shell.

3. X is a cephalopod.

4. So it doesn’t have a shell.

5. My conclusion at step 2 is incorrect.

6. I should now regard an inference of the form above from 1 to 2 as non-monotonic, and with-
hold such a conclusion if I have information to the contrary.

While any one step here can be regarded as carried out (almost) instantaneously, the sequence
reveals changes of mind that are themselves noted and reasoned about as that very sequence is
unfolding in time. In addition, there is – however briefly – a moment (just after step 4) when the
agent’s knowledge is inconsistent: it has the beliefs that X does and doesn’t have a shell, until
it rectifies this in step 5. The trick in step 6 is to identify what constitutes “information to the
contrary.” Various formal treatments of NMR do this variously; but most suffer from violating both
requirements mentioned above.

The active logic formalism was designed in part to address these shortcomings, and itself was
an outgrowth of earlier work on so-called step-logics and an associated time-sensitive cognitive
architecture for both memory and inference (Elgot-Drapkin et al., 1991). The present work digs
more deeply into the inferential architecture; reveals complexities of time-sensitive NMR that were
unsuspected beforehand (by us authors and by anyone else as far as we are aware); strongly hints
that – somehow – our brains are also dealing with these complexities; and presents algorithms that
address such complexities, as illustrated by several case studies. Among the latter are not only
mollusk-type scenarios but also other-agent scenarios where one agent reasons in real time about
the time-evolving beliefs of another agent.

Metacognition is very prominent in human cognition (see Nelson (1992)). A human (or artificial
agent) benefits a great deal from being able to know and reason about what it (or another) is (or was
earlier) thinking, and why. Consider reasoning about another agent, namely that she is coming to
realize X right now, because I am telling her exactly that at this very moment. This illustrates a
number of overlapping phenomena in cognitive neuroscience: (i) efference-copy, in which the brain
retains a copy of efferent signals, that are then used to predict and assess outcomes of actions (as
in I know am speaking now; see Brody et al. (2015)); (ii) the appearance-reality distinction (Flavell
et al., 1983) as in she thought X was false but X was actually true; and the theory-theory of cognition
(basically, in AI terms, that agents have KBs that can differ from one another, can change over time,
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and can be wrong, as in she is coming to realize X now). Representing such types of knowledge and
inference involves a new more rigorous treatment of subtle KRR (knowledge-representation and
reasoning) control issues, especially with regard to nested forms of quotation, and has applications
to time-situated NMR as well.

2. Time-Situated Metacognition

Automated systems often lack explicit knowledge of their own situatedness in the world – and often
even lack knowledge that they are entities that have evolving beliefs and that can take actions. Such
(typically missing) knowledge is a form of metacognition, and the ability to infer with and about it
is a form of metareasoning. Alas, this lack is a severe limitation, arguably central to much of the
brittleness of most automated systems: for instance, how can they correct their inevitable errors if
they can’t even recognize an error as arising from something they have done, or from something
they believed incorrectly or did not yet know?

Metareasoning, like all reasoning, is an activity and thus takes place during time passage. Bring-
ing this time-passage more fully into an agent’s reasoning has been exploited regarding general
commonsense reasoning in much work using the active logic formalism, with significant advantages
including the ability to reason in the presence of contradictory beliefs, reasoning about approaching
deadlines, and more; see for instance Purang (2001); Nirkhe (1995); Elgot-Drapkin et al. (1991);
Josyula (2005).1 But that same work has had mostly only informal ties to metareasoning. In par-
ticular, quotational mechanisms (affording powerful fine-grained representations of agent-beliefs
adequate to support rich metareasoning) were given largely casual treatment, and as a result, many
subtleties remained unexamined.

Work to incorporate elements of a “processual self” into active logic by Brody et al. (2014) was
concerned with a much finer-grained notion of time, not from one step to another but rather within
a step (viewed as a wff or sentence). This shares a broad similarity of aims to the present work, but
without the issues of quotation or of NMR that are the main aspects we address here. Other recent
work on metacognition (Anderson & Oates, 2007; Dannenhauer et al., 2018; Cox et al., 2021), either
mostly does not represent time explicitly, or does not allow a general (quasi-)quotation mechanism
or associated algorithm, which in particular hinders an agent’s ability to reason about the evolving
beliefs of another agent.

Here we report on new work, largely based on the recent PhD dissertation (Goldberg, 2022),
that examines quotation and metareasoning much more closely in a real-time setting, with new
applications to default reasoning (e.g., inferring a default rule from an incorrect monotonic rule) and
also to reasoning about other agents’ evolving beliefs within a natural-language scenario (inferring
what agents do or don’t know based upon what they have or haven’t heard so far).

The rest of the paper is organized as follows: 1. how to represent quotation and quasi-quotation
in active logic; 2. application to real-time treatment of defaults; 3. application to own-knowledge

1. Particularly salient here is active logic’s avoidance of the “swamping” (or omniscience) problem, introduced in detail
in Elgot-Drapkin (1988). That is, traditional logics have all logical consequences of their axioms as theorems, and
thus are “swamped” by a (usually infinite) flood of mostly irrelevant (and nonsensical if the axioms are inconsistent)
conclusions.

3



M. D. GOLDBERG AND D. PERLIS

inferences; and 4. inferring other-agent evolving knowledge, with application to a problem due to
E. Davis.

3. Quotation in Active Logic

For an agent to have explicit knowledge of – let alone reason about – its beliefs, it will need to
represent a belief B in some fashion. If we consider an agent with a knowledge-base (KB), and B

as an item within the KB, then that agent’s knowing that its KB contains B would seem to require
the KB to also contain something akin to InMyKB(B). This can lead to a powerful and fine-grained
mechanism for representing knowledge of own-beliefs; but something is missing, at least if we
are to employ a standard symbolic language such as that of first-order logic (FOL)2. For B, if it is a
formula, cannot directly be an argument to a predicate. Quotation provides a way out: InMyKB(“B”),
B represents a formula, and where “B” is a “quotation-term” of which we will say more below.

We will assume the reader has some acquaintance with active logic,3 which employs a variant
of the language of FOL. Here is a very brief summary. Inferences are associated with step-numbers
(typically positive integers) indicating the relative order in which they are inferred. Thus, there is
an implicit inference-engine (e.g., resolution or some other similar inference-method) being applied
to the current wffs (“beliefs”) at a given time-step t to produce any new conclusions at time t + 1.
Thus the set of beliefs (KB) evolves, as in:

Step Beliefs Justification
1 Now(1), A, A → B, B → C, B → D Initially given
2 Now(2), A, A → B, B → C, B → D, B Modus ponens
3 Now(3), A, A → B, B → C, B → D, B, C, D Modus ponens

Underlined wffs indicate ones newly inferred at that step.The step numbers themselves can enter
into wffs, especially via the special Now predicate as illustrated. Notice that whereas wffs in general
tend to be inherited from step t to t+ 1, Now(t) is not but rather is subject to a special “clock-rule”
that specifies inferring Now(t+ 1) from Now(t). A direct contradiction in the belief set (KB) yields
another special (non-inherited) conclusion: if P and ¬P are present at step t, then neither is inherited
but the wff Contra(t, “P”, “¬P”) is inferred at t+ 1. An implementation of active logic is usually
referred to as ALMA (with a version number), and the name Alma is informally used to refer to
the underlying agent whose reasoning is performed in ALMA. ALMA2.0 is described in detail by
Goldberg (2022) and more details are also found in the appendix: https://mclumd.github.
io/Appendix/appendix.html.

Quotation terms, mentioned above, are new terms provided in ALMA2.0. Syntactically, a quo-
tation term consists of a formula enclosed in parentheses, as in “W” where W is a wff. This is
intended recursively, so that for instance “Believes(John, “W”)” is itself a quotation term, and

2. There are modal alternatives, but these suffer from the aforementioned “swamping” – for instance, not allowing
A → B and A to be in a KB without B also being there at the same time, which sidesteps any notion of inference being
a process that an agent can represent as occurring over time.

3. See Perlis et al. (2017) for a quick introduction and Elgot-Drapkin & Perlis (1990) for a highly detailed technical
account.
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thus Believes(Jill, “Believes(John, “W”)”) is a wff as well.4 Here we note a key point: all
wffs written in the language of ALMA2.0 are intended to represent possible items in the (evolving)
KB of the agent Alma. Thus inference of Believes(Jill, “Believes(John, “W”)”) indicates a
belief by Alma about a belief of Jill. Likewise, inference of any W amounts to Alma coming to
believe W. Thus inference in ALMA2.0 is inference by Alma. Goldberg (2022) provides a grammar
that spells out the precise role of quotation terms in the ALMA2.0 language.

Using quotation terms, Alma can express its belief that it does or does not have a given wff
W in its KB, as Know(“W”) or ¬Know(“W”), which we had earlier but less clearly expressed in the
form InMyKB(W). But how is Alma to infer that it does or does not know a particular formula
that would appear in place of W? Here the key fact that Alma’s (evolving) KB is always finite is
crucial. It is then simply a lookup to determine whether or not a given wff W is a current element
of the KB at timestep t, and the result of such a lookup can then be inserted as either Know(“W”)
or ¬Know(“W”) at step t + 1. However, for efficiency purposes, it is useful to employ two special-
purpose operators Pos_int and Neg_int, which when applied to a wff W perform the lookup and
return true or false accordingly. In more detail, Pos_int(“W”) is used as an antecedent in a rule
such as Pos_int(“W”) → P: if W is in the KB, then P. Pos_int is not inferred (not added to the
KB) but rather it sanctions the inference of P. If it is desired for Alma to reflect that it in fact does
know P, this can be accomplished via Pos_int(“P”) → Know(“P”). Similarly for Neg_int.

Here we need to be more precise about syntax. In logic-programming, wffs are usually written
in CNF, with (leading, universal) quantifiers being dropped (but implicitly assumed). Moreover,
variables are capitalized and other symbols are not. Thus a FOL wff such as ∀x[P(x)] becomes
simply p(X). Context should make clear which notational convention is being used.

Alma can believe A, B, and A ∧ B → C at time t, and not yet believe C – until it has had
time to make that inference. Yet a wff such as ∀x, y[Friends(x, y)] should be co-believed with
∀u, v[Friends(u, v)]. Each “says” that everyone is everyone’s friend; and so the two wffs should
unify. And indeed they do. But what if there is quotation in the wffs, such as if Alma believes
both believes(alice, “friends(X, Y))”) and believes(alice, “friends(U, V))”)?5 The two
beliefs attributed to Alice should unify – so long as ALMA’s beliefs are not strictly about ver-
batim syntax. On the other hand, consider formulas believes(alice, “friends(X, Y))”) and
believes(alice, “friends(U, U))”) – the latter of which expresses that Alice is considered to
believe that everyone is their own friend, which is quite distinct from that everyone is everyone’s
friend. Unlike first-order variables outside of quotation, these two friends literals should not be
unifiable. So unification for an agent’s inferential processes must include special treatment of vari-
ables within quotes, which have some delicate considerations, due to the nature of quotation.

To determine more generally which terms ought to unify with a variable inside of quotation,
it helps to again consider quantifiers made explicit in the formulas, which we recall means that
universal quantifiers for quoted variables appear just within the nearest enclosing quotation marks.

4. In these examples, W should more precisely be replaced by an actual wff. Additionally, there is potential ambiguity
in nested quote-marks; at a more precise (implemented) level, an intended pair “_” is replaced by quote(_), which
eliminates ambiguity but makes reading cumbersome.

5. For which, if we make the quantifiers explicit, would be rendered as Believes(alice, “∀x, y[Friends(x, y)])”)
and Believes(alice, “∀u, v[Friends(u, v)])”). The universal quantifiers occur within the quotation terms, as
Alma attributes to Alice beliefs that are universally quantified.
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For two quoted formulas that are identical in structure except for a variable appearing in one formula
and a ground term appearing in the second formula in the same places where this variable occurs, the
second formula has at least one fewer quantifier within the quotation marks. If binding the variable
in question to the ground term were allowed to occur, substituting occurrences of the variable for its
binding would result in changing the formula structure by removing a quantifier, and hence yielding
a more specific quoted formula. Since quoted formulas are in many ways treated as mentioned
formulas that capture a greater degree of specificity, it is sensible that a quoted variable cannot
unify with a ground term, preventing specialization when substituting. Similarly, a quoted variable
should not unify with a non-ground function term containing other quoted variables, because these
non-ground terms are also more specific quoted content than the universally quantified variable,
regardless of whether the formulas they are embedded in may contain more universal quantifiers in
total. Thus, a quoted variable may only unify with another quoted variable, and not another type of
term.

The second of two principles characterizing quotation term unification reflects the intuitions of
the example above, distinguishing the success in unifying “friends(X, Y))” with “friends(U, V))”
from the failure to unify “friends(X, Y))” with “friends(U, U))”. For two quotation terms to
unify: 1. Their quoted formulas must have identical structures of operators, functions, literals, con-
stants, and further-nested quotation terms (with the exception of quoted variables); and 2. For each
quoted variable in one formula, all occurrences of this particular variable must correspond to exactly
one variable in each corresponding location in the other formula.

Here an interesting distinction from other sorts of terms is evident: a variable within the for-
mula of a quotation term may unify only with another variable, but neither a constant nor a more
specialized pattern of variables. In contrast, a non-quoted variable does not behave as selectively
for unification, and can unify with arbitrary constants or other terms that it subsumes.

3.1 Quasi-quotation

There is also a need for a more subtle form of quotation, called quasi-quotation. We introduce
the use of quasi-quotation as a means to quantify into quotation, develop the desired unification
behavior for quasi-quotation, and ultimately generalize this behavior to a full unification algorithm
for quotation terms and quasi-quotation. This will be essential for representing an active-logic
agent’s reasoning about beliefs – both the agent’s own, as well as those of others.6

Quotation terms as introduced thus far have a significant limitation, exemplified by a formula
such as the following:

bird(X) ∧ neg_int(“¬flies(X)”) → flies(X) (1)
We see that the same variable that appears within a quotation term cannot also appear outside of
that quotation with the same meaning. Here, the X inside of neg_int’s argument has its quantifier
placed just inside the first quotation mark. Hence, quoted variables in their present form are locked
inside of quotation, where these variables are mentioned only. This inaccessibility of variables
inside quotation terms prevents their binding and substitution for anything other than other quoted

6. Quotation and quasiquotation are mechanisms allowing for subtle distinctions between use and mention. While we
are not proposing that brains literally have quoting notations, it would seem that there must be some way in which
use and mention are finely distinguished; otherwise metacognition seems impossible.
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variables, by the definition of unification for quotation terms. Yet in other cases, it is desirable for
particular variables within quotation terms to have their corresponding quantifiers appear beyond
the quotation marks – the problem of quantifying into quotation. What is desired is a pattern of how
certain variables, if indicated for this purpose, may quantify into quotation terms and interpolate
within the quotation marks. Such a pattern would allow: 1) the same variable to appear both inside
and outside of quotation, 2) these variables to make bindings with other sorts of terms, and 3)
substitution into the context of quotation. These abilities clearly exceed what can be done with
quotation terms that have no ability to quantify-in.

Quantifying-in provides a theoretical mechanism for variables to bind and substitute into the
context of quotation terms. We use the term quasi-quotation for referring to a syntactic device
allowing quantifying-in, whereby variables may be selectively indicated to “escape” the quotation
terms that they are contained in. Quasi-quotation was originally introduced by Quine (1981), al-
though Quine used the term quasi-quotation slightly differently, unlike our usage for a mark that
essentially unquotes particular variables. We emphasize that this feature may be selectively applied
to only some variables. Not all variables should escape from inside of a quotation term; instead it
is often useful for universal quantification to remain inside of quotation marks. Quantifying-in via
quasi-quotation enables targeted variables in a formula to escape their containing quotation term
during inference and unification, so that these variables might be substituted for or bound. Quasi-
quoting the second use of X in formula 1, within the quotation term, now gives a way to achieve the
desired meaning: that all appearances of X are occurrences of the same variable.

We now introduce a formalism for quasi-quotation, as built by extending the existing quotation
terms. Quantifying-in is delineated with a special quasi-quotation character (the quasi-quotation
mark) appearing before a variable to modify it. The backtick (`) is used for this mark, inspired by
Lisp.7 For instance, we solve the problem of quantifying into formula 1 by modifying its second
conjunct into the following: neg_int(“¬flies(`X)”).8

A variable may be preceded by multiple quasi-quotation marks; the purpose of allowing multi-
ple marks is to quantify into nested quotation terms in different ways.9 For an instance of a variable
located within N nested pairs of quotation marks, we refer to this variable instance as appearing in
N levels of quotation. With multiple quasi-quotation marks, the means of quantifying-in is general-
ized so that each additional level of quotation added before a particular variable allows the variable
to escape one further pair of quotation marks, from the innermost out. The implicit universal quan-
tifiers for a quoted variable thus occur outward an additional level with each added quasi-quotation
mark. An instance of a variable in N levels of quotation with N quasi-quotation marks is referred

7. Quasi-quotation in Lisp (and related dialects such as Scheme) is an alternative form of quotation in the language,
which serves as a template whereby parameters may be inserted into the template by selectively unquoting expres-
sions via another operator (Steele, 1990). Some other languages, such as Haskell, also support the feature due to
inspiration from the Lisp family (Mainland, 2007). In the programming language domain, this feature is used for
program-generating programs, to more easily embed domain-specific languages by specifying syntax and construct-
ing fragments of programs (Bawden, 1999).

8. The reader is cautioned not to read the backtick here as a quote.
9. If instead of being able to repeatedly quasi-quote, a single quasi-quotation mark were to immediately allow a variable

to fully escape from all nested levels of quotation, this would not have sufficient expressiveness for desired uses
of quasi-quotation. It is often convenient for a variable within several nested quotation terms to be only partially
quasi-quoted (i.e., not fully-escaping, and having an effective level of quotation greater than zero).
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to as fully-escaping; any fully-escaping variable has a quantifier with scope over its entire formula.
This scope is intuitive given that the effective level of quotation for a fully-escaping variable is zero.
Hence, such a variable behaves quite similarly to a variable outside of any quotation.

Questions of which bindings would be permissible for quasi-quoted variables, and how substi-
tution should occur in these contexts, must be answered to make use of quasi-quotation. Due to the
richer structure of a quotation term with embedded quasi-quotation marks inside, there are more
possibilities for how this might behave than in the more straightforward case of unifying a quota-
tion term without quasi-quotation. Goldberg (2022) presents the full details of behavior. Here, we
provide a condensed summary of results with regard to quasi-quotation unification and bindings.

A non-escaping variable can create a binding exclusively when matching with select cases of
other non-escaping variables: when these variables have the same effective quotation level, and as
long as there is consistency in variable matching. A binding is rejected when the term it is compared
to is of any other type – a function, a constant, a quotation term, a fully-escaping variable, or a non-
escaping variable violating the above conditions.

A fully-escaping variable might create a binding exclusively when matching with another fully-
escaping variable, a constant, a function or a quotation term (as long as either of these types does not
contain a variable with implicit quantifiers that escape outside the boundary of the term in question).
Conversely, a binding is rejected when comparing to a non-escaping variable, for a function or
quotation term with improper quantifier placement (according to the principle identified above).

Taken together, these cases give an exhaustive accounting for the behavior during unification
involving a variable compared against any kind of term, whether success or failure results. We
can also further provide an exhaustive accounting for unification behavior when comparing a pair
of terms that are both non-variables: functions, constants, and quotation terms. With variables
removed from consideration, unification is straightforward in that these terms simply successfully
unify when their structures match, and otherwise fail to unify when there isn’t a structural match.
Hence without regard to variables, a constant unifies exclusively with an equal constant, a function
unifies exclusively with another function of matching functor where each term recursively unifies,
and a quotation term unifies exclusively with another quotation term containing matching predicates
and where each predicate argument recursively unifies.

This behavior is made most explicit in the full algorithm presented by Goldberg (2022). In
addition to the detailed algorithm, this also details bodies of examples for each principle of accepting
or rejecting unification with quotation terms.

We also note that the form of unification augmented to fully account for quotation can be applied
to Alma reasoning about its own beliefs, or lack of belief, at various times. A later section will give
more detail, but for now a foreshadowing will be useful.

Basically, a self-query posed to Alma (intuitively, a question of the form “Do I believe W?”) is
a wff which Alma then tries to find in its KB. Here is a preliminary example: suppose ALMA has
in its KB the general rule heard(X) ∧ pos_int(X) → agreement(X) – i.e., if I heard something
and if it is also in my KB, then I am in agreement with what I heard – as well as also having
in the KB heard(“on_fire(site1)”) and on_fire(E). Recall that by the convention specified
above, this latter wff has the meaning that everything is on fire. It would then seem appropriate
for Alma to infer agreement with on_fire(site1). Alas, on_fire(site1) is not explicitly in the
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KB. However, pos_int is implemented in such a way that they will evaluate to true as long as
on_fire(site1) can unify with something in the KB; and similarly for neg_int (which returns
false unless something can unify). In effect, Alma uses pos_int as a kind of self-query as to
whether it believes the argument, before applying the above rule to conclude agreement. In a later
section this idea is greatly expanded.

4. Real-time Default Reasoning

Why is default – or nonmonotonic – reasoning (NMR) a form of metareasoning? What does NMR
have to do with metacognition or self-knowledge? Well, NMR always involves somehow basing
conclusions on an assessment of what one does or doesn’t already know. The “already” here is
the key issue on which our treatment of default reasoning centers. At a rough gloss, NMR can be
thought of as applying a rule like this: P ∧ ¬know(“¬Q”) → Q; that is, given P and the fact that
I don’t know ¬Q, I conclude Q. Thus, the idea is to express that when P is true, Q is reasonably
assumed to be true as well, unless I happen to know otherwise. For instance, to use a modification
of Minsky’s famous example, bird(X) ∧ ¬know(“¬flies(X)”) → flies(X): birds typically fly.
In this particular example, we see the need for quasi-quotation so that x can work as a variable even
while inside the quotation-term.

Approaches to NMR tend to treat ¬know(“¬Q”) as a consistency test, namely indicating that ¬Q
cannot be inferred from (is not a logical consequence of) whatever is already in the KB, showing
Q to be consistent with the KB. While this is a powerful theoretical tool, it is impractical for an
actual agent to use since consistency in general is uncomputable. McCarthy’s work on circumscrip-
tion (McCarthy, 1986) makes two major advances: a computable stand-in for consistency-testing
(minimizing atypical predicates), and the conceptual simplification of substituting ¬abnormal for
¬know, as in this modification of the Minsky example: bird(X) ∧ ¬abnormal(aspect2(X)) →
flies(X), where aspect2(X) cryptically denotes something like the bird-flyingness of X. The
minimization technique is then applied to the predicate abnormal.

Alas, while computable, circumscription involves considerable processing, making it unwieldy
for real-time uses. The NMR alternative that we present here makes no attempt to characterize what
might or might not be inferable from the current KB, but rather simply what is currently in the KB.
Since this tends to change, then conclusions might flip-flop over time, instead of being a limiting
case after all possible reasoning has been done (which is what leads to the uncomputable or unwieldy
problems). Such flip-flopping may appear concerning; but we argue that this is desirable in a real-
time reasoner such as Alma; as it comes to realize additional facts that show earlier conclusions
false, it should indeed change its mind. The key point is that Alma (indeed any reasoner at all,
human or artificial) cannot know something until in fact it actually knows it, and thus that changes
of mind are essential and appropriate.10

Our approach then essentially replaces the above two wffs in the circumscription version with
bird(X)∧¬abnormal(X, bird, “¬flies(X)”) → flies(`X), and neg_int(“abnormal(`X, bird,

10. This of course is not to say that the reasoner should be oblivious to frequent changes of mind, or that it should not
withhold judgment if, for example, it has reason to think a fuller answer might soon be forthcoming. But these are
beyond the scope of the current effort.
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“¬flies``X)”) → ¬abnormal(X, bird, “¬flies(`X)”). These are easily generalized to fairly
arbitrary predicates in place of bird and flies. There is one further technical issue: bird is be-
ing used as an argument to abnormal, but is supposed to somehow correspond to the predicate
bird. There are various ways to achieve this; one highly general one is to use an overall “relation”
predicate (rel) along with names to stand in for other predicates, as in:

rel(Kind, Obj) ∧ neg_int(“abnormal(`Obj,`Kind, “¬rel``Prop,``Obj)”)”
→ rel(Prop, Obj) (2)

This expresses that if something (Obj, e.g., Tweety)) is of some type (Kind, e.g., a bird)) and it is
not currently in the KB that Obj is an abnormal item of that type due to not having property Prop,
then that Obj is concluded to have that property. Here Kind, Prop, and Obj are variables that can
be replaced with, for example, the names bird, flies, and tweety. For future reference as used below,
we can think of the Neg_int clause above as a “not-abnormal-not” insertion of typicality into what
otherwise would have been a strict monotonic rule (such as that all birds fly).

With this machinery in hand, we can now show results of case studies of how Alma can make
default inferences and adjust those conclusions as its KB acquires additional information – whether
by new external observations coming into the KB or by its own reasoning. Moreover, at the same
time Alma will convert an initially monotonic rule such as rel(P, X) → rel(Q, X) into a default
version: rel(P, X) ∧ neg_int(“abnormal(`X,`P, “¬rel(``Q,``X)”)”) → rel(Q, X) if a coun-
terexample (an object having property P but not property Q) is encountered. We will start with a
famous example of nested defaults due to Fahlman but extended to deal with temporal evolution of
knowledge, and then also consider a more complex case of overlapping defaults.

Fahlman et al. (1981) identified the need for a knowledge-based system to handle a series of
nested default rules, where each more-specialized case contradicts more general knowledge. The
specific example was provided with these rules: A mollusk typically is a shell-bearer; a cephalopod
is a mollusk, but typically is not a shell-bearer; a nautilus is a cephalopod, but typically is a shell-
bearer; and a naked nautilus is a nautilus but typically is not a shell-bearer.

Traditional nonmonotonic reasoning does not deal with actually undoing conclusions over an
episode of reasoning. For example, if a particular animal is simply known to be a nautilus, then a
traditional approach would conclude that it is a shell-bearer. But if the reasoning occurs over time,
and if a creature is first learned to be a cephalopod, and later the belief is acquired that this creature
is a nautilus as well, then the above rules lead to a contradiction regarding whether the creature is
a shell-bearer or not. Ideally, this should be repaired by giving up the belief the creature is not a
shell-bearer. Active logic’s handling of direct contradictions allows reasoning to proceed even if
direct inconsistencies arise. Then, by using nesting to refer to the contradictory beliefs, specific
reinstatements can be made to serve as contradiction-repairs (namely, a conclusion from a narrower
category is preferred over a conflicting one from a broader category).

We present solutions to sample problems centered around reasoning with formulas for inter-
acting defaults based initially on Fahlman’s problem of reasoning with mollusk categories in an
ontology. Our solutions extend the scope of this latter problem in several ways: automatically
revising non-default (i.e., absolute or monotonic) rules into defaults based on evidence; reinstat-
ing appropriate contradictands; solving a more complex case with overlapping (not fully nested)
defaults. Our axioms also pervasively uses quotation terms and quasi-quotation terms.
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Using the rel notation, one easily crafts formal axioms for non-default versions of the the
Fahlman rules listed above; one such axiom is the following:

rel(mollusk, X) → rel(shell_bearer, X) (3)
In addition, we postulate (but do not list here) several axioms characterizing the is_a relation as
transitive and other similar elementary ones such as that observations (new facts coming in, e.g.,
about a nautilus being observed) are believed.

Such axioms then characterize a series of progressively narrower categories of mollusks (a
cephalopod as a specialized kind of mollusk, etc.) and the status of these groups as being shell-
bearing or not, but (for the moment) without admitting exceptions. Thus the existence of even one
cephalopod will lead to a contradiction since, as a mollusk it will have a shell, and as cephalopod it
will not. The point is for Alma to figure out that something has to “give” and that relaxing “mollusks
have shells” to “mollusks typically have shells” does the trick, as in

rel(mollusk, X) ∧ neg_int(“abnormal(`X, mollusk, “¬rel(shell_bearer,``X)”)”)

→ rel(shell_bearer, Ob) (4)
Full details get rather complex,11 but a sketch is included in the discussion below.

The very first example we consider begins with information about a cephalopod arriving, in a
form such as the following:

rel(cephalopod, steve) (5)
For simplicity, we assume that this information arrived as an observation that the agent has made,
and so the belief in Steve being a cephalopod is considered beyond reproach. After one timestep,
¬rel(shell_bearer, steve) is inferred; additionally, the belief that rel(mollusk, steve) is also
inferred from the belief that a cephalopod is a mollusk, that is-a relations are transitive, and 5.
After one more timestep, Steve also being a mollusk in combination with formula 3 produces that
rel(shell_bearer, steve). Thus the knowledge base now attributes both having and not having a
shell to Steve, which is a direct inconsistency. The following figure expresses a trace of the relevant
formulas over the timesteps in which this is obtained:

At this point, it is evident that one problem that led to the contradiction is that formula 3 is an
absolute formula, rather than a default formula, and observing Steve has provided a counterexample.

11. See (Goldberg, 2022), where not only the axiomatization is given, but also runs of associated implemented code
producing the stated results.
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Thus, formula 3 should also be updated to amend it (using an “update” procedure) into a default
formula. We achieve this effect through the following new axiom, which is lengthy due to being
designed for generality:
contradicting(“rel(`Pred,`Obj)”, “¬rel(`Pred,`Obj)”, T)∧
rel(Kind, Obj) ∧ rel(is_a, Kind_spec, Kind)∧
parent(“rel(`Kind, O) → rel(`Pred, O)”, “rel(`Pred,`Obj)”, T)∧
parent(“rel(`Kind_spec,`Obj)”, “¬rel(`Pred,`Obj)”, T)
→ update(“rel(`Kind, Ob) → rel(`Pred, Ob)”, “rel(`Kind, Ob)

∧ neg_int(“abnormal(`Ob,``Kind, “¬rel(```Pred,``Ob)”)”) → rel(`Pred, Ob)”)

∧ (rel(Kind, Ab_Obj) ∧ ¬rel(Pred, Ab_Obj)

→ abnormal(Ab_Obj, Kind, “¬rel(`Pred,`Ab_Obj)”)) (6)
Here T is a time (or step) variable; and Obj, Ob, and O are variables ranging over possible indicating
objects. An English summation of the premises is that the negative contradictand provides evidence
that the narrower ontology category is a counterexample to this non-default parent formula, which
states that for an object Obj in the wider category Kind, a positive Pred relation follows. The first
conclusion is an update that inserts a “not-abnormal-not” typicality clause into the broader parent
formula, making it into a default. Thus in the example, due to the existence of cephalopod Steve,
the mollusk shell-bearing rule is updated to mollusks are typically shell-bearing. The following
trace demonstrates these results (which also produce a secondary contradiction that must further be
resolved):

The second conclusion from formula 6 is an implication that gives the means by which other
objects can be inferred to be abnormal, with respect to the predicates that have been used. For
instance, in the example of Steve, this second conclusion is the following:

rel(mollusk, Ab_Obj) ∧ ¬rel(shell_bearer, Ab_Obj)

→ abnormal(Ab_Obj, mollusk, “¬rel(shell_bearer,`Ab_Obj)”) (7)
An object that is known to be a mollusk and which does not have a shell is thus concluded to be
abnormal as a mollusk, with respect to being a shell-bearer, for this very reason of lacking one. As
is the case with formula 4, this formula is specialized to particular predicates (i.e., mollusk and
shell_bearer) in places where formula 6 had fully-escaping variables. Thus, formula 6 enables
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the desired revision of a piece of ALMA ontology knowledge into a default rule (e.g., formula 4),
and instantiates another belief that allows the concluding objects to be abnormal (e.g., formula 7).

Additional axioms (not given here) have been formulated to obtain further desired conclusions
about Steve, e.g., that Steve is (now known to be) an abnormal mollusk. This involves the afore-
mentioned notion of reinstating a formerly distrusted object-property contradictand belief (under
special conditions). This can be summarized as reinstating the negative contradictand when it has
been inferred from the narrowest ontology category out of the two contradictands. This encodes an
intuition behind why Steve lacking a shell is given credence: a narrower ontology category might
provide an exception to a rule that applies differently to a broader category in the hierarchy. The fol-
lowing trace provides the concluding inferences, following using formula 6 to update into defaults:

5. Own-Knowledge Inferences

ALMA has, in addition to pos_int and neg_int, three variants of each, for a total of eight in
all, that together allow multiple forms of procedural lookup for a wff in the KB, including wffs
that may have been in the KB earlier but were not inherited later on. The group of four pos_int
predicates each evaluates to true when finding a matching unifiable formula in the knowledge base,
although with some minor variations in which formulas satisfy each procedure. Similarly, the group
of neg_int predicates each evaluates to true when failing to find such a formula, respectively. The
variants restrict unification to particular cases, allowing more fine-grained control when needed.
Using these in various combinations, we have developed a set of axioms12 that endow ALMA
with abilities for basic question-answering regarding whether a query formula X is believed by the
Alma agent. Question-answering may be best thought of not as answering a question posed by
another agent (human or otherwise), but as self-questioning in which the Alma agent is (agentively)
assessing what it does or doesn’t know – although precisely when and why an agent asks itself about
particular beliefs is beyond the scope of this work.

ALMA uses the pos_int_past and neg_int_past procedures as part of question-answering
if past beliefs are relevant to the query – alongside other procedures including acquired, pos_int,
and neg_int. We note that some of the question-answering axioms rely on the convention of rel as
a predicate symbol, with its first argument as a constant standing for a particular predicate symbol.

The query predicate, query_belief, is a binary predicate in which the first argument is the
query formula, Q, and the second is the timestep for which the query is asked. Each query is

12. Alas, too lengthy for inclusion here; see Goldberg (2022) for details.
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ultimately answered with a formula of the schema answer(“Q”, A, reason(“R”)), in which A
will be one of the constants yes, no, or unsure, and R provides a formula that justifies the answer.
Whenever possible, a current belief is provided for this reason R.

Here is an example of the above in use, based on adding question-answering queries to a default
reasoning example, in which formulas believed regarding a cephalopod change over time. In this
example, a query is raised each timestep, where only the timestep argument changes; for example:

query_belief(“rel(shell_bearer, steve)”, 3) (8)
As the beliefs regarding Steve change over time, we see the query answers change as well.

The first query in effect occurs at timestep 3, when there has occurred a contradiction between
rel(shell_bearer, steve) and ¬rel(shell_bearer, steve). In this case, due to the contradic-
tion, the query is ultimately answered as follows:

answer(“query_belief(“rel(shell_bearer, steve)”, 3)”, no,

reason(“contradicting(“rel(shell_bearer, steve)”,

“¬rel(shell_bearer, steve)”, 3)”)) (9)

answer(“query_belief(“rel(shell_bearer, steve)”, 3)”, no,

reason(“distrusted(“rel(shell_bearer, steve)”, 3)”)) (10)
The answers to the query remain the above pair until a later timestep, at which point both

rel(shell_bearer, steve) and ¬rel(shell_bearer, steve) have been re-derived. As a result,
the queries have been answered in a contradictory manner:

answer(“query_belief(“rel(shell_bearer, steve)”, 5)”, yes,

reason(“acquired(“rel(shell_bearer, steve)”, 5)”)) (11)

answer(“query_belief(“rel(shell_bearer, steve)”, 5)”, no,

reason(“acquired(“¬rel(shell_bearer, steve)”, 5)”)) (12)
However, when the contradiction between the shell_bearer pair is also detected at timestep 6,
the above pair of query answers are also distrusted.

At timestep 8, the negative contradictand has been reinstated, and thus at timestep 9 the query
answer reflects this fact, that the positive contradictand remains distrusted as a belief, while its
negation is now believed:

answer(“query_belief(“rel(shell_bearer, steve)”, 8)”, no,

reason(“acquired(“¬rel(shell_bearer, steve)”, 8)”)) (13)

answer(“query_belief(“rel(shell_bearer, steve)”, 8)”, no,

reason(“distrusted(“rel(shell_bearer, steve)”, 6)”)) (14)
At this point, the cephalopod knowledge has reached a steady state, and ALMA idles.

6. Inferring Other-agent Knowledge

Endowing Alma with reasoning about the evolving beliefs of another agent has added complexities,
involving several kinds of knowledge as well as reasoning in real time about presumed effects of
actions (communication) on others’ internal states. We will examine this within a single scenario,
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proposed by Davis (2001); but our approach is intended to be fairly broad and should apply to a
much wider range of applications.

A key to our approach is Alma having – for each agent that it knows of – a special partition
in Alma’s KB to hold beliefs that Alma attributes to that agent, and to which ALMA will apply its
inference mechanisms to infer conclusions within that partition. Thus if Alma’s “view” of Bob is
that Bob believes P and P → Q at time t, then that same partition will also believe Q itself at time
t+1. This nicely obviates the need for Alma to explicitly reason about Bob’s individual inferences.

The Surprise Birthday Present (SBP) problem was devised by Davis (2001). It has various
aspects; one such – given emphasis by Davis, and later by Morgenstern (2005) – is that of charac-
terizing what it is for something to be a surprise (to some other agent) in the future. Another is how
an agent can infer, based on such a characterization, that something will be a surprise to another
agent. The SBP is roughly as follows (Davis gives several versions): Alma and Bob want to give
Carol a birthday present, but do not want her to know what it is in advance. Alma and Bob com-
municate about an idea for a possible present. If Carol is not present during this communication,
how can Alma infer 1.) that Carol will be surprised by the specific present (i.e., will not know what
it is beforehand), 2.) that Bob will not be surprised, 3.) that Bob will also infer that Carol will be
surprised? And conversely, if Carol is present, how can Alma infer that she will not be surprised,
that Bob will also infer this about Carol, etc?

This may seem almost trivial, but the knowledge-representation details are not so by any means.
We consider that Alma and Bob want to surprise Carol, and the issue is how Alma can represent
and reason about what Alma believes are Bob’s and Carol’s evolving beliefs, as Alma and Bob have
made this decision. For the part of Alma modeling Carol, if Alma believes Carol is nearby to be
able to overhear what is told to Bob, then intuitively Carol ought to be able to determine that the
gift is coming — and by expecting the gift, Carol fails to be surprised. Conversely, if Alma does not
believe Carol to have had an opportunity to overhear, then Carol will not be modeled as ultimately
unsurprised. Additionally, if Alma considers Bob to have much the same knowledge of the situation,
then Alma ought to also model Bob reaching the same conclusion about whether Carol fails to be
surprised. We are thus considering a need for Alma to be in possession of certain knowledge relevant
to this commonsense situation — such as when an agent might hear information, when an agent is
not surprised due to an expectation of a gift, and so on. But additionally, Alma should also be able
to attribute to Bob and Carol the same knowledge of the situation.

Our short presentation here will necessarily be informal, but the ideas have been given pre-
cise formulation and implementation. Among other things, Alma will need a concept of common-
knowledge, to be able to assume another agent has a certain minimum base of knowledge shared
with Alma. We confine our discussion to the case of Alma, Bob, and Carol as in the SBP.

Alma has the belief that if a wff is common knowledge then: 1. it is true, and 2. other agents will
also believe that it is common knowledge and that it is true. This avoids a need for Alma’s axiom set
to repeat distinct formulas formulas attributing knowledge of the situation to Bob or Carol. Alma
simply must be aware of the existence of its fellow agents, and believe that scenario axioms are
common knowledge, and the beliefs will be appropriately passed to the agent partitions.

The following axioms (mostly rendered in English here) constitute the initial beliefs of an agent
for the specific problem of giving a surprise birthday present. These axioms model how agents that
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heard an utterance may attribute hearing (or not hearing) to other agents: 1. Any agent near the
speaker (including the speaker themself) will have heard the utterance. 2. An agent not near the
speaker will not have heard the utterance by the speaker. Alongside the formulas for attribution of
hearing (or not hearing), there are formulas expressing their consequences.

We assume that agents are credulous and believe what they hear in our scenarios, without con-
sidering reasoning related to falsehood (and thus, the giving of a surprise birthday gift does not
depend on deceiving Carol). An agent might believe another heard an utterance for several reasons.
When this is the case, the conclusion is that other agents would believe in what the present agent
expects them to have heard. Similarly, if another agent is considered by the present agent to not
have heard an utterance, this other agent is modeled as lacking a belief in the utterance.13

Next are the critical two axioms for determining when there will be a failure to surprise Carol
with the gift. First, there is the common knowledge that an agent aware of a decision for giving a
gift will expect that the recipient will receive it. Here, expectation is a shorthand for encoding that,
as a default, its argument is likely to happen in the future, although condensed for readability

common_knowledge(“decision(Giver, give(Gift, Agent))

→ expectation(receive(Agent, Gift))”) (15)
The expectation that a certain agent will receive a gift might be believed by any agent. When the
expectation that someone will receive the gift is held by the ultimate recipient of the gift, who
moreover has heard about the decision to give it to them, this recipient will not be surprised when
they receive their gift:

common_knowledge(“expectation(receive(Recipient, Gift))∧
heard(Recipient, “decision(`Giver, give(`Gift,`Agent))”, Speaker)

→ ¬future_surprise(Recipient, gift(Gift))”) (16)
Inference of the conclusion of axiom 16 by an agent model of Carol thus naturally represents a
failure of the desired result by Alice and Bob.

Lastly, there is a small collection of axioms necessary for the scenarios to function: It is common
knowledge that the three agents exist, that being near is a symmetric relation, and also that each
agent believes and is identified by their own name. We suppress details of these.

Several versions of SBP have been examined, but all begin with the following formula of Alma
telling an utterance to Bob:

tell(alma, “decision(alma, give(cake, carol))”, bob) (17)
In practice when these scenarios are executed by ALMA, due to the axioms for inferring the truth
of common knowledge, for each axiom of the form common_knowledge(“X”) (which would be
believed by Alma itself and within a modeled agent’s KB), there is a several step derivation of
true(“X”) following, and then X alone as a belief. For simplicity, we refer to X as a formula
extracted from common knowledge, in relation to common_knowledge(“X”).

As with the earlier default reasoning examples, the subsequent discussion is at a high level,
without full detail of inferences. Here we present only one such example; full traces for ALMA
execution can be found in the available source code. We consider when all three agents are mutually

13. This obviously is an overstatement, since many un-uttered statements will be believed. For the present scenario, all
that matters is that agents do or don’t hear about the intended present and thus do or don’t know about it.
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known to be nearby. This intuitively should ultimately produce a failure to surprise Carol, since she
will be able to overhear the utterance and should make inferences based upon what is heard.

First, we break down how reasoning proceeds for Alma expecting that Carol should be unsur-
prised. From a belief that a speaker hears their utterances, Alma infers the following:

heard(alma, “decision(alma, give(cake, carol))”, alma) (18)
From formula 18, the axiom agentname(alma) of an agent accessing its own name, and beliefs
extracted from common knowledge, Alma infers true(“decision(alma, give(cake, carol))”),
and subsequently believes its nested formula:

decision(alma, give(cake, carol)) (19)
Formula 19 satisfies the premise of 15, producing this conclusion indicating that Alma expects Carol
to receive the gift: expectation(receive(carol, cake)).

In a second derivation thread, Alma infers that Carol has also heard the utterance:
heard(carol, “decision(alma, give(cake, carol))”, alma) (20)

Yet, due to the timing of inference and the need to unpack formulas from common_knowledge,
at the timestep when 20 is inferred, one timestep earlier its negation has been inferred based on
a default rule about what hasn’t been heard and a lack of knowledge at that timestep that Carol
was near. A contradiction thus occurs between whether Carol has heard or not heard, which is
subsequently resolved. Following this reinstatement, between the reinstated formula 20, as well as
the expectation regarding Carol and 16 extracted from common knowledge, Alma infers that Carol
won’t be surprised by receiving the gift:

¬future_surprise(carol, gift(cake)) (21)
We next address how the KB partition modeling Carol (which is itself a model that is part of

Alma’s KB) is employed for the first scenario, and trace how reasoning proceeds in Alma’s KB
partition for the modeling of the beliefs of Carol. This process begins with an inference from
Alma rather than the model of Carol, leading to Carol modeled as believing that she heard Alma’s
utterance:

believes(carol, “heard(carol, “decision(alma, give(cake, carol))”, alma)”) (22)
Per ALMA mechanisms for agent modeling, this belief is synchronized into the partition modeling
the beliefs of Carol, as heard(carol, “decision(alma, give(cake, carol))”, alma). Addition-
ally, Alma models Carol as knowing her own name, which leads to the following:

believes(carol, “agentname(carol)”) (23)
This is also synchronized into the partitioned region for the model of Carol, as agentname(carol).
And lastly, for the final Alma inference that affects the model of Carol for the scenario, Alma infers
that Carol will be able to extract common knowledge:

believes(carol, “common_knowledge(X) → true(X)”) (24)
The formula common_knowledge(X) → true(X) is inserted into the model of Carol, and from here
this model can extract formulas from common knowledge in the same manner as is used by Alma
itself to withdraw the formulas and believe them.

The inferences themselves from Carol’s perspective continue in the nested KB for her beliefs.
From the combination of her belief in hearing the utterance, her belief in her name, and a be-
lief in the truth of utterances as extracted from common knowledge, the modeled Carol infers that
true(“decision(alma, give(cake, carol))”), and subsequently infers the formula
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decision(alma, give(cake, carol)). In contrast to 19, this formula is specific to Carol, and
hence Alma would instantiate believes(carol, “decision(alma, give(cake, carol))”). Carol’s
belief in her copy of the commonsense implication 15, alongside knowledge of the decision, pro-
duces an inference that she expects to receive the gift:

expectation(receive(carol, cake)) (25)
Unlike the perspective for Alma, there is no contradiction reached regarding heard literals in the
model of Carol. Therefore, from formula 25, Carol’s equivalent of 22, and Carol’s belief of 16
extracted from common knowledge, Carol also infers that receiving the gift won’t surprise her:

¬future_surprise(carol, gift(cake)) (26)
Hence, in addition to Alma ultimately reasoning that Carol should not be surprised when she ul-
timately receives the gift, Alma also models that Carol herself can reason out this same fact as a
consequence of being nearby and able to overhear Alma’s utterance about the gift. Formula 26 will
instantiate into the core KB the following formula, which we contrast with formula 21 to highlight
the difference between the result from modeling Carol with the reasoning without her model:

believes(carol, “¬future_surprise(carol, gift(cake))”) (27)
In fact, in this contrast we see a difference that resembles the distinction we have drawn between
internal and external accounts of reasoning; formula 26 is an internal representation for the model
simulating Carol’s reasoning processes about a failure of surprise, while formula 21 is an external
representation outside of the model of Carol.

In the same running scenario, Bob, as another agent near Alma when the utterance is made, is
also modeled by Alma as hearing the utterance, and then modeled as believing the set of common
knowledge formulas following their synchronization into Bob’s partition. Thus, the inference pro-
cess also leads to Bob’s model expecting Carol to be unsurprised in the future (i.e., Bob’s model
producing its own final inference of the form of formula 26), along essentially the same lines.

More interesting is the fact that, due to beliefs of Bob’s model including a copy of formulas
for common knowledge, and the common knowledge of the other agents and their positioning near
each other, the model of Bob will also further be able to attribute these common knowledge beliefs
to a more deeply-nested partition for Carol. Thus, the inference for Bob’s model having its own
inner model of Carol proceeds with the same inference process as was used by Alma modeling
Carol. After sufficient timesteps, Bob’s model of Carol infers formula 26, Bob’s model obtains the
equivalent of 27, and the core KB obtains the following:

believes(bob, “believes(carol, “¬future_surprise(carol, gift(cake))”)”) (28)
In ALMA, each agent model’s reasoning can progress simultaneously. However, since there is

a longer temporal chain of inference for inner agent models, the core KB will obtain a formula such
as 21 at timestep 8, before 27 at timestep 12 and formula 28 later still at timestep 14. Alma will thus
acquire the belief Carol modeled as failing to be surprised before the model of Bob reasons fully
to this conclusion. It is an opportunity for future work in which Alma can anticipate Bob’s model
making the same conclusions. More broadly, patterns of reasoning of this kind illustrate how the
ALMA reasoner has the capability for reasoning by one agent over time as its own beliefs, as well as
those of other agents, are undergoing inferential changes, and having those changes reflected upon.

A second scenario we have studied involves common knowledge that Alma is near Bob but no
other knowledge of nearness. Then Alma and Bob both infer by default that Carol is not nearby,
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and thus has not overheard their plans, and so will be surprised. Another scenario involves common
knowledge that Alma is near Bob, but where only Alma and Carol have shared (not common to
Bob) knowledge that Carol is also nearby. Since Alma and Carol know each other to be near, Alma
is able to model Carol such that Alma infers Carol will not be surprised. Similarly, (Alma’s model
of) Carol is able to conclude that Carol knows she will not be surprised. However, Bob lacks the
ability to reach this conclusion.

7. Conclusions

We have described the importance of quotation and quasi-quotation in metareasoning and presented
methods to represent them suitably for inference in active logic. This includes a formal concept
of variables escaping suitable levels of quotation. This was then applied to produce new real-
time methods of default reasoning, including the updating of non-default rules into defaults when
exceptions arise, with application to nested defaults. Further application was presented for reasoning
about own and others’ evolving beliefs, and illustrated in the Surprise Birthday Present problem.

For future work, we note that the default-reasoning work for nested defaults does not extend to
overlapping (non-nested) defaults. We anticipate that ideas in the causation-based solutions to the
Yale Shooting Problem (Hanks & McDermott, 1987) will provide useful gains in a number of cases.

Broad aspects of the KRR subtleties that were addressed here in nested and time-varying de-
faults, as well as in other-agent cognition, would seem to be essential to commonsense reasoning.
This would be not only with regard to active logic, but in human-level artificial agents generally,
and likely to humans as well. While specific details may well vary across agent types, the need
to represent and keep track of rapidly changing past, present, and (anticipated) future beliefs and
inferences seems impossible to circumvent, except in severely constrained scenarios.
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