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Abstract
As autonomous vehicle begin to make human-level decisions, users, stakeholders and system ex-
perts will need to be confident in their decisions and behaviors. One way to ensure that these
systems are robust is to measure their ability of anticipatory thinking; or how well they can reason
about out-of-domain situations. One way to test for these new situations is to design stress tests, or
iterative testing procedures that intend to perceive the agents faults under successive pressure. This
procedures “break downs” the component to failure, so system debuggers and auditors can evaluate
the strength of the mechanism being tested. We show that you can apply the same procedure to
perception systems. We should how you can apply different mask to perception data “break down”
the perception system to predict different objects. By combining this with a knowledge graph of
information, we can use these approaches to start measuring anticipatory thinking in safety-critical
and mission-critical AI systems.

1. Introduction

Anticipatory thinking drives our ability to manage risk from the everyday to expert-level perfor-
mance. Advances across AI has led to deployments in safety-critical and mission-critical domains
like medical diagnosis and autonomous driving where managing risk is essential. As machine learn-
ing continues to set new performance standards for the field, AI systems will become more pervasive
in these domains.

However, there are still many real-world examples of AI systems mismanaging risks leading to
errors that humans would not make. Without any knowledge of how these systems manage risk, we
are limited in their application to safety and mission critical domains. The opacity to managing risk
is in part due to typical task-based performance measures (e.g. error rates on static tests) that limit
transparency of future performance in plausible everyday scenarios that are nonetheless outside
the normal testing range. Calls to develop ability-based assessments that build on human abilities
are still fledgling, with concepts such as universal psychometrics in their infancy (Hernández-
Orallo, 2017). Adversarial robustness efforts to harden machine learning models against actors with
malicious intent are advancing but neglect natural adversarial examples that remain intractable to
enumerate and test in advance. Without a transparent and semantic anticipatory thinking assessment,
there is self-imposed ceiling on the risk management capabilities of AI systems, the effects of which
are news worthy mistakes because they could have been avoided.

Our ability-based assessment elicits an AI system’s anticipatory thinking, revealing how it man-
ages risks with respect to types of human decision making across tasks. Impacts of using our as-
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sessment include a more accurate characterization of real-world deployment performance, sparing
casualties in safety and mission critical domains. We accomplish this with three contributions:

1. Synthetic data collection

2. Anticipatory Thinking assessment

3. Working prototype with evaluation results

Our first contribution is the counterfactual synthetic data generation. We generate a set of synthetic
data images by modifying observed data in plausible and realistic ways. The outut of this process
are a set of counterfactual data. Counterfactuals reveal how an AI system manages risk in ’what-if‘
scenarios that include rare and long-tail examples.

Our second contribution is the anticipatory thinking assessment for an existing image classifier.
We include formal definitions of each component of the assessment in Section 3. These definitions
are essential to generalize the assessment beyond the running example and toy domain we refer to.
This makes our assessment adaptable to other types of stress testing problems beyond stop signs in
self-driving cars. A workflow of our assessment is in Figure 1.

Finally, we provide preliminary results on an example. We create a set of synthetic stop sign data
for a self-driving car. We apply our anticipatory thinking assessment on our dataset and an existing
model, ResNet-50. These results show that our approach can be used for practical applications and
that many of the components needed are readily availabl. Our work can be extended to many state
of the art/practice tools such as knowledge graph embeddings and GANs.

Figure 1: We generate plausible, synthetic data to reveal hidden failure modes in AI systems when
compared to human decision making. Our synthetic data is the result of reasoning over a knowledge
graph and advancements in generative AI.

2



FORMATTING INSTRUCTIONS

(a) An example of an object-level perception error.
(Credit to _realrusty on TikTok.)

(b) An example of a scene-level perception error.
(Credit to u/VREsports on Reddit.)

Figure 2: The two types of anticipatory thinking autonomous vehicle perception problems. The
object-level errors occur when the object classification is wrong, .e.g., the moon being mistaken
for a yellow light. The scene level classifications occur when the objects in the scene is correct
identified, but the scene understanding is incorrect: a truck full of traffic lights.

2. Background and Related Work

Our contributions build upon previous work on anticipatory thinking (Amos-Binks & Dannenhauer,
2019) in open world domains (Amos-Binks et al., 2021), robustness, and stress testing AI systems.

2.1 Anticipatory Thinking for Autonomous Systems

Anticipatory thinking (Geden et al., 2019) is behind our ability to manage risk in real world domains
like driving. The problem is that while humans are able to anticipate rare events in driving, an
autonomous vehicle cannot. For example, if human drivers perceive a skateboard rolling across the
street, they may intentionally slow to a stop for children, parents, and friends chasing it.

On the contrary, autonomous vehicles are perceiving the world in a different way. Autonomous
vehicles are constantly perceiving their surrounding environments with perception systems, e.g.,
vision, LiDAR, and radar, to resolve the difference between reality and their representation of it. The
vision system, which is opaque to humans, is not prepared for rare but highly impactful perception
errors; making autonomous vehicles an open-world domain Langley (2020).

Self-driving has been proposed as an open-world anticipatory thinking perception challenge (Amos-
Binks et al., 2021). There are two types of challenges, one at the object level, and one of the scene
level. Object level challenges include perceptions where the objects identified are clearly wrong,
e.g., a mailbox crossing the street (Gilpin et al., 2018), or the moon being perceived as a yellow light
in Figure 3a. Whereas the scene level challenge occurs when the objects are correctly identified,
but there is a lack of scene understanding. E.g., a truck carry traffic lights, but the perception sys-
tem does not understand that the traffic lights are not “active.” The illuminates an issue with scene
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understanding: low-level objects and their behaviors are memorized instead of being understood in
different environments.

2.2 Human Alignment and Robustness

When AI systems fail, they fail in different ways than their human counterparts. For example, AI
systems lack commonsense (Davis & Marcus, 2015). These autonomous agents are increasingly
deployed in real world settings, where there has been an increase in malfunctions and errors leading
to injuries1 and even deaths2. One way to assess whether autonomous machines are behaving in
our best interest is to “stress test” (Falco & Gilpin, 2021) them with a set out-of-domain or tricky
examples. These tests can consist of physical testing, e.g., putting the mechanism in unfavorable
conditions like extreme temperatures, or algorithmic testing, e.g., constructing out-of-sample tests
that are real-world corner cases or adversarial examples.

In the computer vision literature, these “stress tests” are commonly referred to as adversarial
examples (Szegedy et al., 2013). These “tricks” are applied to images in the form of filters, noise,
and color changes. There have been reports of these adversarial attacks in the real world (Eykholt
et al., 2018), where just a few pieces of tape can change an object recognition model from perceiving
a stop sign to a 45 mph sign. This naturally occurring adversarial example can be hard to find.
Some other examples include traffic lights in a truck3, in Figure 3b, or the moon being perceived as
a yellow light4 in Figure 3a. While these examples exist, aggregating a set of naturally occurring
adversarial examples is difficult because naturally occurring adversarial examples are difficult to
find and document.

Our work in anticipatory thinking assessment is inspired by similar work in AI assessment (Hernández-
Orallo et al., 2017). Hernández-Orallo et al. argue that “to move ahead, the space of tasks must be
analyzed.” They note that this can be done by creating a hierarchy of tasks Hernández-Orallo (2017)
or using task theory Thórisson et al. (2016). Our work defines such a task in terms of anticipatory
thinking, and we show one type of task in the domain of object and image clasification.

2.3 Object/Image classification

Self-driving cars perceive the world in the modalities of images and sensors. Image processing is
the most commonly used perception modality for self-driving cars5 as it is inexpensive in hardware
and software solutions, e.g., DNNs, can be pre-trained. Reliance on pre-trained models results in a
need to manage risks, including unknown risks and observation biases.

Managing risks in self-driving is an open-world problem (Langley, 2020). The key issue is
that many risks may be unknown, and therefore difficult to test. An especially pressing issue is
how to design testing frameworks for such rare scenes. For example, a computer vision system

1. Mall robot injures a toddler: https://qz.com/730086/a-robot-mall-cop-did-more-harm-than-good/.
2. Uber self-driving car accident: https://www.wired.com/story/uber-self-driving-crash-arizona-ntsb-report/
3. https://futurism.com/the-byte/tesla-autopilot-bamboozled-truck-traffic-lights
4. https://www.ndtv.com/offbeat/watch-tesla-autopilot-feature-mistakes-moon-for-yellow-traffic-light-2495804
5. Tesla exclusively uses image processing for vehicle perception: https://venturebeat.com/business/

tesla-ai-chief-explains-why-self-driving-cars-dont-need-lidar/
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can be “fooled” by rare scenes such as traffic lights on a truck6 (and see Figure 3b). In these
cases, the object-level perception is correct: the objects are correctly identified, but the scene is so
rare and disruptive that it should be immediately recognized so the system can avoid catastrophic
failures (e.g. immediately stopping on a freeway). These “naturally-occurring adversarial scenes”
exemplify the problem with the long tail of errors in autonomous vehicles. An additional layer of
reasoning is required to test and monitor for these types of rare scenes.

Another issue in self-driving image models is observation bias. Pre-trained image models are
prone to memorizing immeasurable patterns in training data Zhang et al. (2021). Adversarial ro-
bustness has developed as a subfield to combat such issues.

2.4 Adversarial Robustness

The current state-of-the-art vision systems are easily fooled (Nguyen et al., 2015) by out-of-distribution
inputs that exploit a model’s observational bias. Some solutions include training on adversarial ex-
amples (Ilyas et al., 2019), but they only lead to improvements on this data set. The adversarial
robustness field is concerned with a set of modifications a malicious actor might execute with the
intention of foiling a trained model. While this is certainly an important issue, it differs from our
work in that a malicious actor strives to make imperceptible modifications (to the human eye) to
model inputs (e.g. add noise to images) whereas our work modifies the semantics images (e.g.
add weather effects). Adversarial robustness is designed to guarantee against known failure modes
whereas our approach is designed to reveal hidden failure modes.

2.5 Synthetic data

Synthetic data, which could be generated from a GAN, VAE, or game engine, is an ideal compliment
to our work. While generating synthetic data is not the focus of our work it serves as an important
step in a revealing failure modes. Synthetic data generation is becoming more realistic and able
to introduce semantics at a fine grain details using natural language, a key feature when directing
generation from knowledge bases with human readable data (ie. knowledge graphs).

Many synthetic data sets exist for image processing Ros et al. (2016) and specifically for au-
tonomous driving Li et al. (2019). Sensor data for autonomous driving can also be synthesized Yang
et al. (2020). The key issue is that many of these datasets may not be realistic, especially when de-
ployed and tested in simulation Reway et al. (2020). The key contribution of our work is to use real
data, and slightly augment it to generate a synthetic sample sample. We use this synthetic input to
force the existing model into a different class.

3. Anticipatory Thinking Alignment

Our goal is to define a procedure that assesses how an agent’s performance in a set of tasks align
with the anticipatory thinking used in different decision making frameworks. The key step that
enables us to assess anticipatory thinking is synthesizing plausible, naturally occurring adversarial
inputs that elicit different responses across the frameworks. While this method generalizes to other

6. https://futurism.com/the-byte/tesla-autopilot-bamboozled-truck-traffic-lights
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domains, we use a running example with an autonomous vehicle’s perception system. Driving is
accessible to readers – we use stopping at stops signs as the task – and public pre-trained object
identification models are highly accurate, reducing confounding factors. The goal of the running
example is to illustrate how our contributions assess the anticipatory thinking alignment between
AI systems and human decision making frameworks.

In our running example, we use an autonomous vehicle, AGENT, equipped with a trained object
recognition system to perceive the road signs. We wish to assess how AGENT uses anticipatory
thinking when driving and define the assessment as:

Definition 1 (Anticipatory Thinking Assessment) A tuple AssessAT = ⟨T,D,KG, S,A⟩ where
T is a set of tasks, D the decision makers to align with, KG is a knowledge graph, S a set of
synthesis functions, A the alignment function.

Tasks are observable action(s) an agent takes in response to perceiving an object. Tasks prioritize
all possible perceptions and actions an agent might make to those that manage risk – thus require
anticipatory thinking– and are observable in the domain.

Definition 2 (Task) tobj is an observable agent task t when the agent perceives the object obj. The
set of all anticipatory thinking tasks in an assessment is T

In our driving example we use stopss where the task stop is an agent stopping at a stop line when
perceiving a stop sign object, ss. Whether to obey the stop sign is a judgement of risk requiring
anticipatory thinking. For illustrative purposes, we focus on this task but a short list of other driving
related tasks and objects is in Table 1.

Anticipatory thinking varies widely across scenarios, as such we represent the variations as
different decision makers. Each decision maker employs anticipatory thinking in a different way
as a result of individual differences (e.g. domain expertise, temperament) or structured decision
making frameworks (e.g risk aversion). We represent the different approaches to executing a task
as:

Definition 3 (Decision makers) is a set of decision making agents D where each agent dk repre-
sents a unique decision making framework and dk(tobj) outputs a range of aligned values for task
tobj .

In our driving domain, DRIV ERS consists of two driving styles; defensive driverdef and
aggressive driveragg. In our stop at a stop sign task, stopss, our defensive driving agent would stop
95% +−3 and our aggressive agent stops 50% +−5. These values are not empirically determined
(though they could be) and are for illustration only.

We expect human decision makers in DRIV ERS to behave consistently when observing slight
variations of a typical stop sign. Whether this is red color fading from weather exposure, con-
founding shapes, occlusions, or otherwise their anticipatory thinking can account for the inferences
needed to recognize and stop at a stop sign. We investigate AGENT ’s anticipatory thinking ability
by perturbing properties of stop signs to synthesize new ones, presenting them to AGENT , and
identifying which decision maker AGENT aligns with.
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Object/Node Task
Stop Sign Stop at the stop line
Yield sign Yield to moving objects (people, cars, animals)
Speed Limit Sign Velocity magnitude must be ≤ the speed limit
No parking Do not park car at sidewalk
Flashing red or yellow lights Stop and yield to moving objects.

Table 1: Examples of tasks that have risk and their observable behavior.

Procedure 1 An anticipatory thinking ability assessment procedure that calculates an agent’s align-
ment with decision making frameworks.

Given: an assessment AssessAT = ⟨T,D,KG, S,A⟩, corpus of object instances C, and an agent
a.

Find: a set DC
a whose elements correspond to how aligned a is to each decision maker.

1: procedure ANTICIPATORY-THINKING-ASSESSMENT(AssessAT, C, a )
2: Let R← ∅ ▷ Start with an initially empty results set.
3: for each task-object ti ∈ T ∈ AssessAT do ▷ for each task-object in the assessment
4: for each property pj ∈ i(KG) do ▷ for each property of object i in knowledge graph KG
5: Let Sij ← fp(i(C)) ▷ synthesize new instances of object i by modifying property pj .
6: Let Rij ← t(Sij)AGENT ▷ Results R from a doing task ti with new instances.

7: Let DC
a ← A(R,D, a) ▷ Align an agent to decision maker responses

8: return DC
a

Our approach to synthesizing perceptions relies on generating plausible variations on real-world
objects in the domain. We ensure our synthesized perceptions are aligned with real-world knowl-
edge by using a knowledge graph that represents the commonly agreed upon relationships between
objects and their properties. We use the typical formulation of a knowledge graph

KG = (V,E)

as collection of linked properties of vertices, V , via relational edges, E. In our definition of a
knowledge graph, the vertices, which we will refer to from now on as nodes are objects, e.g., stop
sign, vehicle, or penguin. We represent a datum in the knowledge graph as a triple: (query,
relation, object), where the query and object are nodes. Nodes are connected to other
nodes via edges which encode relationship properties, e.g., IsA, HasA, AtLocation, etc.

When an autonomous vehicle arrives at a stop sign, which has been perceived by the vision
system. Stop signs have higher level properties, e.g., shape: hexagon and color: red, that prompt an
expected behavior: the vehicle must stop. Each of these higher level properties can be interrogated
for variations that affect an agent’s ability to perform the tasks. To verify that an autonomous
vehicle’s underlying perception system is is safe, secure, or trustworthy, we need to identify the
nodes in our tasks, and validate or stress test that these properties are met.
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Our AT assessments are designed to elicit hidden failure modes that might otherwise be missed.
The kernel of each assessment is a corpus of real-world instances of the objects that initiate tasks in
the assessment:

Definition 4 (Corpus) is a set C of tuples ⟨i, l⟩ where i is object instance and l the label from the
objects needed to initiate the tasks in T . l(C) returns all instances with label l in the corpus.

To elicit hidden failures in the stopss task, we collect images of stop signs ss1, ..., ss2 into our
corpus DB. This would typically be the data that a machine learning algorithm would train on.

For all object labels DB, we identify them in a knowledge graph and enumerate through their
properties to identify those for which we have a synthesis function. The intention with a synthesis
function is to generate the naturally occurring variations that are plausible in a given context. We
define a synthesis function as:

Definition 5 (Synthesis function) is a function fp(n(C)) that modifies property p of the instances
of object n in the corpus C and outputs the modified instances in a set n′

p.

Continuing with our stop sign example, the stop sign node ss has a property color = red and
we have a synthesis function f red(ss) that changes the ss’s red channel value in the output ss′red.
This function is a simplified way to represent the fading and weathering stop signs endure from
exposure the elements.

Lastly, we define an alignment function to assess an agent’s task performance on all synthesized
data against those of our decision makers. Alignment functions can take many forms including
trained classifiers in data rich environments, to few-shot learning when novelty is a factor to rule-
based systems in well-defined domains.

Definition 6 (Alignment) is a function align(C,AssessAT , a) that outputs DC
A as agent a’s align-

ment with the decision makers and tasks in the assessment assessAT on the corpus C.

Our alignment function is a T-test that tests whether AGENT ’s performance on the synthesized
data is drawn from the same distribution as our aggressive and defensive drivers. We find that t-
test(DB′, AssessAT , AGENT) returns DDB′

A = {0, 1} indicating that AGENT aligns with a
more aggressive driver. One can envision more advanced methods to determine alignment from
topological data analysis if there are many tasks and synthesis functions.

4. Evaluation

Our goal is characterize model robustness by (1) stress-testing image perturbations and (2) char-
acterizing model robustness with a given knowledge graph. We stress-test image perturbations by
adding an image mask for each color channel. We apply this image mask for each color channel,
and iteratively; for various levels of modifications (up to 30 iterations). This same approach could
be used for other symbolic features: background blurring, removing objects, etc. In our initial eval-
uation, we focus on color channels, which aligns with the top component of the knowledge graph.

8



FORMATTING INSTRUCTIONS

We are simplifying the decisions that an autonomous vehicle would make by focusing on object
detection and color channels. There can be multiple inputs that are tasked with perceiving the world:
image/object recognition, LiDAR, radar, etc. However, many autonomous vehicle manufacturers
have decided to fully focus on image/object detection7. In this work, we focus on recognizing a
stop sign because it is a necessary condition to stop at a stop sign. Of course, there are other tasks
to recognize when to stop. However, the stop sign is an almost universal symbol across locals and
countries to stop. The other problem is that stop signs can also be carried by pedestrians that indicate
stopping in critical situations like road work or children crossing.

We characterize the model robustness by querying ConceptNet5 (Speer et al., 2017) for key
semantic parts of the image. We use a domain-specific knowledge graph to aggregate semantic
knowledge about objects and their properties. We use ConceptNet5 Speer et al. (2017), a semantic
knowledge base of commonsense that is able to query for concepts that contain multiple words, e.g.,
stop sign. An example of the output of querying ConceptNet for “stop sign” are in Table 3. This
shows that color (the second line in the table) are a key factor for identifying a stop sign.

We aggregated a dataset for the AT assessment fromfrom Kaggle8. We pruned the set of images
that were identified as stop signs for a total of 91 stop signs. We used an existing pre-trained model,
ResNet50, and put into evaluation mode, which is necessary to e.g. turn off batchnorm. ResNet50
was not trained on the “stop sign” label, so we use the “street sign” label. From the 91 initial stop
signs, we choose 10 stop sign images to test. One of the images contained both a stop sign and a
traffic light so it was characterized as a traffic light (index 67) in Table 2. The other 9 images were
chosen due to several factors:

1. True label: The predicted label and the true label are both “street sign” or “stop sign.”

2. Lack of background noise: The image’s background is simple. Since we are modifying the
image at the pixel level, if the image has a complicated or busy background, our approach can
fail.

3. Simple color scheme: The image’s color scheme is simple. Since we are modifying the image
at the pixel level, if the image contains many diverse colors, our approach can fail.

4. Focus on the sign: The main component of the image should be a stop sign. If the sign is in
the background, it is usually not labelled correctly.

Our 10 testing images were specifically chosen with these four factors in mind. In future work,
we will extend this work to more diverse backgrounds. For each image in our data set, we read the
image, resize to 224 and convert to PyTorch Tensor. We then normalize each image’s RGB values,
and predict unmodified image tensor class. For all of our data set, the predicted unmodified image
tensor class is “street sign.” We then get the mask from the image that we will modify. We do this
for each color channel: red, green and blue. And finally, we apply gradient descent in the following
four steps:

1. Modify a single pixel’s RGB values

7. Tesla does not use LiDAR data: https://towardsdatascience.com/why-tesla-wont-use-lidar-57c325ae2ed5
8. Kaggle Road Sign Detection Dataset: https://www.kaggle.com/datasets/andrewmvd/road-sign-detection
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2. Color the image mask

3. Add the mask to the original image

4. Predict result (and check whether the prediction is different from the original prediction).

We report the first incorrectly classified images in Figure 4. From the figure we see that most
images are incorrectly classified by the third or fourth iteration. The detailed results in Tables 2
and visualized in Figure 4. These results demonstrate that a state-of-the-art image classifier like
ResNet50 is not very robust to small color changes. This is inspired by augmented stop signs that
may be perceived in the real world, e.g., stop signs that are faded or contain stickers or graffiti. An
example output is shown below for three iterations:

Iteration 1: Predicted class: street_sign
Iteration 2: Predicted class: street_sign
Iteration 3: Predicted class: spotlight

This shows that on the third iteration, the top predicted class changed from street sign to spotlight.
We continue this process for up to 30 iterations, and we report the final prediction in Table 2. It
is important to note that 7/10 of the images are incorrectly classified for all color channels after 30
iterations.

Index True label Iter. B B end label Iter. R R end label Iter. G G End Label
44 street sign 3 traffic light 3 spotlight 3 stoplight
50 street sign 3 coil 3 analog clock 3 coil
51 street sign None street sign 4 spotlight None street sign
58 street sign 17 traffic light 6 digital clock 4 traffic light
60 street sign None street sign 3 digital clock 23 bolo tie
63 street sign 3 spotlight 3 spotlight 3 stoplight
67 traffic light 3 digital clock 4 spotlight 8 stoplight
68 street sign None street sign 3 digital clock 3 stoplight
75 street sign 3 digital clock 4 spotlight 3 digital clock
78 street sign 3 spotlight 3 spotlight 3 stoplight

Table 2: A table showing the the true label, and the number of iterations to change the label for each
color channel (Red=R, Blue=B, Green=G). We also show the end label after 30 iterations.

5. Limitations and Future Work

Our anticipatory thinking assessment approach can generalize to other applications. Here we should
autonomous machine perception, particularly autonomous vehicle perception as a use case. In our
initial evaluation, we focused on a stop sign and a single perception model, ResNet50. In future
work, we will extend this assessment to multiple perception models and object types.
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subject predicate object

a stop sign AtLocation the corner of two streets
a stop sign HasProperty red and white
a stop sign UsedFor stopping
a stop sign AtLocation a street corner
a stop sign AtLocation a fork in the road
stop sign Synonym stopbord
stop sign RelatedTo driver
stop signs FormOf stop sign
stop sign IsA road sign
a stop sign UsedFor controlling traffic
stop Synonym stop sign

Table 3: A subset of the top results for querying “stop sign” in ConceptNet. The colors are a top
property of being considered a stop sign. Results were pruned that contained either contained (1)
non-english results or (2) non-utf8 characters.

(a) The baseline image. (b) An example of a mask for the green color channel
(green eliminates red).

Figure 3: The mask that we apply for searching on different channels.

Our assessment is also limited for the sake of example. We use 30 iterations of the approach
to demonstrate that most images are incorrectly labelled in the first 3-4 iterations. In future work,
we may extend the number of iterations. We will also work on creating masks for different types of
attacks. Currently, we focus on color as the main assessment, but we can extend this for different
textures, object classes, and other properties identified in the knowledge graph.
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Figure 4: The 7/10 images that were incorrectly classified after 30 iterations viewed for all pixels (up
to 256) and focused on the misclassifiation. We show the gradient descent steps to misclassification
on all three color channels: red, green, and blue. The red x indicates the first incorrectly classified
image, where a mask is added to the original image.

6. Discussion: On the AV Use Case

Autonomous systems have started making human-level decisions in safety-critical domains, mission-
critical domains like medical diagnosis and autonomous driving. While autonomous vehicles (AVs)
promise to be more efficient, economical, and even safe, they still make critical errors. These au-
tonomous agents are increasingly deployed in real world settings, where there has been an increase
in malfunctions and errors leading to injuries 9 and even deaths Marshall & Davies (2018). One way
to assess whether autonomous machines are behaving in our best interest is to have them explain
their behavior, to ensure that the underlying reasoning behind their decisions is sound and robust.

Many autonomous vehicle failures are due to errors in perception and lack of commonsense
knowledge and reasoning. When a Tesla autonomous driving system confused the red text on a sign
for a stop-light10, the vision processing system failed because it had never seen that error before in
training. This is a common failure case in perception systems, but it becomes critical when these
same technologies are deployed on a self-driving car.

Autonomous vehicles are constantly perceiving their surrounding environments with perception
systems, e.g., vision, LiDAR, and radar, to resolve the difference between reality and their repre-
sentation of it. The vision system, which is opaque to humans, is not prepared for rare but highly
impactful perception errors; making autonomous vehicles an open-world domain (Langley, 2020).

Autonomous vehicles have a long tail of errors, especially for the vehicle perception system.
One of the challenges of quantifying the risk of autonomous vehicles in the real world is that they are

9. https://www.washingtonpost.com/technology/2022/06/15/tesla-autopilot-crashes/
10. Tesla Confuses Red Text on a Flag for a Stop Light https://www.thedrive.com/tech/37250/

tesla-autopilot-confuses-red-text-on-a-flag-for-stop-light.
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deployed in an open-world but tested in closed-world simulations. This juxtaposition highlights how
unprepared autonomous vehicles are for naturally occurring adversarial examples. In this challenge,
we suggest an alternative: generating naturally occurring adversarial examples from “real” rare
cases to supplement the closed-world test simulations, mimicking the open-worlds where they are
deployed.

The current state-of-the-art vision systems are easily fooled Nguyen et al. (2015) by out-of-
distribution inputs that exploit a model’s observational bias. Some solutions include training on
adversarial examples Ilyas et al. (2019), but they only lead to improvements on this data set. In-
stead, we propose iterative testing where objects mislabelled in deployment are used as input to a
content generation model for testing and evaluation of a perception system’s observational biases. In
application, generative model creates sets of naturally adversarial objects that can be tested during
development (e.g. faded stop signs, shadow patterns).

7. Conclusion

Deploying AI systems in mission critical contexts or where public safety is concerned requires
assurances that the system can avoid preventable failures, even in scenarios that are not explicitly
evaluated. Humans operate safely across a variety of tasks in these contexts using anticipatory
thinking, enabling them to manage emergent risks in new but not entirely novel scenarios. Assessing
AI systems anticipatory thinking ability will characterize its ability to perform in the new scenarios.

Our approach assesses an agent’s anticipatory thinking ability by generating new plausible data
and aligning the agent’s responses with known decision making frameworks. Our method general-
izes beyond our autonomous vehicle and computer vision example because it is driven by modifying
the semantics of the test inputs. Assessing AI systems based on their abilities – in this case antic-
ipatory thinking – is new ground for the field and necessary to balance increased adoption. We
demonstrated the value of generating synthetic data

In future work, we can extend our simple example by incorporating state of the art generation
methods, such as GANs, to manipulate images at the scene level. For example, introducing a
stop sign in a mural on the side of a building and assess AI system responses. Additionally, we
will expand the assessment tasks and empirically evaluate them with respect to driving decision
frameworks using human subjects. This will improve the alignment task and add comparative value
of increasing the number of image systems we can assess beyond the single pre-trained model in
our example.
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