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Abstract
Making and evaluating arguments is an important cognitive capability that plays a vital role in hu-
man cooperation by allowing us to communicate beliefs and persuade others. In this paper, we ask
how can machines comprehend arguments. Research in computational argumentation has a rich
history of addressing questions about the abstract dynamics of argumentation and how argument
structures can be mined from text. However, what is missing is an integrated cognitive system that
provides a computational account for how we might intuitively make sense of arguments. Work in
cognitive psychology has suggested that when presented with a novel argument, humans interpret
the language and produce acceptability/coherence judgments intuitively. In this paper, we intro-
duce SKEPTIC, a computational implementation of the process of intuitive argumentation, com-
bining modern deep neural networks and natural language processing techniques with established
cognitive systems principles. We describe an architecture and an algorithm for extracting graph-
like argument structures from raw unstructured text as well as retrieving implicit assumptions that
support the argument. Being able to extract arguments and their implicit assumptions will be able
to help us detect misinformation, reduce polarization, understand social and cultural rationales, and
assist with critical thinking and persuasive writing.

1. Introduction
Consider the following argument:

“Cloning will be beneficial for many people who are in need of organ transplants. Cloned
organs will match perfectly to the blood group and tissue of patients since they can be raised
from cloned stem cells of the patient. In addition, it shortens the healing process as it is very
rare to find an appropriate organ donor, and because by using cloning in order to raise required
organs the waiting time can be shortened tremendously.” (Stab & Gurevych, 2016)

This is a reasoned argument about cloning. It is “reasoned” in the sense that reasons are provided to
support a pro-cloning conclusion. Humans make arguments like this constantly to communicate be-
liefs and goals, to convince others, and to have others perform actions. Arguments facilitate commu-
nication by overcoming disagreements, thereby enabling increased cooperation and better allocation
of duties and rights (Mercier, 2011). Informally, an argument is a representation of a conclusion
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or a claim together with reasons (premises) for drawing the conclusion. When we comprehend
others’ arguments we evaluate if the reasons support the conclusions. The ability to automatically
detect and evaluate arguments has the potential to help detect misinformation, reduce polarization,
understand social and cultural rationales, and assist with critical thinking and persuasive writing.
The central research question we ask here is how can a machine comprehend and evaluate argu-
ments present in unstructured natural language? Is this argument convincing? What assumptions
is it making? We propose SKEPTIC, a cognitive system that comprehends arguments by extracting
structured representations (e.g., Figure 1) showing relationships between the different spans of text,
as well as generating novel textual content to supplement and rationalize the argument.1

Toulmin’s seminal work in argumentation research proposed a schema outlining various com-
ponents of an argument and their relationships, which served as a foundation for many different
computational approaches (Toulmin, 2003). Subsequently, logicians focused on abstract argument
structures looking at how arguments strengthen and weaken each other (Dung, 1995). These ap-
proaches, while formally sound did not tackle the problem of extracting argument structures from
raw and messy speech. More recently, there have been approaches aimed at mining argument struc-
tures from text (Stab & Gurevych, 2016; Peldszus, 2017). However, these approaches (a) do not
provide an integrated cognitive systems account of argumentation, which includes not only mining
arguments and working out the logic involved, but also their relationships with background knowl-
edge, and implicit assumptions, and (b) do not engage in the process of rationalization and inquiry,
which humans do naturally when making sense of arguments.

To address this gap, we turn to cognitive psychology and particularly the work of Mercier and
colleagues who have developed the rubric of the Argumentative Theory of Reasoning, which ties
reasoning to argumentation in humans (Mercier & Sperber, 2011; Mercier & Heintz, 2014; Mercier,
2021). Under this framework, they argue that argument production and evaluation are intuitive in-
ferential processes. When presented with a novel argument, humans interpret the language and
produce acceptability/coherence judgements intuitively, without consciously reasoning about argu-
ment validity. What reaches awareness is a fully-constructed argument structure that supports the
already intuited judgements. Subsequent conscious/deliberate reasoning may be performed over
these structures, to further strengthen the reasoning or assimilate updates - so evaluation can con-
tinue non-intuitively, as well. What is missing from Mercier et al.’s approach is a computational
deeper diver into how exactly arguments are produced and evaluated with intuitive inference and
reasoning. With SKEPTIC, we provide a first computational account of the process of intuitive ar-
gumentation, combining modern deep learning and natural language processing techniques with
established cognitive systems principles.

In the rest of the paper, we will discuss our proposed SKEPTIC architecture discussing the theory
and implementation behind each component. We will also provide some formal definitions and an
algorithm for how SKEPTIC coordinates these components to generate an argument graph like the
one in Figure 1 from raw unstructured text. In addition to the “cloning” example, we will introduce

1. It is worth noting that we are focusing here on “rational” judgment of an argument. Arguments can be “convincing”
without being rational and vice versa. There are other factors beyond a rational evaluation of the contents of the
argument that influence whether a listener including their state of mind and background knowledge.
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several shorter examples of arguments throughout the paper to illustrate various challenges and
capabilities for effectively intuiting arguments.

2. SKEPTIC Architecture

We describe a cognitive system that takes unstructured text (written or transcribed from speech)
as input and produces a rich structured graph-based representation capturing relevant relationships
between the premises and the claims in the text. SKEPTIC uses pre-trained neural language models
or so-called “Foundation Models” (Bommasani et al., 2021) (FMs) for both inference as well as
for associative machinery to retrieve implicit knowledge to interpret and flesh out the natural lan-
guage argument.2 Foundation models for language (like BERT, T5 and GPT-3) are neural network
language models trained to predict the next word (or a masked word) with very large datasets (GPT-
3 has trained on 500 billion word tokens). Research has found state-of-the-art performance with
foundation models on a variety of downstream tasks. Using natural language and graph-based rep-
resentations as its interlingua, SKEPTIC features several components (Figure 2) whose operations
are coordinated by a central Manager component, which in turn can be tied to dialog and vision
systems of broader cognitive architectures.

We distinguish intuitive processes from deliberative ones in line with the extensive literature on
dual-process systems (Evans, 2003; Evans & Over, 2013; Gilbert, 2002; Kahneman, 2003; Sloman,
1996), and their analogies to current AI approaches. Neural net models, due to their lack of expli-
cability and transparency, can be considered a type of intuitive processing, and symbolic systems
can be considered deliberative. There is much debate to be had about exactly what it means for
something to be intuitive for an intelligent agent (in this case SKEPTIC), but because SKEPTIC lacks
the ability to understand and introspect on the vector embeddings present in the neural nets, we con-
sider its operation to be intuitive processing. We claim that SKEPTIC is a cognitive architecture that
intuitively (using neural networks) generates arguments. Note, we are not proposing an end-to-end
neural model, in which any functional cognitive architecture is implicit in the layers of the neural
net. Instead, we have an explicit cognitive architecture shown in Figure 2 with functional units and
a meta algorithm executed by the Manager. What is implicit are the inner workings of these various
functional components. This distinction is very important as we think there is very little scientific
value in training an end-to-end system to fit a dataset. Instead, we are interested in the dual-purpose
of a functional implementation, but also a possibly deeper understanding of how humans rational-
ize arguments. Splitting up the components and proposing an explicit cognitive architecture, we
believe, is a necessary step in that process.

2.1 Argument Structure

Toulmin proposed that arguments are composed of claims (or conclusions) that are based on
grounds (or premises), and supported by warrants comprising the reasoning that authorizes the

2. Here, we adopt the term “foundation model” as it captures not only the underlying technical approach of pre-training
but also their emerging impact on the practice of AI research and development itself (Bommasani et al., 2021)
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inferential leap from the grounds to the claim(s) (Toulmin, 2003).3 Others have elaborated this
schema with specific types of relationships between the grounds and the claim. For example, Peld-
szus & Stede (2013) proposes several different types of support and attack relationships that work
independently to allow premises (a.k.a, grounds) to either support or attack claims independently or
in concert with other claims. Stab & Gurevych (2016) have argued that natural language argument
often features simpler structures than what Peldszus (2017) has proposed. For the purposes of our
current work, we follow Stab & Gurevych (2016) and focus on the simpler argument structure, one
which informally involves a premise and a conclusion connected with a directional relation. In the
next few sections, we discuss different components that add to this argument structure, either in
the form named relationships between premises and conclusions or the nature and content of the
premises and conclusions themselves.

For example, the argument “The building is full of asbestos. We should tear it down” is a simple
argument that might naturally break down into two parts (a.k.a. ADU or Argument Discourse Units):
(1) “the building is full of asbestos” and (2) “we should tear it down.” We also know intuitively

3. There are other aspects in Toulmin’s model including bases, qualifiers and rebuttals, but we will table those types of
relations for the time-being, focusing instead on the core grounds-claim + warrant aspect.

Figure 2. SKEPTIC Architecture: The Manager receives raw unstructured text and progressively rationalizes
the argument presented in the text by (1) interpreting it (ARGUMENT INTERPRETATION: green) to gener-
ate graph-like structures representing premise-conclusion pairs connected by a supports edge, (2) evaluating
whether the conclusion provides additional information above and beyond the premise, while still staying
tethered to it (INFORMATIVENESS EVALUATION: purple) and adding a extends edge, and (3) evaluating
whether the conclusion follows from (e.g., entailed by) the premise (CONNECTEDNESS EVALUATION: or-
ange). If there are missing extends and follows edges, then the Manager directs the generation of implicit
assumptions to provide additional information or additional rationale to strengthen the argument.
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that the first ADU is the premise and the second is a conclusion supported by the premise. Figures
1 and 4 show example argument structures generated by SKEPTIC. In the next few sections, we will
describe each of the components of the SKEPTIC architecture of Figure 2 that generated this parse.

2.2 Argument Interpretation – supports(P,C)

Argument interpretation is a process that extracts a surface-level parse of the argument. SKEPTIC’s
argument interpretation produces a graph-based argument structure: nodes are spans of texts rep-
resenting ADUs (Argument Discourse Units) with an attribute labeling of whether the ADU is a
premise or a claim; edges are directed supports and attacks relations between ADUs. The sup-
ports and attacks relations allow the reader to infer that a certain argument exists in the text, as
supports and attacks are the most basic relations capturing the dialectic notion that the listener (or
reader in the case of written text) can infer that the speaker is making an argument. As Peldszus
(2017) has noted, “[i]n the basic dialectical situation, the support relation is triggered by the oppo-
nent challenging the presented claim by asking for a reason.” In a way, argument interpretation is
at the core of what makes an argument a reasoned one. SKEPTIC’s argument interpretation process
extracts these supports and attacks relations from the linguistic form and style of human speech.

SKEPTIC uses the SpEAR (Span-based Entity, Attribute and Relation Extraction) neural trans-
former architecture (Friedman et al., 2021) to automatically (1) identify ADUs (i.e., textual spans)
from the unstructured text, (2) label those ADUs with either premise or a claim attributes, and (3)
connect ADUs with supports and attacks relations.

We train and test SKEPTIC’s SpEAR-based argument interpretation using data from the Persua-
sive Essays Corpus (Stab & Gurevych, 2016) that contains 300 short essays (total of 1,506 claims
and 3,832 premises) coupled with labeled graphs showing supports and attacks relations between
spans of text. Prior corpora for training SpEAR included data that was typically short single-
sentence inputs and causal relations that connected short phrases or single words to each other. The
arguments in the Persuasive Essays Corpus (and other argument corpora), however, are typically
longer both in terms of (1) length of the ADUs (i.e., extracted spans) and (2) the distance between
related (via supports and attacks) spans in the input text. To address the challenge of span length,
SpEAR instead identifies the first and last tokens of each ADU and it automatically joins them into
a longer span, thereby transforming the single-entity detection into an entity-boundary-detection
task. Since the Persuasive Essays Corpus’ ADU spans are much longer than spans normally ex-
tracted by SpEAR and NER models, SpEAR equivalently learns to identify the boundary tokens of
an ADU (ADU-start and ADU-end tokens) and relate them via a specialized endOf relation from
each ADU-start to its corresponding ADU-end, and then it automatically compose an entire ADU.
This boundary-learning strategy allows SpEAR to identify much longer spans than previously pos-
sible. Overall, the Argument Interpretation component (shown in green in Figure 2 extracts a
graph-like structure with the supports and attacks relations (see green edges in Figures 1 and 4)
between relevant ADUs.

Argument interpretation results are shown in Table 1 using a 90% training split and a 10% testing
split over the Persuasive Essays Corpus, substituting different pre-trained transformer variants into
SpEAR. All models reliably extract ADUs from text at 0.92 F1 score, and the uncased SciBERT
model outperforms other variants on attribute prediction and relation prediction despite having
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fewer parameters than the large BERT variants. We believe this is because SciBERT’s vocabulary
is tuned to scientific language, which occurs within the Persuasive Essays Corpus.

ADUs Attributes Relations

Base Model P R F1 P R F1 P R F1

bert-base-uncased 89.94 94.40 92.11 74.47 77.75 76.08 71.85 73.39 72.61
bert-large-uncased 90.62 93.75 92.16 75.27 77.75 76.49 73.39 70.62 71.98

bert-large-cased 90.73 93.86 92.27 74.31 77.09 75.68 73.24 72.13 72.68
scibert-uncased 89.66 94.40 91.97 75.62 79.96 77.73 72.91 73.64 73.27

Table 1. Micro Precision, Recall, and F1 of ADU prediction, Attribute prediction (labeling claim and
premise on ADUs), and Relation prediction (labeling supports, attacks, and endOf across ADUs) on a
90%/10% train/test split of the Persuasive Essays Corpus. Scores multiplied by 100 for alignment.

2.3 Informativeness Evaluation – extends(P,C)

Much of the current research on computational argument mining begins and ends with argument
interpretation, namely the extraction of supports and attacks relationships from text, as discussed
earlier. However, humans are good at intuitively identifying a bogus argument that might have the
surface appearance of an argument but is not one. For example, argument interpretation alone would
parse the argument: “The sky is blue. Therefore, the sky is blue” as two ADUs, each containing the
phrase “the sky is blue” connected by a supports relation. While the structure of the argument and
the connective “therefore” suggest the existence of an argument, we intuitively realize that there
is no additional information (novelty) in the claim over and above the premise. In fact, these are
simply restatements of each other. There is a sense that claims do more than restate a premise. But,
on the flip side, claims must be tethered to, (have some bearing on) the premise. An argument like
“The sky is blue. Therefore, my dog is hungry.” is just as difficult to accept as the claims appear to
have no bearing on the premise. Let’s discuss each aspect – bearing on, and novelty – in turn.

2.3.1 “Pertinence” or “has bearing on”

The notion of has-bearing-on is a semantic relation that encapsulates relevance and similarity. How-
ever, it is potentially a broader notion covering the pragmatics of argumentation in which the speaker
is attempting to convince the listener that there was a reason they presented this particular argument.
We can ask why the speaker would have reached the conclusion given the premise. Why are they
talking about hunger of their dog and the blueness of the sky? This notion is linked to the Gricean
conversational maxim of “relevance”, in which one tries to be relevant, and says things that are
pertinent to the discussion. We might be able to establish that one ADU has bearing on another if
they share some semantic similarity either at the lexical level or at a conceptual level (sunny and
blueness of the sky). If we are unable to find such a similarity, we might need to extract and surface
intermediate warrants and attempt to establish bearings between the original ADUs and warrants.
This is a recursive mechanism (not unlike a toddler repeatedly asking why) and one that might con-
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tinue until the system can determine the argument structure. SKEPTIC does engage in this recursive
mechanism, which will be discussed later.

2.3.2 “Novelty”

By now, we hope you agree that claims must have some bearing on their premise. But what about our
tautological argument presented earlier with identical premises and claims? These certainly have
bearing on each other, but they lack novelty. It captures the desirable virtue of moving “forward” an
argument by extending what was said – having a conclusion go beyond the premise. The idea is that
here the conclusion is adding something even if that is just tying together concepts. Another way to
think about novelty is in relation to bearing-on. While bearing-on aims to bring ADUs together (in
some sense maximize similarity), novelty is attempting to refine and pull ADUs apart.

In this paper, we operationalize the notions of novelty and pertinence together with the relation
extends. We implement this as a neural network for adjudicating semantic similarity. To do so,
we used a sentence-transformer neural network model, which maps sentences and paragraphs to a
768 dimensional dense vector space and can be used for tasks like clustering or semantic search
(Song et al., 2020). Specifically, computing semantic similarity between two texts with Sentence
Transformers involves converting the two texts into individual vector representations, and then use
a metric like cosine similarity to determine the similarity between the two vectors we’re comparing.
The output provides a numeric score between 0 and 1, where 0 suggests there is no similarity and
1 suggests there is large amount of overlap. To balance novelty with pertinence, we implement
thresholds (e.g., 0.25 and 0.75) that allow us to filter out pairings that are too novel or too similar.

2.4 Connectedness Evaluation

Mercier et al. have noted that humans make judgments about arguments intuitively, including cer-
tain aspects of their quality. Thus far, we have focused on argument structure from the standpoint of
surface level interpretation as well as from whether the argument holds together in terms of the con-
clusions tethered to but extending from the premise. Next, we will discuss how we can operational-
ize our intuitive judgements about whether the argument is logically/temporally/causally connected.
That is, do the conclusions follow from the premise and what inferential role is played by premise in
relation to the conclusion? This notion of “connectedness” serves as a starting point for evaluating
the strength or believability of arguments. We operationalize this notion of connectedness by intro-
ducing the relation follows. We implement this in a neural network capable of evaluating textual
entailment. To do so, we use a version of the large masked language model, RoBERTa-large fine-
tuned to the task of natural language inference (Liu et al., 2019; Bhargava et al., 2021), specifically,
the multi-genre natural language inference corpus (MNLI) (Williams et al., 2018). Given a premise
sentence and a hypothesis sentence, the model predicts whether the premise entails the hypothesis
(entailment), contradicts the hypothesis (contradiction), or neither (neutral). It is worth noting here,
that we use the term follows to reference the relation rather than “entails” because entailment here
is not strict in the formal or semantic sense of textual entailment.

Some researchers refer to this idea of “connectedness” as “validity” however, we see validity as
limited to deductive notions. For example, the following argument could be plausible, not in a de-
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ductive sense, but in an inductive sense: “This swan is white. Therefore, all swans are white.” This
is a reasoned argument, not necessarily one that you will entirely agree with, but it is a reasonable
argument with some inferential validity. In fact, humans make these sorts of inductive as well as
abductive arguments such as “This swan is white. It must be the salts in the water.” The crucial
aspect here is that many natural human arguments are “defeasible.” If we find a non-white swan,
then this argument fails plausibility. There is potentially a myriad of reasons that people find argu-
ments persuasive, which in turn are dependent on other factors like the credibility of the writer, the
number of pieces of evidence presented, the reader’s background knowledge, and the state of mind
of the reader, among other things. While we do not address all these factors, we believe this notion
of “connectedness” and identifying the follows relation will serve as a foundation that closely ties
together naturalist argumentation and computational capabilities.

2.5 Associative Memory Retrieval

Intuitive judgments about structure, information and connectedness allow us to evaluate the general
nature and quality of argument. However, humans are able to regularly rationalize even the most
disconnected and structurally unsound arguments. Take for example, our previous example: “The
sky is blue. Therefore my dog is thirsty.” If we assume that the argument is being made by someone
(say a trusted friend named “Rae”) engaged in cooperative dialogue (in a Gricean sense) and we
generally trust what she says, then we intuitively attempt to rationalize this argument. We do so
by filling in any perceived gaps with our own associations derived from our prior experiences. For
example, we might expand this argument in our heads as follows: “Rae’s dog is thirsty. That must
be because the dog was playing outside in the heat. I know the dog likes to play outside when it
is sunny. It is sunny and likely hot outside because the sky is blue. While playing outside, the dog
probably got quite dehydrated from the heat.”.

There are infinitely many possible rationalizations, each depending on the hearer’s own associa-
tive machinery and other contextual factors. A computational framework for argument must be able
to account for this process of rationalizing and also provide a mechanism to extract relevant expe-
riential associations to help us make sense of the argument. Here we propose using trained neural
Foundation Models for language to serve as our associative memory and a prompting as our mem-
ory retrieval process. Broadly, FMs for language are deep neural language models4 pretrained on a
large amount of unlabelled text in a self-supervised setting. There are a variety of transformer-based
language models including GPT-3 (Brown et al., 2020), BERT (Devlin et al., 2019), BART (Lewis
et al., 2020), T5 (Raffel et al., 2020), and PaLM (Chowdhery et al., 2022), among others. FMs
pre-trained on a large corpus of web data have been shown to contain different kinds of knowledge
implicitly in their parameters without the need for any human supervision, (AlKhamissi et al., 2022)
including world knowledge, relational knowledge, commonsense knowledge, linguistic knowledge
and actionable knowledge.

4. Language models are basically a machine learning model that is able to look at part of a sentence and predict the next
word. Current state of the art language models are implemented as neural transformer architectures. Transformer
is a model architecture eschewing recurrence and instead relying entirely on an attention mechanism to draw global
dependencies between input and output (Vaswani et al., 2017).
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Figure 3. GPT-3 prompt template used by SKEPTIC. The prompt is composed of four main parts: (1) the task
instruction for providing the FM with the overall task description, (2) prompt prefix with zero or more exam-
ples, (3) target query with variables $claim and $premise for dynamically populating the premise-conclusion
pair, and (4) a metaprompt to guide the FM towards generating completions that align with our intended
output.

We selected GPT-3 for this paper because we believe that FMs can serve as a valuable associative
memory, unlike other formally specified knowledge bases. For example, humans associate the word
caterpillar with not only the fact that it’s an insect, but also other characteristics from their own
past experiences. GPT-3 makes such similar associations by linking “caterpillar” with not only
static properties, but other concepts such as “slime”. Modifying the input with the word “hungry
caterpillar”, invokes associations like Eric Carle’s children’s book – A very Hungry Caterpillar,
a natural association for humans with little children at home. Experiential memory of this sort is
closer to human memory than other static knowledge bases such as ATOMIC (Sap et al., 2019),
ConceptNet (Speer et al., 2017), Wordnet (Miller, 1995), Visual Genome (Krishna et al., 2016),
CSKG and the like (Ilievski et al., 2021), which tend to not take context-based retrieval into account.

Here, we propose using GPT-3 to extract implicit warrants (implicit assumptions) from argu-
ment premise-conclusion pairs. The imagined argument of Rae’s dog referenced earlier contains
such implicit assumptions (albeit written manually) including rule-like structures such as “the dog
likes to play outside when it is sunny”, events such as “the dog was playing outside” and default
inferences such as “...probably got quite dehydrated...”. We extract such implicit assumptions auto-
matically by prompting the FM (in this case, GPT-3) with a task instruction along with a premise-
conclusion pair. Figure 3 shows an example prompt template used by SKEPTIC.

Prompting is the defacto technique for extracting knowledge from FMs like GPT-3. Prior to
GPT-3, the standard approach to the evaluation and use of such models has involved fine-tuning on
a portion of a task dataset. (Howard & Ruder, 2018). GPT-3 achieved state-of-the-art performance
on a wide variety of tasks without fine tuning, using as few as zero examples (Reynolds & McDonell,
2021; Liu et al., 2021). Being a language model, GPT-3 is designed to predict the next word token
in a sequence, which can then serve as an input to subsequent predictions in an autoregressive
manner. This input is often called a prompt. The fast moving field of prompt programming involves
techniques for generating prompts that appropriately match the user’s intent and desired use case.
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Prompt engineering and design is a nascent subfield and the relationships between the prompts
and their completion are only now being learned and discovered. That said, some general princi-
ples and best practices are beginning to emerge in the literature. One practice is to give the model
enough context on the task in the text input. Because FMs are trained on natural language in a
self-supervised manner (without human labels), they largely mirror how humans (collectively) use
language. So, prompts tend to generate completions closer to the user’s intent when they are written
in a natural style. Additional research has shown the importance of meta-prompting (Wei et al.,
2022) (Wei et al., 2022; Betz et al., 2021) as well. We have incorporated some of these best prac-
tices in how we prompt GPT-3 to generate warrants in SKEPTIC. Figure 3 shows our template
for prompting in which GPT-3 will complete the sentence (or meta prompt) beginning with “But,
this argument.” The text leading up to the meta prompt forms the main body of the prompt and
serve as task-specific context to steer the FM towards a completion that more closely aligns with
the user’s intent. In addition to designing the prompt text, FMs also enable users to tune certain
hyperparameters including those for reducing the likelihood of sampling repetitive sequences of to-
kens (frequency and presence penalties) and control the randomness and creativity of the model’s
predictions (temperature).

2.6 Manager

The Manager coordinates the construction and evaluation of argument structures by running the ra-
tionalization algorithm that we will discuss next. Broadly, the manager obtains an initial argument
parse from the Argument Interpretation component and then evaluates, using the Informativeness
and Connectedness Components whether for each premise-conclusion pair (edge of the graph) the
conclusion extends and follows from the premise. For those edges, where the conclusion does not
either extend or follow, the Manager will direct the generation of implicit warrants by the Associa-
tive Memory Retrieval component. The manager explicitly includes the identified implicit warrants
into the corresponding premise and re-evaluates for informativeness and connectedness. Prior to
these evaluations however, when a new body of unstructured text is received, the Manager first
performs coreference resolution – identifying text mentions that are referring to the same entities.
Coreference resolution is necessary here as we will be splitting up the text into Argument Discourse
Units (ADUs) – spans of text from the original text input – which may contain pronominal and
other anaphoric referential expressions, which are semantically empty. By performing coreference
resolution and surfacing the entity clusters, the semantics of these individual ADUs can be made
explicit and therefore each premise-conclusion pair can be handled and evalulated independently.
For coreference resolution we use Coreferee, a coreference resolution system developed under the
spaCY library (Hudson, 2022; Honnibal et al., 2020).

2.6.1 Formal Definitions

Thus far, we have discussed the operation of various components of the proposed architecture. In
doing so, we have referenced several terms – such as argument, span, ADU – rather informally.
In this section we provide certain definitions for these terms more concretely, which in turn will
be useful for the algorithm. Consider an unstructured text document D. D is comprised of a se-
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quence of words D = ⟨w0, w1, . . . wn⟩ that can be composed into contiguous spans of words S =
⟨wi, . . . , wj⟩, 0 ≤ i < j ≤ n. We can define an argumentation discourse unit (ADU ) as a span S
that is argumentatively relevant and have its own argumentative function or role R (Peldszus, 2017).
Formally, ADU = (S,R). For example, when D = “The sky is blue. Therefore, my dog is thirsty”,
we might have a two ADUs, ADU1 = (“sky is blue”, premise), ADU2 = (“my dog is thirsty”,
conclusion). Informally, an ADU’s role could be a premise, claim, or any other type/property of
a span of text together with the particular role (premise, claim, implication, presupposition) it plays
in the argument. We define argument A as a directed labeled multigraph A = (V,M), where nodes
V are ADUs and the multiset M = (E,m) represents relations between ADUs. Roughly, the edges
E (and associated labels m) captures the idea that ADUs can be linked together in different ways,
each way contributing to the “goodness” of the argument. In our running examples, we have had
three types of labels supports, extends and follows.

Given an argument A, we propose a measure of sturdiness that captures the idea that an argu-
ment is stronger if the links between the premises and conclusions are supported by several types
of edge labels. That is, a premise-conclusion pair that only contains a supports edge is weaker
than one that contains both a supports edge and a extends edge. As we will see in the next section
describing the algorithm, this measure of sturdiness will allow us to expand and rationalize those
edges that are weaker.

Intuitively, the sturdiness scoring takes each vertex (ADU) of the argument and determines for
each in-edge and each out-edge what is the fraction of types that exist against a total of three types.
The per-edge sturdiness score is then an average of the in-edge sturdiness and out-edge sturdiness.
The total sturdiness is the average sturdiness over all vertices. Formally, we can restate this intuition
as follows:

sturdiness(A,n) =
1

|V |

|V |∑
i=1

1

2


 1

|in(vi)|

|in(vi)|∑
j=1

types(eji)

n

+

 1

|out(vi)|

|out(vi)|∑
j=1

types(eij)

n




where, A = (V,M) is the argument, n is the total number of types an edge can have (e.g., for this
paper n = 3), types(epq) is a function that returns the number of types of edges that exist between
vertices vp and vq

2.6.2 SKEPTIC Rationalization Algorithm

We now turn to the central operation of the Manager, which implements the rationalization Algo-
rithm 1. We will use our example of asbestos removal, shown in Figure 4, to explain the algorithm.
The algorithm takes an unstructured text document D as input and any user-defined parameters
(sturdiness thresholds, max number of iterations to try before exiting). As a first step, it resolves
coreferences as described earlier and updates the text document D to include the most specific
coreferent mention with other mentions in the same cluster (Line 1). For example, in the asbestos
example, the “building” and “it” are coreferent mentions, but “building” is more specific, so the
mention “it” is accompanied by the mention “building” in square brackets. This way, the corefer-
ence are explicitly surfaced in D. In the next step, the Manager generates a base argument (Line 2)
including all associated supports relations from the Argument Interpretation component, extends
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Figure 4. The Manager (Figure 2) uses Algorithm 1 to rationalize the unstructured text argument by first
extracting an argument structure and then stretching the premises with implicit warrants in order to make the
rationalization sturdier, that is, increase the number of relations between nodes from just supports relations
to also include extends and follows relations

Algorithm 1: Argument Rationalization (Manager) Pseudocode
Input : Text document D, Parameters params
Output: Argument Multigraph A

1 D ← resolveCorefs(D)
2 A← generateInitArgument(D)
3 sturdiness← computeSturdiness(A)
4 counter ← 0
5 if A has edges then
6 while sturdiness < params.threshold and counter < params.maxIter do
7 for (premise, conclusion) in sturdiness.pairs do
8 warrantFound← False
9 warrantCounter ← 0

10 while ¬warrantFound and warrantCounter < params.warrants do
11 warrant← generateWarrant(premise, conclusion)
12 connected← isConnected(premise+ warrant, conclusion)
13 informative← isInformative(premise, warrant)
14 warrantFound← connected ∧ informative
15 warrantCounter+ = 1

16 end while
17 if warrantFound then
18 premise← premise+ (“Let’s assume that” + warrant)
19 A← updateArgument(A, premise)
20 A← evalConnectedness(A)
21 A← evalInformativeness(A)

22 end if
23 sturdiness← computeSturdiness(A)
24 counter+ = 1

25 end for
26 end while
27 end if
28 return A

relations from the Informativeness Evaluation component and follows relations from the Connect-
edness Evaluation Component. The argument A generated in this step may be missing a number of
links. This will be what the rest of the algorithm will work to update and enrich. Next, we compute
the sturdiness of the base argument (Line 3) which serves as a starting point for evaluating the ar-
gument. The sturdiness computation returns a score and also a list of edges that are not maximally
sturdy (contain missing edge types).

13



SARATHY ET AL.

The algorithm then proceeds to iterate through each of these non-sturdy pairs and (1) generate
warrants (Lines 8-16), (2) update the argument (Lines 18-19), (3) evaluate overall connectedness
and informativeness (Lines 20-21) and (4) recompute sturdiness of the updated argument (Line 23).
The algorithm repeats this exercise until either a threshold sturdiness or iterations are reached. It is
worth highlighting here that once a candidate warrant has been generated (Line 11), we check if the
combination of the premise and the generated warrant is entails (follows to) the conclusion (Line
12). The reason for this is that we want to ensure that the warrant does not unintentionally contradict
the premise-conclusion pair. Similarly, we want to make sure that the candidate warrant is not just
a restatement of the premise but actually informative over the premise (Line 13). A candidate
warrant is selected only when both these criteria are satisfied. In a sense, we adopt generate-and-
test paradigm with SKEPTIC using GPT-3 as a warrant-generator and other evaluator components
as a warrant-tester. If necessary, we repeat this process until a suitable warrant is found or until a
pre-specified number of tries have been completed.

3. Discussion

In this paper, we have proposed a system to evaluate arguments, but we have not discussed con-
structing arguments. The process of evaluating another’s argument and constructing one’s own
argument does share some structural similarities including potentially the fact that we might intu-
itively evaluate our own arguments. However, we believe that argument construction potentially
involves additional cognitive machinery that might at least require a level of social reasoning and
Theory of Mind to consider whether the listener will believe the argument. Presumably, when con-
structing arguments, the premises we select and their arrangement in an argument might be heavily
influenced by what we believe the listener believes. This paper, however, does not discuss these
additional cognitive capabilities, and instead focuses on the evaluation of arguments.

Even within boundaries of argument evaluation, we are focused on content and not as much
the source. Our proposed approach is one of rationalization and extracting warrants and tying the
argument parts together to produce an argument interpretation and evaluation that is stronger (and
not weaker) than what was in the original input. This assumes that we trust the source, or at least
believe the conclusion. A rationalization to find the necessary support and warrants to strengthen
a conclusion (this system) is very different from one in which a critical outlook is taken to depose
a conclusion. SKEPTIC could be reconfigured to find those warrants that given the same premises
contradict the conclusion. We have not tested this capability and as such not within the scope of this
paper. With regard to trust, we do not consider the speaker or our belief in the trustworthiness of the
speaker. A more complete account of human argumentation must involve a discussion about how
we evaluate trust and how that trust evaluation factors into our process of rationalizing or criticizing
a conclusion. There are additional dimensions to making a successful argument including emotional
aspects, which although potentially useful, are beyond the scope of this paper.

Sometimes, rationalization involves not only extracting warrants (the bridges connecting premises
and conclusions) but also drawing associations before any connections can be made. When we hear
a premise or a conclusion, associative memories are triggered to generate relevant associations.
There may be valuable connections between the premises and conclusions indirectly via these as-
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sociations. We expect to be able to use the same underlying architecture to explore such implica-
tions. The associative memory retrieval system can be guided with prompts to generate implications
(rather than warrants). The completions generated by these operations can be included within the
expanded premise node or conclusion nodes. One open question is when should these associations
be triggered and how do they interact with other associative tasks like warrant generation? Are
associations generated regardless of the sturdiness of arguments? Are they generated before or after
warrants are generated? We expect to explore these questions in future work.

Argument rationalization as proposed in this paper begins with the assumption that the evaluator
of the argument is interested in exercising some “epistemic vigilance” over the argument (Sperber
et al., 2010). As such, the intuitive argumentation demonstrated here serves as a starting point for
developing further arguments or initiating a dialectic exchange about it. For example, SKEPTIC can
pinpoint exactly where an argument is sturdy and where it might be weaker. If integrated into a
more general cognitive architecture, it can request the speaker for elaboration on specifically why
they think a premise supports an argument. If SKEPTIC identifies an implied warrant, it can clarify
with the speaker whether the identified assumption aligns with what the speaker had in mind. In this
way, the argument structures generated by SKEPTIC can be used within a larger cognitive system
for conscious reasoning, dialog and interaction.

4. Conclusion

This paper describes a computational framework for intuitive argumentation, called SKEPTIC. Given
a body of unstructured text, SKEPTIC can extract rich structured representations (graphs) of the
underlying argument. In doing so, it selects argument-relevant spans of text (ADUs), and finds
argument-relevant relations (supports, attacks, extends, follows) between pairs of ADUs (premise-
conclusion pairs). SKEPTIC also discovers assumptions made in the argument but not present in the
original text. The assumptions represent implicit knowledge that enable conclusions to inferentially
follow from the premises. SKEPTIC is able to accomplish this with a novel cognitive architecture
composed of several components that can perform intuitive processing with the aid of state of the art
neural foundation models. SKEPTIC is not an end-to-end neural net trained on a task-specific dataset.
Instead, it is a cognitive system with an inspectable meta algorithm that directs the processing of
various neural components to generate symbolic and interpretable representations. SKEPTIC can
be integrated into more general cognitive architectures and used in connection with applications in
which it can assist with our critical thinking capabilities.
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