
Advances in Cognitive Systems X (20XX) 1-6 Submitted X/20XX; published X/20XX

Portals and Spaces: An Egocentric Knowledge Representation for
Reasoning About Actions and its Implementation

Christopher Geib CGEIB@SIFT.NET

Jeffrey Rye RYE@SIFT.NET

Vasanth Sarathy VSARATHARY@SIFT.NET

SIFT, 319 1st Ave. North, Suite 400, Minneapolis, MN 55401, USA

Abstract
While there is significant research in the psychology literature that human’s use of egocentric rep-
resentations of space, almost all work in AI plan recognition and planning has assumed access to
universal coordinate frames, or allocentric representations of space. Reasoning with such allocen-
tric representations actually makes some kinds of inference more difficult, and seems to conflict
with current models of embodied agents informing robotics. This paper presents first steps toward
formulating a useable egocentric representation of domains for AI plan recognition and planning
based on Portals and Spaces. This representation will allow for the integration of high level AI
reasoning with low level continuous control and reasoning systems like those found in modern
robotics and virtual environments. We will show how portals and spaces have been added to the
ASISTANT system developed on the DARPA ASIST project.

2. Introduction

As long ago as Shakey the robot, AI researchers have been integrating low-level continuous sensor
and control systems for robots and virtual agents with high-level reasoners. Each such system is
forced to make a number of, frequently undocumented, decisions about what data is shared between
the levels and in what form, and where and how low-level control and sensing ends and high-level
planning and reasoning takes over. In the pursuit of working systems such interfaces have usu-
ally been ad-hoc and driven by the exigencies of the specific systems being integrated. Thus, the
answers for the "how and why" of system building result from an number of engineering consider-
ations including: the maturity or features of the sensors or control systems or high level planers and
reasoners, the specific domain of application, desired limitations of specific integrated components,
desired infrastructure architecture and even the chosen software and integration toolsets. Design
decisions made for any of these reasons can only tell us anything about how such systems should
be built if we do post analysis of what worked well in the system and what didn’t (a level of system
analysis rarely performed). As such, while they may be effective engineering solutions, they tell us
nothing about the science behind repeatedly engineering such systems. They tell us nothing formal,
principled, or well grounded about how interfaces between such systems should be built.

While some work has attempted to claim that either the high or low level is not actually neces-
sary, we will not address this reductionist position. Instead, in this paper we propose to begin the

© 20XX Cognitive Systems Foundation. All rights reserved.

C. GEIB AND J. RYE AND V. SARATHY

process of formalizing and building a theory of how differing levels of reasoning and control should
interact. We would argue any solid theory formalizing the interfaces between high and low level
reasoning systems should at minimum enable:

• abstraction and encapsulation of reasoning, enabling the levels to use specialized representa-
tions tailored to their specific inferential tasks,

• bi-directional transfer of information between high and low level reasoners necessary for their
functioning, and

• grounding of high-level reasoning and concepts in low-level, continuous control signals (ie.
implement the embodied cognition hypothesis).

This fundamentally requires producing a set of identifiers for actions, objects, and state conditions,
that can be used by and passed between the high and low levels of reasoning. In this work we will
argue that such identifiers must be egocentric.

There is significant evidence from psychology Piaget & Inhelder (1956) and biology Menzel
et al. (2005); Wehner R (1996) that people and animals often use egocentric knowledge representa-
tions. That is, they represent their knowledge of the world relative to themselves and their perception
of it rather than using allocentric representations based on external universal coordinate frames. For
example, capturing the location of a robot’s gripper as a distance relative to the object to be grasped
and a pose within the robots joint space would be an egocentric representation, while using an x,y,z
coordinate for the tip of the end effector relative to the enclosing space would be an allocentric.

Allocentric representations are common in both low-level sensor and control research and high-
level reasoning research. They are attractive precisely because they are external to the systems, are
often available in engineered or virtual environments, and can reduce ambiguity between multiple
systems working in the same domain. However, for real systems deployed in the real world such
representations are often not available. Given this, one of the core questions that inspired this
research is "Should we assume access to such systems?" Self reflection tells us they are not required
to solve the larger problem, however the existence of another approach is not a sufficient reason to
forgo working alocentric approaches. The deeper question is does reliance on alocentric reference
frames create avoidable problems for system building or API development? In the following, we
argue that it does. For example, consider using GPS coordinates with a half meter resolution to plan
a trans-continental trip for a robot. If all reasoning has to be done at the level of a half a meter such
a plan will be very long and potentially unnecessarily detailed.

This paper will formalize the ideas of Portals and Spaces to formalize the representation of
problem domains and use them to capture actions, objects, and states for use and integration between
both high-level reasoners and low-level, continuous sensing and control systems. As an example,
this paper will then discuss representing physical and conceptual spaces within a Minecraft domain
on the DARPA ASIST project. We will then discuss the relationship of this approach to prior work
including that on Object Action Complexes (OACs) and the idea of affordances from psychology.

2

PORTALS AND SPACES

3. Background

The issues we will discuss here are common to both systems that generate plans and actions for
an agent as well as those that recognize the actions and plans of other agents. As such, most of
our discussion will be agnostic to the kind of reasoning that is being performed by the system.
With this in mind, for brevity, and to avoid committing to specific technologies that implement such
systems, we introduce two pieces of terminology. First, we will use the term Low Level Reasoner
(LLR) to denote the low-level sensor or controller of some system that is directly responsible for
controlling the actuators and sensors of a virtual or embodied system. Such systems frequently must
address issues of continuous control and continuous sensor inputs. Second, we will use High Level
Reasoner (HLR) to denote component of the system that is responsible for high-level inference for
the same system. Such systems have often been the purview of artificial intelligence reasoners based
on propositional logics, first order logics and other discrete reasoning methods.

We believe our claims about LLR and HLR systems are general enough that they apply to all or
almost all such systems. We are not ruling out HLRs that are implemented probabilistically or by
neurally inspired methods. Neither are we ruling out LLRs implemented using first order or other
logical frameworks. Instead, our objective in this paper is to provide a well formalized and founded
method for grounding the inference of HLRs and the outputs of LLRs such that they can easily be
connected and we can thereby leverage the strengths of each of them to perform more general and
flexible reasoning about actions. We will to accomplish this in a modular manner that avoids the
ad-hoc design choices of prior work.

3.1 What About "Robot Operating Systems"?

This work is NOT addressing the same issues as a robot control architecture like ROSStanford Ar-
tificial Intelligence Laboratory et al. (2018) or other "robot programming" APIs. Such systems are
frequently little more than scripting languages for invoking behaviors in sequence. These systems
often simply extend the robot engineering project upward using the same representations used at
the lowest levels. They do not actually abstract reasoning in continuous spaces to those of discrete
spaces. Instead they allow for the scripting of frequently occurring low level control sequences, and
as such, they do not address the central question of this paper.

3.2 What About Neural Network Architectures?

There are works using neural networks and other distributed, sub-symbolic representations to con-
trol robots and other systems that might seem to address or obviate our claims about the LLR and
HLR integration question. However, such an approach effectively begs the entire question. It is
well known that various parts of the human nervous system and even the brain have specialized
functions. As such, even if all of the components were implemented using neural or sub-symbolic
representations and reasoning processes, the functional units would still require integration, leading
us back to the central questions of this paper. Alternatively, work that treats the whole low level sen-
sor to high level cognition and back to actuator loop as a single network computing a single function
seems to raise more questions than it addresses. Why would such a system seem to provide access

3

C. GEIB AND J. RYE AND V. SARATHY

to multiple other levels of abstraction if they are not part of the actual computation? A complete
refutation of such an approach is outside the scope of this paper.

3.3 Assumptions

We make a number of assumptions about the LLR and the HLR to help define the interface problem.

Assumption 3.1 The LLR has a set of Motor Programs (MPs) that are able to drive the system’s
sensors, and end effectors. Invocations of these MPs are the implementation of any physical or
sensing actions a resulting system might be capable of performing in the world .

We think of MPs as control programs that change the position and orientation of the system or its
available end effectors. That is, an MP only specifies how to move the "body" of an agent from
one configuration to another. Their invocation is not limited to a particular setting or situation. Nor
are they required to have a particular effect on the state of the world without further qualification.
For example the same motor program might be used to turn a key to unlock a door, start a car, or
even launch a rocket. However, which effect eventuates depends completely on the context of its
execution and the objects it acts on. This means that while the invocation of MP are the core of any
interface between the HLR and the LLR, and we must have a way for both the HLR and LLR to
refer to them, they alone they are incomplete. They require parameterization, and any parameters
and further input arguments must be part of our interface.

Note, this paper will not be concerned with how MPs are leaned or constructed; as this is itself
a large and independent area of research in robotics and control theory. We also note that for any
reasonable system our interface should provide a method for adding new MPs to both the LLR and
the HLR thereby extending the interface. However, this work will not discuss this, and instead work
only with fixed sets of MPs.

Assumption 3.2 MPs have the potential to move the agent or an end effector to a large number
of possible positions, defined relative to a specific object or object type. Thus we will discuss
interface level invocations of an MP’s as having two parameters, first an object instance or object
type parameter and second a set of possible final successful positions within the agents internal
joint and sensor space.

For example, in our key turning example, the motor program would be parameterized by first, the
class of objects that are keys, and second, the state as having turned the key, maintained contact with
it and keeping the lock and key close to the agent’s body. Note that simply executing the control
program on the object might result in a number of other states (e.g. loosing touch with the key) that
in some other condition might be acceptable. This also means that if either the agent or the objects
are able to move within the environment, that the MPs must be defined relative to the agent, the
object, and possibly other parts of the world model, NOT a universal coordinate system. 1

1. We can imagine "performative" MPs that are not defined relative to an external object or object type. However, these
are rare since the relation to the object can be oblique. If they exist, such MPs are not within the scope of this paper.

4

PORTALS AND SPACES

Assumption 3.3 The LLR has a unique identifier for each MP.Further, given such an identifier
(and its associated arguments) a LLR is able to perform any necessary reasoning and to invoke the
system’s control system to execute that MP.

We can think of UIDs as the names for the control programs the LLR can run. As such they are
an integral part of the interface between the LLR and HLR. We expect the HLR will send a UID to
cause the LLR execution of a specific MP. As a result, any high level plans the HLR builds must be
expressed as a sequence of MPs with associated arguments.

4. Definitions

Under these assumptions we can define an interface based on portals and spaces.

Def: 1 We will denote by Sphysical the complete space of possible configurations the system can be
placed in by the LLR. With the following properties:

• it uses an egocentric representation in its space,

• it can use either object types or system specific instance identifiers in capturing knowledge
about and relations to objects, and

• it captures all possible static and dynamic configurations that LLR can achieve,

We can think of Sphysical as capturing the sensory motor manifold of the system controlled by the
LLR. Since Sphysical uses an egocentric representation it captures knowledge relative to its internal
sensors and feedback from its external sensors. Further we will assume that through the use of typed
arguments or internal unique identifiers, Sphysical goes beyond just the internal proprioceptive state
of the system to encode continuous, egocentric information about the system’s position relative
to any objects necessary for motor programs. (e.g. Is the system holding the key in the correct
orientation?) Note it is also intended to represent dynamic relations between the system and the
external world. (e.g. Is the key positioned for insertion into the lock?)

Def: 2 We will denote by Smental the discrete mental world model of the system used by the HLR
that can be senses by the LLR.

We can think of Smental as a subset of the elements of a first order model used by a planning or high-
level plan recognition system to reason about the effects and efficacy of actions. We specifically
limit it to include only those predicates, types, and objects the LLR can sense. We do this to
guarantee that it can be used for information exchange between the levels. It is more than possible,
and is in fact expected, that the HLR’s model of the world might contain entities that are not directly
sensible by the LLR and therefore would not be included.

Def: 3 We define S = Sphysical ∪ Smental

5

C. GEIB AND J. RYE AND V. SARATHY

Note, a point or single "state" in S can include both continuous conditions within the agent’s internal
control space as well as discrete properties normally associated within higher level models. In the
abstract, we can think of the LLR working in S, and the HLR as working with a model that is a
superset of Smental. To enable more detailed discussion of MP functions,

Def: 4 We define a condition, denoted as si, as a set of points within the space of all possible states,
si ⊆ S and an individual state, as a single point within the space, denoted si ∈ si or si ∈ S.

With these definitions in hand, we can think of each MP as a function (parametrized by an object
and a condition capturing the desired destination states) over S .

mpi[oj][sdest] → S × S

where mpi is the motor program identifier, oj can be either a specific object instance or a typed
object variable that will be bound to an instance for execution, and sdest ⊆ S set of acceptable
final states. We will refer to a motor program with its parameters as a motor program execution
specification or just an execution specification for brevity. Note that given the physical limits of
such systems, any given execution specification may not be defined for every state in S . Therefore,
we will denote the domain of such a function as sdom[i,j,dest] and the range as srng[i,j,dest] or as just
sdom and srng when the details are not necessary. Therefore:

mpi[oj][sdest] → sdom[i,j,dest] × srng[i,j,dest],

and we denote invoking an execution specification from a state, s0 resulting in the state s1 as:

mpi[oj][sdest](s0) = s1

where s0 ∈ sdom[i,j,dest] ⊆ S and s1 ∈ srng[i,j,dest] ⊆ S.
Remember, our objective has been to specify principled interfaces between HLRs and LLRs. We

claimed, that HLR invoking LLR control programs to move in and sense the environment is core to
this, and further that egocentric representations of the domain are critical to this. We have defined
execution specifications using such representations. However, to use them, the HLR and the LLR
must agree on identifiers for: mpi, oj , sdest, and s0. We argue that sdest is the most challenging.

If the system wants to execute the action in the current state of the world then s0 does not actually
need a shared specification between the two levels because it is the current state of the world as
represented by each reasoner. Further, in the case of a sequence of invocations for the HLR we can
imagine a recursive specification of the state for execution, that is the state that eventuates from the
execution of the previous action in the chain. Thus, we will treat s(0) as a not a significant problem.
We have assumed LLRs have unique identifiers for their mpis that can be shared. Further, since
objects are central constructs in any LLR, we would not be surprised if they have unique identifiers
that could be shared with and used by the HLR . However, specifying an arbitrary collection of
points that make up sdest ⊆ S is more problematic.

6

PORTALS AND SPACES

4.1 Portals

One natural way to specify such a condition would be to use propositional or first order logic to
enumerate the properties shared by the states within the condition. However this presents a problem
for building LLR to HLR interfaces. Using a logic within the space of the HLR to express this
condition would require a logic able to express all of the information in Smental. Which, up until
this point, has only been captured within the LLR. Representing it within the HLR would defeat the
point of having two different reasoners with abstraction and data-encapsulation between them. If
all the same knowledge is represented at both levels, are sure that we need separate reasoners?

Being unable to use a logic to specify these conditions, suggests that, like the other elements
of the execution specification used by the HLR, these conditions should be well known within the
domain specification. That is, rather than being arbitrary conditions they should be relevant for the
LLR’s processing. We can then imagine the LLR possesses a unique identifiers for them that could
be shared with the HLR without sharing the details of their representation or semantics for the LLR.

One preexisting set of conditions that have this property are that of the sdom of well known
execution specifications. This has the desirable property of tying the successful performance of one
execution specification as ending in a state that makes some other execution specification possible.
We argue that this is a productive approach and will use it to define both portals and spaces.

Def: 5 Given a problem domain with set of execution specifications, mpi[oj][sdest] → sdom[i,j,dest]×
srng[i,j,dest] we define the set of portals, P , as the set of function domains for the execution specifi-
cations, and denote each of them P[i,j,dest] = sdom[i,j,dest].

In the case where the details of a portal’s execution specification are not critical we will denote a
portal as Pi. Thus, portals are the starting conditions for known successful execution specifications
captured in the agent’s own egocentric representation of the world. Because these conditions are
well known to the LLR we can reasonably assume the system has a unique identifier for each portal
that can be shared between the LLR and HLR.

The intuition behind this definition is that a motor program just calls for the driving of the
effector in particular ways, at particular speeds, and the like. As such, it could be invoked from any
point in S. However, it will only have specific outcomes if it is executed in particular locations and
with the correct relation to a specific objects or objects of a particular type. For example, imagine
while typing an email you were to raise you hands six inches above the keyboard. While you could
move your fingers in exactly the same manner, your actions would not result in an email.

Portals then capture the starting conditions for common, repeatable patterns of use of the motor
program in the agent’s own LLR’s representation. For example while the same motor program might
be used to turn a key to unlock a door, start a car, or even launch a rocket, their respective objects,
and sdests would be very different and therefore they would have very different portals. It is also
worth noting that because execution specifications are defined by conditions some portals are not
required to specify the values of some elements of S . For example, it may not be necessary to know
anything about the left hand while turning a key with the right. As such the execution specification
for this action would not restrict the left hands position or orientation.

Note that portals are similar to STRIPS Fikes & Nilsson (1971) style precondition for operators
in planning systems. The sdom roughly capturing the preconditions of the motor program having the

7

C. GEIB AND J. RYE AND V. SARATHY

effects described in the srng. However, they differ from preconditions in four critical ways. First,
portals capture semantically relevant points within the LLR’s egocentric space that can still be used
by the HLR. That is they are required to be egocentric which STRIPS preconditions are not required
to be. Thus the spaces they are defined over as completely different.

Second, unlike traditional preconditions, portals can’t be arbitrarily chosen by the system de-
signer. They are defined within the LLR’s representational space, relative to a specific set of success
criteria for the control program. As such, portals have a stricter definition and play an explicit role
in the interface to HLRs. There are no such restrictions or requirements on STRIPS preconditions.
This has lead to a great deal of work in AI planning defining different kinds of preconditions that
have different types of effects or implications for the results of the systems.

Third, portals allow the LLR to explicitly capture knowledge that is specific to an individual
object or relative to types of objects. Thus it allows an embodied system to represent detailed
knowledge about a specific object. For example, the door to my house sticks and requires a slightly
different MP to open it than other doors. Such knowledge is difficult to encode in traditional plan-
ning systems without equality conditions and constants.

Fourth, and finally, portals force our representations and the interface of HLR and LLRs to
be built on principled foundations rather than arbitrary engineering choices that make the work of
the HLR easy or control its search more effectively. One frequent engineering choice in building
systems is to add preconditions to actions that either prevent the system from engaging in some
search or resulting the binding of parameters to particular values.

4.2 Spaces

We will organize portals into collections we define as spaces.

Def: 6 Given a condition s0 ⊆ S, we define a space, Ss0 , as the set of all portals P0, such that,
there exists an execution specification,

mpi[oj][sdest] → sdom[i,j,dest] × srng[i,j,dest]

with s0 ⊆ sdom[i,j,dest] and P0 ⊆ srng[i,j,dest].

Intuitively then, a space, Ss0 , is just the set of portals reachable from a given set of states by and
agent using a single execution specification. Choosing a portal from our domain to define the first
space, and then reifying over the set of all portals and execution specifications, this definition pro-
vides an accessibility relation defining the set of all reachable portals and the spaces that contain
them. As such, it defines locations and collections of locations that define an egocentric representa-
tion of the domain and are:

1. usable by both the HLR and the LLR ,

2. definitionally necessary for the successful execution of actions by the LLR, and therefore

3. semantically significant for both the LLR the HLR.

8

PORTALS AND SPACES

With these definitions for portals and spaces we have completed the definitions that we need for our
interface. We have discussed how to create egocentric represenations for mpi, oj , sdest, and s0 to be
shared between a LLR and a HLR. In the next section we will discuss an example implementation
using these definitions within the ASISTANT system as part of the DARPA ASIST program.

5. Application in a Virtual Environment

As part of the DARPA ASIST project, we have developed the ASISTANT system that uses a por-
tals and spaces representation for its HLR domain specification and the interface between its LLR
and HLR. The central task for the ASISTANT system is to provide advice to a team of humans per-
forming a simulated search and rescue mission within Minecraft. A team of players must navigate
a Minecraft environment and triage victims they find. The ASISTANT system must recognize the
player’s movement and victim saving plans and provide advice on how the team can perform better.
A stream of events characterizing the player’s actions from the testbed provide the system’s input.
Note however, that Minecraft testbed and hence the event stream uses an alocentric representation.
This is most noticeable in its description of a player’s movement within the domain. Therefore, the
system must first translate the observed event stream into an egocentric representation as defined
above. In the ASISTANT system we have made the LLR responsible for this translation resulting in a
portals and spaces based model of the domain.

While our definition of portals and spaces can capture even purely mental spaces, for this appli-
cation, physical location is the main determiner of what an agent is able to do. In the case of actions
like picking up an object or putting it down, the observation of a successful execution of the action
(by definition) means the player must have been at the correct portal otherwise they couldn’t have
succeeded at this action. Therefore when such events are reported by the Minecraft simulator, the
LLR(can infer the portal the player was at, and it can be added to the domain, and players current
space. This makes the addition of portals for manipulation tasks relatively straight forward.

In contrast, converting the players location and movement in the domain from allocentric to
egocentric is much harder. The point of using portals and spaces is to abstract the lowest level
space away from raw sensor reports. Therefore we don’t want to define every physical movement
taken by the player as being from one portal to another. For navigation, especially in large spaces,
defining portals spaces is much less clear. The rest of this section will focus on how our system
translates alocentric position-update events from Minecraft into a reduced sequence of egocentric
locToA, transitPortalA, and transitDoorA events. The locToA events that indicate the player
has moved from one portal to another within a space, while the transitPortalA and transitDoorA
events indicate the player has moved between spaces.

5.1 "Real" Spaces and Adding Events to the Observation Stream

Mirroring the definition of spaces, we assume that for an agent to navigate between portals within
a single space the HLR does not need to be invoked. That is, given an execution specification, the
LLR can be invoked to carry the agent between any pair of portals in the same space. For portals
that are in different spaces the HLR must be invoked and a sequence of execution specifications
generated (or recognized) to carry a player between them. This means, that the events produced

9

C. GEIB AND J. RYE AND V. SARATHY

by the LLR navigate between portals within a space, and from the perspective of the HLR, the
player can always be thought of as being at some portal. We have made the LLR responsible for
determining the portal the HLR believes the player is at, and all the events produced by the LLR as
input for the HLR begin and end at a portal (possibly the same one).

This helps to more clearly define the roles and remits of LLRs and HLRs, however it also ties
portals and spaces much more closely to reasoning about acting in the world than they are to the
physically contiguous locations that we might naturally think of as spaces (e.g. rooms, hallways,
buildings, etc...). For example, imagine a large oblong room with a fireplace and chairs at one end
and a couch and TV at the other. Because moving between them requires effort (invoking the HLR)
it is completely possible that this single room would be represented as at least two distinct spaces
that have to be navigated between: one for conversation and one for watching TV.

To implement this idea our system pre-processes the ASIST Minecraft event stream treating any
significant change in the direction traveled by the player as potentially marking a move by the player
from one space to another. For each of these, the system may add a change-direction event to the
existing event stream that can cause the LLR to recognize this spot as a portal between spaces.

The ASIST Minecraft testbed event stream contains position-update events to record changes
in the player’s location. To detect changes in direction, our LLR maintains a two second, sliding
window of these events for each player. After each update of the sliding window, it performs a
t-test to determine if the mean direction of travel differs between the first and second halves of the
window by more than plus or minus twenty two point five degrees (forty five degree total window).

If the test is significant (p-value = < 0.01) the system inserts a change-direction event in the
middle of the window.2 Note that this relative difference in direction traveled is an egocentric
metric and could have been provided by the testbed directly or recovered from an internal sensor on
an embodied system. The addition of these events produces an event stream the ASISTANT LLR can
translate into a portals and spaces based representation of the domain.

5.2 Translating the Event Stream to Portals and Spaces

After pre-processeing, the observed event stream is made up of position-update events, change-
direction events, and events that record actions performed by a single player on a domain object
(e.g., equip-item, triage-started, and others.). Translation of this stream of events has two major
components: first removing the position-update and change-direction events and replacing them
with a smaller number of locToA and transitPortalA and transitDoorA events. Second, the system
needs to add the required portals and compute the spaces that will be used in the domain. As we have
already argued, converting events that capture interactions with domain objects into our portals and
spaces representation it is relatively straightforward bookkeeping. New objects and the required
portals for the events can be added to the domain for each observation of a successful use of an
object. However, to convert the player’s position-update and change-direction events into portal
based locomotion though spaces in the world requires constructing the spaces as the input stream is
processed. This means the system needs to:

2. The length of the window, angular change, and p value for the t-test were all determined by empirical studies and are
configurable parameters to our implementation.

10

PORTALS AND SPACES

1. Maintain each player’s Current Location Portal (CLP).

2. Add any new objects and portals to the domain,

3. Create spaces and assign objects and portals to them, and

4. Assign position-update and change-direction events to spaces. For all other events, the
referenced object determines its space.

5. Convert all position-update and change-direction events into a reduced set of locToA, tran-
sitPortalA, and transitDoorA events.

To do this translation, the system splits event stream into chunks (10-15 seconds in length) contain-
ing the original and added events. For each observed event in the chunk the LLR does the following:

1. Add any new objects and required portals to the model.

2. Add the event and its objects and portals to the state assignment qeue.

3. If the event is a change-direction event, call the UPDATE function (described below).

4. If the event is a position-update event:

(a) Update the player’s CLP:

i. player is within 1.0m of a door, CLP = door’s portal,
ii. player is within 3.0m of a change-direction event, CLP = the event’s portal.

iii. otherwise, CLP = none.

(b) If the player’s CLP is changed, add a new transitPortalA or transitDoorA event cap-
turing the player’s entering a new space.

5. If the number of events in the state assignment queue exceeds a threshold, call the UPDATE
function. This prevents the production of multiple spaces around closely grouped portals.

After a chunk is processed, UPDATE is called to assign spaces for any remaining events, objects, or
portals. The UPDATE function assign each of the elements in the state assignment queue to a state:

1. Assigns position-update events to the closest space. If this changes the actor’s current space,
the LLR adds an appropriate transitPortalA or transitDoorA event to the event stream.

2. Adds any events, portals and objects to the current space.

3. Resets the data structures.

5.3 Space Construction Details

ASISTANT’s LLR computes the domain model’s spaces:

1. Compute the bounds for the pending moves.

2. Add all known portals within bounds of the pending moves to the pending moves list.

3. Compute the bounds with the portal locations included.

11

C. GEIB AND J. RYE AND V. SARATHY

4. Find the existing space with the greatest overlap with these bounds.

5. If the the overlap is greater than 60%, leave the current space unchanged.

6. Otherwise:

(a) If the reason for the last update was the end of a chunk, leave the current space un-
changed (just keep extending the old space).

(b) Otherwise initialize a new empty space and make this the current one for the actor.

7. Add the new points to the actor’s current space.

8. Recompute the bounds for the space.

9. Ensure that the pending portals are in the space.

10. If any portals were added to the space, recompute the bounds to include the portal locations.

Throughout this process the physical bounds of a proposed space are computed by finding an alpha
shape containing the hypothesized portals.

The whole process runs in realtime, allowing the LLR to build the spaces and portals used by the
HLR during the 17 minute trials. However, since the number of spaces in the domain increases with
time, its runtime does increases over time. We believe that future work can address this problem by:

• Periodically resample the points in a space to limit the time required to compute its bounds.

• Use quad trees or other space partition methods to reduce the spaces considered for overlaps.

• Find methods for efficient merging or repartition spaces to reduce their number.

Note that currently portals and spaces are incrementally added to the domain, but not removed or
merged. Enabling this kind of model revision is an area of active future work. It is also worth noting
that while this algorithm makes use of the allocentric space representation provided by Minecraft
we do not believe it is necessary for the computation.

In the end, the process produces a domain model based on portals and spaces. This includes
identifying which portals are in which spaces as identified by the player’s navigation and locomotion
events. ASISTANT’s LLR does this all online and requires no prior training. It is also possible to
initialize the portals and spaces domain model, from a given map when it is available a priori.
Finally, to date, the ASISTANT LLR computes a single set of spaces and portals for all actors, though
it reasons about each actor’s movement independently. That said, the approach can be used with no
change when computing separate spaces and portals for each actor.

5.4 Example Use in the HLR

A simple example may help to clarify this approach and give us an example to discuss. The fol-
lowing sequence of observations was produced by the ASISTANT LLR for player id p000185 suc-
cessfully triaging victim1231. It has been lightly edited for clarity and brevity, but shows the major
points of how the portals and spaces representation is used in our application.

12

PORTALS AND SPACES

1 locToA (p000185, functionDoor39),
2 openDoorA (p000185, functionDoor39, transitDoor39),
3 playerSawA (p000185, transitDoor39),
4 locToA (p000185, transitDoor39),
5 transitDoorA (p000185, space497, transitDoor39, space500),
6 playerSawA (p000185, transitDoor39),
7 playerSawA (p000185, functionVictim121),
8 playerSawA (p000185, transitDirchange532),
9 locToA (p000185, functionVictim121),

10 triageStartedA (p000185, victim121, functionVictim121),
11 triageSucceededA (p000185, victim121, functionVictim121),

The events on lines 1 to 5 capture the player entering the room the victim is in. It does this by:

• line 1: Moving to the portal that enables opening door39 (functionDoor39),

• line 2: Opening the door,

• line 4: Repositioning to the portal that enables going though door39 (transitDoor39),

• line 5: Transiting the door.

The playerSawA action on line 3 captures the player’s new percept of the open state of Door39.
Likewise the playerSawA actions on lines 6-8 capture the players new percepts transiting from
space497 to space500 where the victim is located. Notice specifically, that on line 8 the player
observes portal transitDirchange532. Portals with names of this form are the result of the change-
direction events we inserted into the event stream (See Section 5.1) and can be transited without
opening them (unlike doors). Lines 9 - 11 capture the players moving to the victim and triaging
them. Using this portals and spaces representation, the HLR in the ASISTANT system (built on
the ELEXIR reasoning system Geib (2016); Geib & Goldman (2011)) is able to recognize this
sequence of events as a successful triaging of a victim in this domain. Further our system as a
whole, using this approach to incrementally build and use a portals and spaces domain model is able
to successfully recognize the multistep individual and team plans of three player teams over twenty
seven, seventeen minute trials without falling behind the players. We view this as an unqualified
success for this approach to domain construction and interface building. With this success in mind,
the next section will discuss some of the implications of this approach.

6. Discussion

First, it is worth noting that these successes on the ASIST program suggest that not only is a portals
and spaces based interface theoretically well founded, but it appears to be computationally practical
as well. Our implementation not only achieves our integration objectives but it also enables the
whole system to scale to real world sized problems. While the ELEXIR plan recognition technology
behind our implementation of the HLR is known be able to process and recognize plans given
thousands of observations, it was far from clear that we would be able to use a LLR to construct
the domain from the input stream and make the appropriate calls to the HLR and get results back in
real time. It is the abstraction of large sequences of position-update and change-direction events

13

C. GEIB AND J. RYE AND V. SARATHY

into a small number of locToA, transitPortalA, and transitDoorA events that allows the HLR
to work at scale. The full Minecraft event stream for three players produces tens of thousands of
observed events over the course of each of the seventeen minute trials. Our LLR implementation
builds a domain model and abstracts tens of thousands of position-update and change-direction
events down to only thousands of locToA, transitPortalA, and transitDoorA events for the HLR.

To achieve this, it was critical that the process and the resulting domain model removed any
need for the HLR to do numerical computations (as opposed to logical computations). As we have
already argued, portals act as names or placeholders for specific locations. Using a portals and
spaces domain in the LLR to HLR interface means the HLR no long needs to be able to perform any
computations regarding the planning of paths or other control using numeric values. The HLR is not
even responsible for maintaining the players current <X,Y,Z> values of an allocentric representation.
This information is hidden within the abstraction of each players current portal as maintained by
the LLR. This is an important change for HLRs. Like many other technologies that have been used
to implement HLRs, ELEXIR doe not natively support any arithmetic operations. Its reasoning
is logic based rather than numeric. For example, it is not possible for it to recognize multiple
incremental changes in say the x-coordinate of a player as approaching a victim. Instead, it is
tailored to recognize complex, multi-step, hierarchical plan structures common to human activity.
Thus it is appropriate for reasoning about such trajectories to be captured using other specilaized
algorithms in the LLR and abstracted away from use or even representation in the HLR

The reduction in the size of the input also made it possible for the HLR to run in real time. While
the ELEXIR system does scale quite well to large input sets, without this reduction we believe the
system would have been unable to keep up with the actions of the players. Thus the move to portals
and spaces based interface between the LLR and the HLR not only provided an appropriate repre-
sentational abstraction between the reasoners but the abstraction itself also dramatically reduced the
input size while still allowing the systems to function at scale.

As such, our work on the ASISTANT system and its ability to recognize the simultaneous activities
of multiple players in real time based on thousands of input observations provides solid evidence
that a portals and spaces representation is at least as viable as any prior ad hoc method for designing
domains and interfaces for such systems. The obvious question is does it meet the criteria we laid
out in the beginning of this paper for a formal theory for such interfaces? Does it provide something
more than ad hoc design methods?

Our use of portals and spaces to ground the design of the ASISTANT system provides solid evi-
dence that it meets all three of our inital criteria. The HLR and LLR use qualitatively different rea-
soning methods. Most of the LLR’s computations are based on numerical, windowed, stream-based
aggregation methods. The HLR is first-order, formal grammar based system that uses weighted
model counting to compute probabilities. Their representations and algorithms could hardly be
more different. While our implementation has not yet demonstrated the bi-directionality of this
representation, the flow of information from the LLR to the HLR has been demonstrated and the
ELEXIR system on while the HLR is built has demonstrated both the ability to recognize and build
plans using a single domain for both tasks. Thus we have good reason to believe our future work
will demonstrate this second feature. And finally we believe that in addition to the grounding of
the HLR’s conclusions in the outputs of the LLR, the abstraction of the locomotion and navigation

14

PORTALS AND SPACES

primitives of the Minecraft simulation system clearly demonstrate the ability of this approach to
allow high level reasoning about abstract actions (like entering a room or triaging a victim) to be
grounded in low-level signals.

The ASISTANT system supports the addition of portals and spaces constructed as described in
the previous section to its domain model. This allows it to have an incrementally built model of
the physical space and objects that it will reason about. It also provides a level of abstraction
and flexibility not found in prior work. Usually an HLR can only reference objects that can be
converted by the LLR to HLR interface to specific 3D coordinate points. This is necessary so
that when an execution specification is chosen by the HLR that it can be instantiated by the LLR.
This requires the complete set of possible objects and how they can be interacted with be designed
for BEFORE the system is able to interact in any way. This is brittle and requires the system
designer to pick these points out and encode them for both the LLR and the HLR at system design
time. Effectively the system designer must not only design the interactions between the components
of the system but also design and enumerate (at least implicitly) ALL of the specific instances
of inference and reasoning that the system should be capable of down to the lowest level of the
alocentric representation used by the LLR.

While we know of no prior work that has attempted to formalize the interface of LLRs and HLRs
using an egocentric representations of space and actions, there are still relations between this work
and other work in robotics and psychology. For example, the idea of a portal shares a great deal with
the psychological concept of an affordanceGibson (1979). They also seem very related to the idea of
Action Object Complexes (OACs) Geib et al. (2006); Krüger et al. (2011). Much like an affordance
or an OAC, a portal associates an action with an object to produces a specific result. However,
since a portals is defined in terms of a specific egocentric relationship between the agent and the
object it goes beyond either of these concepts in the formal requirements for its implementation.
Further, prior work on affordances and OACs have not explicitly linked them to communication
between different levels of reasoning within systems. As a result, while it shares many of the same
intuitions, we believe the portals and spaces representation is very different and goes well beyond
either affordances or OACs in attempting to place concrete requirements on the interfaces between
LLRs and HLRs and help to build and formalize large multi-component AI systems.

7. Conclusions

This paper has argued that the way in which most current large scale AI systems are built rele-
gates them to one-off engineering exercises that all but prevents the identification of more general
principles and knowledge about how such systems should be built. It has argued that to ease the en-
gineering of these systems, such systems makes a fundamental mistake in using allocentric domain
representations. It has then argued for an egocentric method of domain representation in the form
of portals and spaces. It has both formalized this representation and discussed how it is used in one
such system, ASISTANT. This paper should not be seen as claiming portals and spaces are the only
such egocentric representation or that we cannot learn lessons about the general construction of AI
systems without its use. Instead we would claim that use of such representations focus research on

15

C. GEIB AND J. RYE AND V. SARATHY

questions that have not previously be answered about how to build and integrate AI systems and
may open the door to much greater insights about principled large scale AI system construction.

References

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Geib, C., ao, K. M., Petrick, R., Pugeault, N., Steedman, M., Krueger, N., & Wörgötter, F. (2006).
Object action complexes as an interface for planning and robot control. Proceedings of the
HUMANOIDS-06 Workshop Toward Cognitive Humanoid Robots.

Geib, C., & Goldman, R. (2011). Recognizing plans with loops represented in a lexicalized gram-
mar. Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI-11) (pp. 958–
963).

Geib, C. W. (2016). Lexicalized reasoning about actions. Advances in Cognitive Systems, Volume
4, 187–206.

Gibson, J. J. (1979). The theory of affordances. In The ecological approach to visual perception.
Boston: Houghton MIffline.

Krüger, N., et al. (2011). Object–action complexes: Grounded abstractions of sensory–
motor processes. Robotics and Autonomous Systems, 59, 740–757. From https://www.
sciencedirect.com/science/article/pii/S0921889011000935.

Menzel, R., et al. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings
of the National Academy of Sciences, 102, 3040–3045. From https://www.pnas.org/
doi/abs/10.1073/pnas.0408550102.

Piaget, J., & Inhelder, B. (1956). The child’s conception of space. Routledge.

Stanford Artificial Intelligence Laboratory et al. (2018). Robotic operating system. From https:
//www.ros.org.

Wehner R, Michel B, A. P. (1996). Visual navigation in insects: coupling of egocentric and geocen-
tric information. Jouranl of Experimental Biology.

16

