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Abstract
Implementing human-level reasoning about action effects is an important competence for a cogni-
tive agent: given precondition and action descriptions, a system should be able to infer the change
in the physical world that the action causes. In this work, we propose a new action-effect predic-
tion task. We explore few-shot learning with large pre-trained language models based on a limited
number of samples and propose task-relevant ontology knowledge (from KnowRob ontology) inte-
gration for in-context learning with generative pre-trained transformer (GPT) models. Specifically,
we develop an ontology-to-text transformation to bridge the gap between symbolic knowledge and
text. We further introduce unseen knowledge learning via GPT-3 to infer knowledge for concepts
that do not have definitions in the knowledge base. We evaluate our proposed method on two
human-annotated datasets. Experimental results demonstrate that our approach can improve the
performance of large-scale, state-of-the-art models on two action-effect prediction datasets.

1. Introduction

The ability to predict the outcome of an action and the consequent world state is crucial for cogni-
tive agents to successfully plan and perform complex tasks (Alomari et al., 2022). When a cognitive
agent performs navigation or motion control, it needs act to achieve its goals. Once an action is
performed during the execution of a task, the world state changes, affecting the agent’s possibilities
for completing the task. To successfully execute tasks, the agent should plan the goal in accordance
with such changing world status (Cox et al., 2017). Therefore, action-effect prediction is an im-
portant component of cognitive system goal planning. We define our action-effect prediction task
as follows: given the textual description of an action, a sentence describing the subsequent world
state after the action should to be generated. For example, given an action description ‘cutting a
cucumber’, then the output effect description might be ‘the cucumber no longer exists but is now a
collection of slices’. Our approach to this task is to use a language model, such as GPT-3, exploit-
ing a prompt (a piece of text in natural language with the description of the task for the pre-trained
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Figure 1. The pipeline of our knowledge-enhanced in-context learning for action-effect prediction. We form
a knowledge retrieval and generation process to get ontology knowledge from the KnowRob base. Through
ontology knowledge-enhanced prompt engineering, the textual knowledge pieces, together with precondition
and action descriptions, are employed as input to the GPT model to do post-condition action-effect prediction.
The arrows represent the data flow. The dashed lines connect boxes in the upper part of the figure to a more
detailed explanation of that system component. (Note that the notion of “Prompt Engineering” is explained
in section 2.1.)

language model to interpret and complete) based on a commonsense ontology of action effects, as
described further below.

For this generation task, the labelled data generally accessible includes some well known cases
presented in previous studies (e.g., Davis (1998)’s egg cracking problem), manually collected effect
annotations for 140 actions collected by Gao et al. (2018), and 2000 interactions in terms of initial
world state, the action, and subsequent world state after the action (Zellers et al., 2021). Data from
various sources vary in quantity and level of detail. The description of an action can range from
a verb-noun phrase to a paragraph describing a process in which the action is only a component.
How to utilise these diverse, small-scale datasets is the primary challenge. Rather than building
a model based on large-scale generative language models (LMs) from scratch for a specific dataset
(Zellers et al., 2021), we look into the few-shot learning capabilities of pre-trained language
models (PLMs) that could be easily extended to different datasets in this task. The third itera-
tion of the generative pre-trained transformer (GPT-3) is capable of performing few-shot in-context
learning, where an LM “learns” to do a task simply by conditioning on a text input describing a new
task with input-output examples. This eliminates the need to do task-specific fine-tuning on thou-
sands or tens of thousands of examples. For our task, we build input text (also known as the prompt)
based on the precondition and action descriptions to obtain primary post-condition predictions from
GPT-series models. The text prompt for each action query consists of two parts: some instances of
action description contexts and action-effect completions, and one final action context to query the
model.
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Even though the GPT-series models, particularly GPT-3, are effective at text generation, there
is still a long way to go before reaching robust human-level reasoning (Zhou et al., 2020).
We want to make GPT-3 a better predictor on the textual action-effect inference task by in-
corporating knowledge from a task-related knowledge base. We build a knowledge-enhanced
in-context learning approach for GPT-3 on our action-effect prediction task. Currently the major-
ity of works fusing knowledge into LMs for commonsense reasoning tasks (Shwartz et al., 2020;
Liu et al., 2021b; Bian et al., 2021) consider Knowledge Bases (KBs) that cover a broad range of
topics, among which Wikidata (Vrandečić & Krötzsch, 2014) and ConceptNet (Speer et al., 2017)
are the most commonly used knowledge resources. We hypothesise that task-related knowledge
could help LMs solve tasks. Specifically, for our action-effect task, we employ KnowRob (Tenorth
& Beetz, 2013) which supplemented OpenCyc with additional knowledge about human everyday
activities and household objects, and thus matches our requirements for use in the action effect in-
ference task. The “Knowledge-enhanced in-context learning” part of Fig. 1 shows how we make
use of such ontology knowledge: the ontology knowledge together with precondition and action
descriptions, form the knowledge-enhanced prompt feeding to the GPT model.

KnowRob as a fixed ontology knowledge base has the knowledge incompleteness problem:
there are no explanations for certain terms. How to obtain knowledge for concepts that do not
have definitions in the fixed knowledge base and use them in LMs is a major challenge. The
“Ontology knowledge retrieval and creation” part of Fig. 1 depicts our knowledge processing meth-
ods. First, We retrieve the logical representations for action-relevant concepts (verbs and nouns in
action phrases) from KnowRob. Then, the retrieved pieces of knowledge are converted into English
text. We concatenate these terms and transformed knowledge pieces to form a prompt, which will
be used as input for GPT-3 to infer new knowledge. For concepts without definitions in KnowRob,
we query GPT-3 with the prompt and utilise the returned text as knowledge for those terms. In this
way, we can get knowledge for all terms.

We conducted experiments on the second and third generation of GPT models: GPT-2 and
GPT-3. GPT-3 is not publicly accessible: access can only be obtained through an API, with users
required to pay for token usage. Unlike GPT-3, the GPT-2 model can be accessed using Hugging
Face’s open-source Transformers library (Wolf et al., 2020). We compare the generation results
with and without external ontology knowledge on two human-annotated action-effect prediction
datasets. Experiments show that the prediction performance improves when exploiting completed
ontology knowledge from KnowRob. We have released the code and results on Github1.

2. Related Work

There are many reasoning tasks relating to action: e.g., commonsense inference on events (Rashkin
et al., 2018), action planning (Fine-Morris et al., 2020), extracting action sequences from text (Olmo
et al., 2021), tracking and answering questions about how entities change during actions (Tandon
et al., 2018), reasoning about causal and temporal actions (Xiao et al., 2021). The closest task about
action-effect is addressed by Tandon et al. (2018), though they formulate the action-effect prediction
task as a multi-class classification problem. They characterize the effect of actions by state changes

1. https://github.com/lfj95/action-effect-gpt
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of each entity on four pre-given states. This brings a serious limitation: only broad entity states are
included, which cannot accurately represent detailed state changes.

We argue that generation, rather than choice-based QA, is of more practical value. For example,
for ‘heat water,’ the open-ended inference ‘water will begin to boil, as evidenced by bubbles form-
ing and rising to the surface’ contains significantly more information than state ‘none’. Rashkin
et al. (2018) proposed a generation-based commonsense inference task: given an event, the system
reasons about the likely intents and reactions. They focus on events rather than actions. The work
by Zellers et al. (2021) gathered human-annotated data detailing actions, pre- and post-conditions,
paving the way for our investigation. However, the problem they solve differs from ours in that they
use an object states list as input to their natural language generation task rather than precondition
descriptions.

Furthermore, lots of previous action-relevant commonsense reasoning tasks utilising language
models based on deep neural network architectures (rather than traditional KR attempts using hand
built KBs) benefited from large (action-specific) training data: (Tandon et al., 2018) use the ProPara
dataset (Dalvi et al., 2019), which contains a pre-given paragraph describing a sequence of actions
about each given topic. NExTQA (Xiao et al., 2021) contains thousands of manually annotated
question-answer pairs grouped into causal action reasoning questions. Rashkin et al. (2018) con-
struct a crowd-sourced corpus of 25k event phrases encompassing a wide variety of everyday events
and situations. It’s important to give thought to how to predict action effects with limited and vary-
ing data.

2.1 Few-shot Learning with PLMs

With limited labelled action-effect pairs as training examples, we aim to learn a language genera-
tion model in this data-scarce situation. The powerful GPT-3 model (Brown et al., 2020) can do
few-shot learning given a concatenation of training examples, without parameter updates, on down-
stream tasks. That means working with a large fixed PLM and only the representation of the prompt
is learned. PLMs have also shown promise in cognitive systems. For example, Wray et al. (2021)
proposed language models be used as a source of knowledge for cognitive systems. Their subse-
quent work (Kirk et al., 2022) explores using responses from GPT-3 as a knowledge source for a
mobile robot to perform novel tasks in one shot in a household environment.

Lu et al. (2022) shows that the performance of GPT-3’s in-context learning is highly sensitive
to the input prompts: the prompt format, the training examples, and even how they are put together
all have a big impact on how well it does. Then there is prompt engineering, which refers to
the technique used in conjunction with large LMs such as GPT-3 whereby, when given an input
‘prompt’ , the LM will then output some further text in response. E.g., the prompt “In summary,"
aims to prompt the LM to summarise the preceding text. Different prompts may be more or less
effective and prompt engineering refers to engineering of the most effective prompts for a particular
envisaged task such as summarisation, or sentence completion. Liu et al. (2021a) gave a formal
description of prompting and prompt engineering, explaining the basic steps for building a prompt
function fprompt(x). One important step is to find an appropriate prompt shape for the textual
template. Notwithstanding their in-depth review of prompting methods, the question of how best to
incorporate knowledge into prompts remains unresolved.
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2.2 Integrating External Knowledge into LMs

Prior to the availability of vast amounts of data for neural approaches, much work was devoted to
symbolic reasoning through deduction. Many knowledge resources have been developed during
the previous few decades, e.g., (Lenat, 1995; Miller, 1995; Bosselut et al., 2019). Bosselut et al.
(2019) indicated that effective utilisation of KBs may enhance the PLMs’ capacity for commonsense
reasoning, while Wu et al. (2022) suggested that access to external knowledge is essential for many
natural language processing tasks, such as question answering and dialogue. Some work (Liu et al.,
2021b; Bian et al., 2021; Kapanipathi et al., 2020) tried to improve a LMs’ commonsense reasoning
ability using a knowledge base, but the majority of these works consider knowledge bases that
cover a broad range of topics, among which Wikidata and ConceptNet are the most commonly used
knowledge resources.

Apart from the above mentioned KBs, there are some other KBs where a great deal of effort
has been put in their development over the past few decades, but little effort currently considers
utilising those knowledge sources to enhance LMs’ capabilities. Symbolic ontology KBs are a
representative example. They are created by domain experts, and are generally of high quality.
But very limited work uses them in conjunction with LMs; this might be due to their symbolic
formulations, which add complexity when integrating knowledge into LMs, or to the insufficient
breadth of the knowledge source. Cyc (Lenat, 1995), which represent millions of common sense
facts in a machine-readable format is by far one of the most cited ontology knowledge resources.
It is not open source, but a smaller version called OpenCyc has been built and made available for
free. OpenCyc has become somewhat of a de facto standard for robot KBs. However, as a general
upper ontology encompassing a wide spectrum of human knowledge, OpenCyc frequently lacks
domain-specific knowledge.

Ye et al. (2022) proposed ontology-enhanced prompt-tuning, pointing out that ‘dataset-related
ontologies’ are expected for different tasks. For our task, we hypothesise that the KnowRob on-
tology, which supplemented OpenCyc with more thorough descriptions of concepts such as human
everyday activities and household objects, may be a highly effective knowledge source eliminating
the problem of knowledge noise. Much work has been done to build the KnowRob system over the
past decade (Beetz et al., 2018). But being built on the Robot Operating System (ROS) and using
SWI Prolog for knowledge inference raises some challenges in combining it with existing PLMs,
which we address in this paper.

3. Methods

In this section, we present (a) our task formulation and relevant datasets (section §3.1), (b) the
few-shot learning procedure (section §3.2) and (c) the process of knowledge-enhanced in-context
learning (§3.3) in which three issues are addressed: (i) Ontology knowledge retrieval: retrieving
action-object relevant ontology knowledge in KnowRob (§3.3.1); (ii) Texual knowledge represen-
tation: grounding knowledge to formal textual representations sent to GPT-3 (§3.3.2); (iii) Unseen
knowledge learning with GPT-3: using GPT-3 to obtain knowledge assertions for terms for which
the original KnowRob knowledge base does not provide explanations (§3.3.3)
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3.1 Task and Datasets

Our action-effect prediction task takes English sentences describing the initial world Sx and action
description Sa as input and generates another text Sy describing the effects of its action on the
objects it manipulates.

{x1, · · · , xk}︸ ︷︷ ︸
Sx,precondition

+ {a1, · · · , am}︸ ︷︷ ︸
Sa,action

⇒ {y1, · · · , yn}︸ ︷︷ ︸
Sy ,post−condition

(1)

Figure 2. Examples of the action effect descriptions from two datasets: 1400 Action-Effect pairs and PIGLET.
Colored words refer to terms with ontology knowledge descriptions: verbs, nouns, and objects in action
descriptions are highlighted in red, green, and yellow, respectively. Terms in precondition descriptions are
highlighted in blue.

Our task requires input and output of text. An action could be portrayed at the word level (verb-
noun phrase) or sentence level (full sentence) depending on its complexity. Fig. 2 shows examples
of these two levels of action descriptions.

1400 Action-Effect pairs: The 1400 action-effect pairs dataset created by Gao et al. (2018)
can be directly used. In this dataset, for each action, its possible effects are described in natural
language by 10 different annotators. So there are 140 actions in total. We randomly drew 8 actions
as the training set, and the remaining 132 actions as the test set. The annotations for each action
is in pair format : verb_noun, effect_sentence. Here, for each action phrase in the training set, we
choose the longest sentence as the standard completion for in-context learning since the longer de-
scriptions usually contain more information. We use the 10 annotations for each verb_noun phrase
for evaluation.

PIGLET: PIGLET (Zellers et al., 2021) contains 2000 interactions (500 for training, 500 for
validation and 1000 for testing) with English sentences describing the precondition, the action, and
the action results.

3.2 Few-shot Learning with GPT

The procedure of applying a pre-trained GPT model to our text-to-text generation task is shown in
the right half of Fig. 1. We aim to obtain action-effect predictions without fine tuning the parameters
of LMs on our downstream task. Prompts are the only way to provide the task specification, so
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extensive prompt engineering is required to achieve high accuracy. We designed input prompts for
GPT models.

No-knowledge Prompt Design: The second column of Table 1 shows templates prompts that
do not entail external knowledge. We give the formatted prompts that we used for the two action-
effect prediction datasets.

For the 1400 Action-Effect Pairs dataset, since the action description is just a verb-noun phrase.
We use ‘The person’ for [Connector1] and ‘As a result,’ for [Connector2]. These two connectors,
along with the action phrase, provide the prompts for a single action. For the PIGLET dataset, both
the precondition and action descriptions are in sentence form. To motivate the model to generate
post-condition related descriptions, we employ ‘Therefore,’ as a [Connector].

Table 1. Prompts Formats. [Sk], [Sx], [Sa], and [Sy] denote input slot for knowledge, precondition, action,
and post-condition respectively. The second column shows the no-knowledge prompt template for our action
prediction work. The third column shows corresponding knowledge-enhanced prompt formats.

Dataset No-knowledge Prompt Template Knowledge-enhanced Prompt Template

1400 Action-Effect Pairs [Connector1] [Sa]. [Connector2] [Sy] [Sk] [Connector1] [Sa]. [Connector2] [Sy]

PIGLET [Sx] [Sa] [Connector] [Sy] [Sk] [Sx] [Sa] [Connector] [Sy]

Figure 3. Examples of ontology knowledge-enhanced prompt for two action-effect prediction tasks.

Knowledge-enhanced Prompts: Since the generation of each word in a sequence is based
on the word itself and all preceding words, we prompt the model with the knowledge statements
by prepending K before action related descriptions. Fig. 3 presents one complete instance for
each dataset. The coloured boxes represent ontology knowledge obtained via Section 3.3, which
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are utilised as a prefix to the action-related descriptions. The dotted box depicts a no-knowledge
prompt (only action relevant descriptions in prompt).

For each action Sa = [verb, noun] (e.g., ‘cut potato’) in the 1400 Action-Effect pairs dataset, we
get two textual knowledge statements: Sk = [kverb, ..., knoun]. For PIGLET’s sentence descriptions,
we begin by extracting a concepts list [c1, c2, ..., cm] from action description sentence Sa using
matching 1-grams. For example, for sentence ‘The robot turns the stove knob to the on position’,
the exact matching result would be [robot, turn, stove, knob, position]. Then, we prepend m textual
knowledge statements for m tokens Sk = [k1, ..., km] before the precondition sentence Sp.

3.3 Knowledge Enhanced In-context Learning

We demonstrate our knowledge enhanced in-context learning method in this section. We show
how we get ontology knowledge [Sk] = [k1, ..., km] and use these knowledge pieces to form the
knowledge-enhanced prompts for GPT-3 to do in-context learning. We chose to build our knowl-
edge base around KnowRob for our action-effect prediction task. Although the coverage of this
knowledge base is limited, it provides clear, short explanations of actions and household objects
that humans intuitively associate with the concepts.

3.3.1 Ontology Knowledge Retrieval

From 1400 action-effect pairs dataset, we got 62 verbs (action verbs) and 42 nouns (objects to be
manipulated) in total. For PIGLET, we got an n-gram list [c1, c2, ..., cm] for each sentence. We
retrieve ontology knowledge for the 62 verbs and 42 nouns from KnowRob.

Figure 4. The pipeline of our knowledge processing method. There are three steps: (a) retrieve action-object
relevant knowledge in KnowRob, (b) ground knowledge to formal textual representations, and (c) complete
knowledge base K with GPT-3 for unseen verbs or nouns.

In KnowRob (Tenorth & Beetz, 2013), Description Logic (DL) was used as a formalism to
represent commonsense knowledge, in particular the OWL, which stores DL formulas in an XML-
based file format. The OWL files can be queried using Prolog predicates. Among all OWL triples,
the most common Predicate in the KnowRob ontology is subClassOf. As shown in the ‘Ontology

knowledge facts’ box in Fig. 4, the concepts, e.g., PreparingFoodOrDrink, SeparationEvent, Food,
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Table 2. Symbolic ontology Knowledge to text examples. The ‘OWL’ column shows examples of OWL
axioms in KnowRob.owl. The ‘Axiom’ column shows the rewritten axioms and class descriptions in the ACE
controlled English language. The last column shows verbalization results using the ACE function words.

OWL Axiom ACE text
<owl:Class rdf:about=“&KnowRob;Mixing">

<rdfs:subClassOf rdf:resource=“&KnowRob;Incorporation-Physical"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=“&KnowRob;subAction"/>
<owl:someValuesFrom rdf:resource=“&KnowRob;AddingSth"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource=“&KnowRob;subAction"/>
<owl:someValuesFrom rdf:resource=“&KnowRob;Stirring"/>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

SubClassOf(Class(#Mixing),Class(#Incorporation-Physical))
SubClassOf(Class(#Mixing), ObjectSomeValuesFrom(

ObjectProperty(#subAction),Class(#AddingSth)))
SubClassOf(Class(#Mixing), ObjectSomeValuesFrom(

ObjectProperty(#subAction),Class(#Stirring)))

Every Mixing is an Incorporation-Physical.
Every Mixing subAction an AddingSth.
Every Mixing subAction a Stirring.

Egg-Chickens, are organised in a taxonomy, with is-a definitions describing relationships between
them).

According to this observation, we query the KnowRob ontology base using the querying method
rdf_has(Subject, Relation, Object) with verb and noun from action phrases as Subject. It returns
Object matches for all specializations with Predicate defined as subPropertyOf. For 62 verbs and
42 nouns in this dataset, there are 10 verbs in the ontology [open, bake, boil, chop, close, cook,
crack, cut, mix, stir] and 9 nouns [bag, box, chair, cup, door, drawer, egg, meat, soup] contained in
KnowRob. Detailed retrieval ontologies with SWI-Prolog for the 10 verbs and 9 nouns can be found
in Appendix A2. The retrieved ontologies provide the basis for ontology knowledge statements.

3.3.2 Texual Knowledge Representation

The retrieved knowledge obtained from the first step is structured ontology knowledge. The original
OWL syntax (shown in ‘OWL’ column in Table 2) has class, property and individual names, which
are connected to each other by various logical operators/functors (e.g., rdfs:SubClassOf, owl:Class,
owl:Restriction). We conduct two steps to transform the retrieved ontology extracts to natural lan-
guage that works for GPT-3:

1. Map all retrieved OWL ontology fragments to Attempto Controlled English (ACE) text
(Fuchs et al., 2008) – a subset of English that has a clear and unambiguous semantics in first-order
logic. To do this, we use the OWL Syntax Converter and the OWL verbalizer created by Kaljurand
(2007), which can provide a version of English that is comprehensible and acceptable. As a result of
this step, all logic-specific words or symbols will be transformed into common words. We show the
transformation for this step in Table 2. After mapping, the logical operators/functors are replaced
with words (e.g., ‘every’, ‘is a’).

2. Transform ACE text to plain text. After mapping KnowRob, the the ACE text contains
many terms that are actually composed of several words (e.g., PreparingFoodOrDrink), i.e. it capi-
talizes the first letter of each word in a string, following the CamelCase convention. To change such

2. https://github.com/lfj95/action-effect-gpt/blob/main/appendix.pdf
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forms into plain text, we insert a space before each uppercase letter, and convert all letters from
uppercase to lowercase. Furthermore, the subClass descriptions ‘Every’ and ‘is a’ are removed; all
texts containing the abbreviation ‘sth’ are replaced with ‘something’. When there is more than one
axiom for a verb or noun, we concatenate all the texts to form a single “sentence” using a comma.

3.3.3 Unseen Knowledge Learning with GPT-3

After the previous step, we obtained ontology knowledge statements for 10 verbs and 9 nouns from
KnowRob. The 1400 action-effect pairs dataset contains 62 verbs and 42 nouns in total. Every
sentence in PIGLET has an n-gram list. How to obtain knowledge assertions for these terms? We
address the challenge by utilising GPT-3 to learn previously unknown ontological knowledge.

For each verb or noun that has retrieved ontology knowledge, the sentences obtained from the
above step are taken as training examples for GPT-3. As shown in Fig. 4, all retrieved knowledge
for verbs and nouns form the “A” part of each Q-A pair. There are 19 example input-output pairs in
total. Given the task description, verb/noun examples and their knowledge definitions, expressed as
the translated sentences from the second step along with the query prompt, GPT-3 will generate its
version of knowledge for a new word. We use this in-context learning method to generate knowledge
descriptions for the remaining 52 verb and 33 nouns in 1400 action-effect pairs dataset and all word
n-grams in the PIGLET dataset.

4. Experiments

In this section, we present: (i) unseen knowledge learning results (section §4.1); (ii) the few-shot
learning experiments results (section §4.2). All the experiments were conducted on the two datasets
introduced in Section 3.1; (iii) new state-of-the-art on PIGLET dataset with fine-tuning GPT-3 on
KnowRob knowledge-enhanced inputs; (iv) example study.

4.1 Unseen Knowledge Learning with GPT-3.

In Table 3, we give several examples of knowledge learning results with GPT-3, which were ran-
domly selected from a subset of novel generations concepts not found in the KnowRob ontology
from the generation set for the two datasets. One of the authors conducted a manual evaluation to
see whether ontology-based knowledge generation for verb or noun completes a plausible descrip-
tion. We can see that the generations are generally of high quality. The same author also checked
all of the knowledge it generated for 52 verbs and 33 nouns in 1400 action-effect pairs dataset, and
noted that almost all of the generations are informative except perhaps for “football means sport"
“baseball means sport" and “scratch means a separating event". Detailed generation results can be
found on our GitHub page. The derived knowledge is directly applied in the process of building
knowledge-enhancement prompts.
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Table 3. Examples of ontology-based knowledge learning results with GPT-3. Generations were randomly
selected from a subset of novel generations from the 1400 action-effect pairs set and PIGLET. A novel
generation is one which expresses knowledge not found in KnowRob.

Actions Knowledge learning results Plausible
1400 Action-Effect pairs

bend knee Bend means change in shape, usually over a distance. Knee means body part. ✓

bind hair Bind means to connect or fasten together. Hair means body covering. ✓

crash car Crash means sudden, uncontrolled motion. Car means a wheeled vehicle.. ✓

ignite wood Ignite means create a flame. Wood means natural resource. ✓

lock cabinet Lock means intrinsic state change event, object state from unlocked to locked. Cabinet means
furniture, enclosed structure.

✓

PIGLET
The robot throws the statue
across the room.

Statue means three-dimensional work of art. Room means space with walls and a ceiling, inside
a building. Robot means man-made, machine that can do work or perform tasks automatically.
Throw means motion event.

✓

The robot empties the
bowl.

Bowl means eating utensil, concave container. Empty means without contents. Robot means
man-made, machine that can do work or perform tasks automatically.

✓

The robot throws the keys a
short distance.

Key means device used to open a lock. Short means describing object attribute. Distance means
the property of being apart in space, the property of being far apart in time. Robot means man-
made, machine that can do work or perform tasks automatically. Throw means motion event.

✓

4.2 Prediction Results

We conducted few-shot learning (K = 1, 2, 4, 8). We use the designed prompts to demonstrate how
the LM provides the answer to the actual prompt instantiated with the input. Example prompts can
be found in Appendix B. We ran our experiments on four sizes of GPT-2 models (small, medium,
large and XL with parameters 117M, 345M, 774M, and 1.5B) and GPT-3 models (Ada, Babbage,
Curie and Davinci with parameters 2.7B, 6.7B, 13B, and 175B respectively). With a larger model
size trained on more training data than GPT-2, GPT-3 is an enhanced version that can give improved
prediction. Here, we want to explore how the size of the LM affects the results obtained and test
whether adding knowledge to the prompt will enable GPT-2 to perform at a level comparable to
that of GPT-3. We accessed GPT-2 through HuggingFace3, and GPT-3 using the OpenAI API. For
GPT-3, the sampling temperature T determines how much randomness is in the output. To keep
the results consistent, and to better judge the difference the knowledge-based prompt makes, we
set T = 0, that is, argmax sampling. We generated greedily from the LM until it produced a full
stop character. We evaluate the LM’s performance with one automatic metric and one LM-based
metric: Bleu(Papineni et al., 2002) and BERTScore (Zhang et al., 2019). Bleu measures the overlap
between the generated responses and the ground truth. BERTScore evaluates text generation by
computing token similarity with the BERT model.

Our approach for generating knowledge is compared to the following benchmarks on the two
action-effect datasets:

1. Baseline - No external knowledge source. Inference with GPT-2 and GPT-3 with only precondi-
tion and action descriptions as the source of input.

3. https://huggingface.co/gpt2, this and all other cited URLs last retrieved 2nd Nov.2022
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Table 5. Few-shot learning results of GPT-2 and GPT-3 on on test sets of two datasets: 1400 Action-Effect
pairs dataset and PIGLET dataset. We report BLEU and BERTScore F1 for K-shot learning K = 1, 2, 4, 8
(♯ examples from training set). The table’s background colour represents various evaluation metrics: Green
represents BERTScore, while blue represents BLEU score. Gradation of the colour indicates the level of the
results; better results are shown in darker colour. In the rows with coloured numbers, red indicates a decrease
and green an increase in the performance of our knowledge-enhanced method compared to the baseline.

Dataset Metrics Knowledge K = 1 K = 2 K = 4 K = 8

GPT-2 GPT-3 GPT-2 GPT-3 GPT-2 GPT-3 GPT-2 GPT-3

1400
Action-Effect
pairs

BLEU

Baseline 8.5 10.5 11.9 8.4 5.2 19.2 25.4 29.1
Comet 12.7 11.2 11.0 10.9 12.9 18.8 19.3 22.6
KnowRob 19.7 12.2 14.1 15.5 21.5 23.6 31.1 27.5

(+11.2) (+1.7) (+2.2) (+7.1) (+16.3) (+4.4) (+5.7) (-1.6)

BERT
Score

Baseline 61.2 61.6 65.3 60.0 66.9 67.0 76.1 74.3
Comet 65.0 62.0 62.2 60.7 67.5 67.0 73.6 69.7
KnowRob 70.0 63.9 65.3 66.2 73.8 71.4 78.5 72.8

(+8.8) (+2.3) (+0) (+6.2) (+6.9) (+4.4) (+2.4) (-1.5)

PIGLET

BLEU

Baseline 31.2 35.2 29.5 36.6 35.5 38.6 33.5 41.1
ConceptNet 33.3 33.6 25.2 35.7 36.0 41.3 38.6 41.1
KnowRob 34.7 37.3 29.4 37.7 37.0 41.9 39.5 42.6

(+3.5) (+2.1) (-0.1) (+1.1) (+1.5) (+3.3) (+6.0) (+1.5)

BERT
Score

Baseline 78.4 80.2 76.9 79.9 79.4 81.1 77.2 80.9
ConceptNet 78.8 78.6 74.4 78.9 79.1 81.5 79.5 81.0
KnowRob 78.9 80.7 77.0 80.5 79.5 82.1 80.0 81.4

(+0.5) (+0.5) (+0.1) (+0.6) (+0.1) (+1.0) (+0.8) (+0.5)

2. ConceptNet - Template-generated knowledge clarifications get from ConceptNet. First, we ex-
tract relation paths between words from the precondition description and words from the the
action description. Then we convert each ConceptNet relation to a natural language template as
in (Shwartz et al., 2020).

3. Comet - COMmonsEnse Transformers (COMET) (Bosselut, Rashkin, Sap, Malaviya, Celikyil-
maz, & Choi, 2019). The model was trained on a seed set of knowledge tuples from ConceptNet
(subject, relation, object) to generate commonsense descriptions. To use this KB to our action-
effect prediction task, first, we take the action phrases as (Subject); for Relation, we consider
Causes. We then generate (Object) for given action Subject and effect relevant Relations as in-
puts. Finally using beam search, ten candidates are produced for each action and relation type.

In Table 5, we show the few-shot learning results of GPT-2 and GPT-3 on test sets of two
datasets: 1400 Action-Effect pairs dataset and PIGLET dataset. There is a trend of improving re-
sults when the in-context learning examples increases. In most cases, the prediction performance
improves when exploiting completed ontology knowledge from KnowRob, especially for 4-shot
learning. There is a gain of over 10 BLEU points for GPT-2 and 4.4 BERTScore for GPT-3 on 1400
action-effect pairs dataset and 3.3 BLEUScore for GPT-3 on PIGLET datset. The experimental
results show that our KnowRob ontology knowledge enhanced method can achieve the best perfor-
mance on both datasets: 8-shot learning with GPT-2 on 1400 Action-Effect pairs dataset and 8-shot
learning with GPT-3 on PIGLET.
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Table 6. Comparison of different knowledge-enhanced methods on GPT-2 and GPT-3 with different size in
terms of BERTScore. Gradation of the colour red indicates the level of the results; better results are shown in
darker red. The optimal performance settings for GPT-2 and GPT-3 are displayed in bold.

Database Knowledge GPT-2 GPT-3
Small Medium Large XL Ada Babbage Curie Davinci

1400
Action-Effect
pairs

Baseline 72.3 69.5 75.9 76.1 64.9 72.2 74.3 70.6
Comet 73.0 69.6 72.0 73.6 62.1 68.7 69.7 67.2
KnowRob 68.6 74.9 76.4 78.5 63.8 72.3 72.8 69.6

PIGLET
Baseline 76.7 77.7 78.5 77.2 76.7 78.9 80.2 80.9
ConceptNet 77.3 78.7 79.6 79.5 75.6 78.3 79.7 81.0
KnowRob 77.5 79.7 80.2 80.0 77.5 79.5 81.5 81.4

Figure 5. BLEU score with K = 8 KnowRob prompt prefixes and pure LM model on PIGLET for different
sizes of GPT-2 and GPT-3.

Model size matters. Table 6 and Fig. 5 shows the performance gain when using different size
of GPT-2 and GPT-3 as the post-condition prediction model. On the whole, there is an increasing
trend in BLEU and BERT performance scores when model size for GPT-2/ GPT-3 grows (more
apparent in BERTScore and PIGLET).

For the 1400 action-effect pairs dataset, the GPT-2 model with the highest BERTScore is GPT2-
XL, whereas GPT2-Large has the highest BLEU score. Curie (the second largest GPT-3 model) got
both highest BERTScore and BLEU score among all GPT-3 models. In both scores, GPT2-XL
outperforms Curie for this dataset.

The best results for PIGLET are obtained on the second largest size for both GPT-2 and GPT-3:
GPT2-XL for GPT-2 and Curie for GPT-3. Curie outperforms GPT-2XL with a 1.3 improvement
in BERTScore. With Knowrob-enhanced few-shot learning, the differences between the largest and
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second-largest in BERTScores are negligible. But the BLEU score decreases by six points when the
model size is changed from GPT2-Large to GPT2-XL.

4.3 Few-shot Learning & Fine-tuning

Apart from knowledge-enhanced few-shot learning, we also conducted fine-tuning experiments.
We compare the KnowRob knowledge-enhanced few-shot (K = 8) learning results and fine-tuning
results of GPT-3 (Davinci) model with the PIGPeN-NLG (Zellers et al., 2021) baseline in Table 7.
• PIGPeN-NLG. The model uses object states rather than using precondition textual descriptions.

Given the object lists, each object involved is represented with 42 attributes. The model is based
on GPT-small (117M parameters).

• KnowRob-GPT3-8shot. We do in-context learning on the Davinci model with 8 randomly se-
lected training examples. We use the KnowRob knowledge as prefix to precondition and action
texts.

• KnowRob-GPT3-finetune. We fine-tune the Davinci model on 500 training examples of PIGLET.
The KnowRob knowledge prefix is concatenated with precondition and action texts as prompt.
the post-condition texts are used as completion label.

• Human. The results comes from Zellers et al. (2021). From their code released on GitHub 4, there
are three sets of human annotations for each sample, They used one set as human predictions, and
the other two formed the "reference" set (baseline post-condition descriptions) used for evaluation
of both the human and machine predictions.

Table 7. Post-condition text generation results comparison on validation and test set of PIGPeN-NLG.
Finetuning GPT-3 (Davinci) with KnowRob enhanced action descriptions outperforms the state-of-the-art
PIGLET model by 7 BLEU points and 3 BERTScore F1 points.

Model BLEU BERTScore
Val Test Val Test

PIGPeN-NLG(Zellers et al., 2021) 49.0 43.9 83.6 81.3
KnowRob-GPT3-8shot 42.2 42.6 81.3 81.4

KnowRob-GPT3-finetune 56.3 58.6 86.2 86.7

Human 44.5 45.6 82.6 83.3

The experimental results show that the ontology knowledge enhanced in-context learning, with
just only 8 examples from training set as input, can achieve similar level (only 1.3 BLEU points
lower and 0.1 BERTScore F1 points lower) of PIGPeN-NLG performance, which are trained on
500 training examples. Furthermore, finetuning the GPT-3 model on all 500 training examples
with ontology knowledge produce a new state-of-the-art result: an increase of 4.7 BLEU points
and 4.6 BERTScore F1 points on the PIGLET test set, even higher than human predictions. The
BLEU and BERTScore shown in Table 7 are calculated using the same reference set. These two
automatic metrics are efficient methods of benchmarking, but clearly have potential deficiencies. In
particular, some generated statements which are in fact appropriate descriptions of the action effect,

4. https://github.com/rowanz/piglet
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may receive a low score, because the scores are based only on a set of reference sentences (in our
experiments. one set of human annotations). Although a high score suggests that the generation
predictions coincide closely with the set of human annotations used for evaluation, the converse
does not necessarily mean that the prediction would not be in agreement with some other human
annotator.

4.4 Qualitative Analysis

In Table 8, we report five randomly selected 4-shot learning results from the Davinci model for
each dataset. Both with and without knowledge predictions are reasonable under Davinci’s 4-shot
learning, and KnowRob achieved the highest improvement over baseline on both datasets in this
setting, which can help us analyse what impact the imported KnowRob knowledge has on post-
condition prediction.

Table 8. Example 4-shot learning results with Davinci using the question answering in context template.
The ‘Label’ column denotes manually collected action effect descriptions. The ‘No-knowledge generations’
column shows the generation results with only action input. The ‘KnowRob-enhanced generations’ column
shows the generation results using action phrases together with knowledge learnt from KnowRob as input.

Action Label No-knowledge generations KnowRob-enhanced generations
1400 Action-Effect pairs

bake potato the potato is heated in the oven so it
can be eaten

the potato is heated up to a high
temperature and then undergoes a
change in state from solid to gas

the potato is heated to a temperature that
causes it to transform from its initial raw
state to a cooked state

bend knee fold the leg in a way the knee is bent
forward

the knee is bent in a way that in-
creases the angle between the thigh
and shin bones

the knee is bent to a certain angle

cook onion an onion is heated in an oven or on a
stove to make it ready to eat

the onion is heated and its enzymes
are denatured

the onion is heated and the skin is re-
moved

kick door the door lock is broken and swings
open

the door is hit with the foot and
moves backwards

the door is propelled away from the per-
son and opens

bite apple a mouth uses teeth to remove a sec-
tion of apple from itself

the apple is bitten into and the edi-
ble flesh is consumed

the apple is bitten into with force and the
bitten off piece is removed from the apple

PIGLET
The robot is holding a glass bottle in front
of it. The robot throws the bottle across the
room.

The bottle breaks into little shards of
glass, it is no longer picked up any
more, and it is now farther away.

The bottle is now broken. The bottle is now broken and the room is
now messy.

There’s a plate in an open cabinet and the
robot is holding a cup. The robot closes the
cabinet.

The cabinet is now closed. The plate is now inside the cabinet. The cabinet is now closed and the plate is
inside.

The robot is standing in front of a stove with
a pan on it that is turned off. The robot turns
on the stove.

The stove gets hot and the pan gets
hot.

The pan is now on the stove. The stove is now turned on and the pan
begins to heat up.

The robot is standing in front of a drawer
that is closed and there is bread on the
counter. The robot opens the drawer.

The drawer is now open. The bread is now in the drawer. The drawer is now open and the bread is
inside the drawer.

The robot is in front of a full sink with a run-
ning faucet. The robot turns off the faucet.

The water stops and the sink is now
empty of liquid.

The faucet is now off and the liquid
in the sink is no longer flowing.

The faucet is turned off and the sink is
empty.

For the 1400 action-effect pairs dataset prediction examples, the human annotations are concise
in all cases. While for some cases, it put more focus on the action process rather than post-condition
description. (e.g., for ‘bend knee’, ‘fold the leg in a way’; for ‘bite apple’, it produced descriptions
such as ‘a mouth uses teeth to remove’) We can see that with Davinci, both generations are accept-
able . The generations without a knowledge prompt tend to contain some not everyday technical
terms (e.g., for ‘cook onion’, it produced text such as ‘enzymes are denatured’; for ‘bite apple’, it
mentioned ‘edible flesh’.) Additionally, actual factual errors are made (e.g., for ‘bake potato’, it
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says potato ‘undergoes a change in state from solid to gas’). The KnowRob knowledge-enhanced
learning results of these examples are easier to understand (e.g., for ‘bite apple’, it stated ‘the bitten
off piece is removed from the apple’ rather than ‘edible flesh is consumed’).

For PIGLET, the human annotations are often brief, but include the most significant post-
condition information. Generations without knowledge prompts usually explain the state changes
of a single object, but tend to be impacted by things that occur in precondition descriptions, but
have nothing to do with action. For instance, in the second example ‘closes the cabinet’, apart from
cabinet, the precondition descriptions also mentioned ‘holding a cup’ and ‘a plate in cabinet’, the
prediction ‘plate inside the cabinet’ actually is not the effect of ‘closes the cabinet’ but put the plate
in cabinet. The post-conditions generated by GPT-3 with KnowRob-enhanced in-context learning
are sometimes also affected by unimportant things but they include the essential post-condition de-
scriptions. (e.g., ‘cabinet is now closed’ apart from ‘plate is inside’ for ‘close cabinet’, ‘drawer is
open’ apart from ‘bread inside drawer’ for ‘open the drawer’).

5. Conclusions

We proposed an action-effect prediction task, which unlike existing causality reasoning tasks, fo-
cuses on generation rather than doing multiple choice selection. Such a generation task has a broader
application, e.g., robot manipulation, and combining this textual reasoning with visual information
for further reasoning (Li et al., 2022). We employed pre-trained GPT models to solve this task. At
the same time, we improved such LM’s reasoning ability by injecting external knowledge from a
strongly relevant ontology KB: KnowRob. We form a bridge from a symbolic knowledge base to a
LM by converting ontologies to textual prompts, thus demonstrating a new use for traditional KBs.

In this work, while we use KnowRob as the main KB, we also make a comparison with Con-
ceptNet and Comet. This can be extended to other KBs, e.g., VerbNet, Wiki-data, web-searching
knowledge. This points to future work in extending the approach to a variety of other types of
KBs, as well as more efficient methods of embedding the knowledge into pre-trained LMs for com-
monsense reasoning. Furthermore, if in future work we could translate the language predictions
back to a formal ontology, this would allow automated ontology enhancement by exploiting the
knowledge implicit in large scale LMs. In addition, while PLMs have the advantage of being able
to produce predictions from varied input, they also have a disadvantage: the outcomes are diffi-
cult to explain. Thus developing explainable LMs would seem to be a critical research topic for
allowing LMs to be deployed in cognitive systems. Also, for our experiments, to save token usage
and time, we randomly chose 8 examples from 1400 action-effect dataset as training examples, and
randomly chose K examples from the training sets training examples for K-shot learning; it would
be interesting to try different sets of training examples and do cross-validation experiments to see
whether the example selection has any impact on the results. Finally, in this work we mainly focus
on sentence-level action-effect prediction, we hope that this will pave the way for further research
into more complicated tasks (e.g., quantity change prediction, status tracking, action planning). and
other commonsense reasoning tasks.
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