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Abstract
In this paper, we explore self-control in cognitive systems using reinforcement learning. We charac-
terize self-control in decision making based on theories of delay discounting proposed in cognitive
psychology. Our model explores self-control through different discount functions and learning
rates in a Capture-the-flag (CTF) game where immediate rewards are from flag control and defense
actions but overall wins are based on successful return of the flag to the base. We provide empirical
results using game playing agents for both static and dynamic discounting cases. Results show that
hyperbolic and exponential discounting is effective in decisions that have longer time horizons for
rewards, such as flag returns to base in the CTF game. We further show the impact of different
combinations of dynamic and static settings for discount and learning rates on self-control in our
reinforcement learning agents.

1. Introduction

Human decision making has been studied for decades to understand how background knowledge,
age/experience, and self-control factor into decision-making. A notable study being the Marshmal-
low test (Mischel, 1974). This test provided a method to characterize how delay of gratification (i.e.
one’s ability to resist the urge to take immediate rewards) in children affected their rewards. The
children were given the task of being presented with a marshmallow (or pretzels) by a proctor and
asked to wait until their return upon which they would be offered another one. At any time the par-
ticipants could signal for the proctor to return without the second item. The objective of this study
was to see how different tasks (e.g. imagining things similar to the reward, distractions/playing,
etc.) affected the children’s ability to wait for a better reward. This helped (Mischel, 1974) identify
the combination of factors that encourage more self-control. Other such studies that fall into either
choice theory or decision theory, have been conducted to study decision-making under uncertainty
(Tversky & Kahneman, 1992; Kahneman & Tversky, 2013), delay discounting (Green & Myerson,
2004; Odum, 2011), overconfidence based on task difficulty (Klayman et al. (1999)), and other be-
haviors that humans exhibit when making decisions or performing tasks. Studies like these help
researchers to better model and understand different aspects of human decision-making.

Modern cognitive systems have been developed with reinforcement learning (RL) techniques.
They have been proven to be effective for training autonomous agents capable of performing at a
human-level (Mnih et al., 2015) in domains like Atari games. Despite these recent advances in re-
inforcement learning, there is still a major issue that pertain to cognitive systems that remain under
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studied. Often cognitive systems based upon RL focus on model optimization without explicit con-
siderations of task difficulty and duration with respect to rewards, also referred to as time horizons.
This is an issue because RL systems rely on direct interactions with the environment to learn, and if
the task difficulty is high and/or the feedback is sparse or biased they are more prone to being over-
confident or thinking they are doing better than they actually are (Klayman et al., 1999; Jessup et al.,
2008). This overconfidence can lead to impulsive behaviors and prevent them from performing well
on tasks with delayed rewards/long horizons.

To begin addressing this topic, we explore how learning and preference for long-time horizon
tasks (i.e. a task with a long delay between the initial action and the actual reward) and short-
time horizon tasks (i.e. a task with a short or no delay between the initial action and the actual
reward) changes a cognitive system’s overall behavior for game playing. We design models with
different learning rates and discount functions that mirror ones found in human studies in cognitive
psychology. We demonstrate the variety and effects of different behaviors learned using a capture-
the-flag (CTF) task which is a domain that includes both long and short time horizon tasks within
the same game.

2. Discounting in RL

Reinforcement learning problems are typically formalized as Markov Decision Processes (MDPs)
denoted with the vector: < S,A, P,R, γ >. S represents the state space, A the action space,
P : S × A × S → [0, 1] is the state-transition probability, R : S × A → R is the reward function,
and γ → [0, 1] is the discount factor. RL agents aim to optimize a policy, πθ, parameterized by a
parameter vector, θ, that aim to maximize the discounted sum of the expected return:

Gt =
N∑
i=0

γiri+t (1)

this discounted reward is used to account for its future success.

2.1 Learning in RL

Learning in RL agents is performed via policy gradients or action-value updates (Sutton & Barto,
2018). After an agent reaches a terminal state (e.g. death, win, etc.) or some specified time limit,
the agent reviews its performance and attempts to update its policy, πθ to continuously improve its
performance until it finds an optimal policy (i.e. a policy that returns the largest reward in each
state). In our experiments we use a policy gradient algorithm called Proximal Policy Optimization
(PPO) (Schulman et al., 2017), and we modify the Gt in the policy gradient, ∇θJ :

∇θJ = Eπθ

[ ∞∑
t=0

∇θlogπθ(at|st)Gt

]
(2)

to attempt to capture human-like evolution of the discount function. We incorporate both delay
discounting and dynamic discounting to achieve this. The gradient updates the policy by pushing
the network weights towards the actions with the highest probability based on discounted sum of
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Parameters Settings
gamma 0.99, 0.95, -

learning_rate 2.5e-4, 5e-3, -
discount

function (df)
Geometric, Exponential, Hyperbolic

discount
scheme (ds)

Static, Increasing, Confidence

learning rate
(lr)

Linear, Decreasing, Confidence

total_timesteps 10,000,000

Table 1. Discounting and learning settings available to modify for our agents.

rewards, Gt. To manage the size of the updates to πθ, we experiment with three variant of annealing
for our learning rate:

αn+1 = α0(1−
n− 1

N
) (3)

where α0 is the initial learning rate, n is the current update iteration, and N is the total number of
updates. This is the linear learning rate annealing that we use. We use the decreasing learning rate
from François-Lavet et al. (2015), which is represented by:

αn+1 = 0.98αn. (4)

Finally, we use a novel annealing technique based on the agent’s policy and the strength of their
preference for their selected actions (πθ) represented by the following equation:

αn+1 = max(πθ(a|s))α0 (5)

where max(πθ(a|s)) returns the probability of the preferred action and we use this to determine big
of an update the agent should make to their policy. We discuss this approach further below when
we discuss dynamic discounting.

2.2 Delay Discounting

To begin exploring human-like discounting, we first manipulate Gt by replacing the geometric func-
tion, V = γiri+t with either an exponential function or hyperbolic function. Green & Myerson and
Odum both review studies that find these two functions better capture delay discounting found in hu-
mans and animals. The exponential function is most popular amongst economists and assumes that
the value will decrease by a proportionate amount depending on the delay. Exponential discounting
is as follows:

V = ri+te
−γi (6)

where ri+t is the reward received, γ is the discount rate, and i is the time the reward is received
relative to the current state. The hyperbolic, or hyperbolic-like, function attempts to account for
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variance in choices (i.e. choices that have different rates of reward) (Green & Myerson, 2004).
Hyperbolic discounting is:

V =
ri+1

(1 + γi)s
(7)

with the only new variable being s, a nonlinear scaling factor (i.e. when s=1 the function is hyper-
bolic and when s<1 it is hyperbolic-like) which determines how steep the discount curve is (Green
& Myerson, 2004; Odum, 2011).

Fedus et al. implemented an agent using a hyperbolic discounting function for their experiments
in the Atari Learning Environment (ALE) and Pathworld environments. In Pathworld their agent is
trained to be robust to hazards in the environment. Their experiments found hyperbolic discounting
performed better than geometric discounting. However, in ALE solely using a hyperbolic discount
function did not have a significant impact on the performance of their agent. The difference between
their work and ours is we are using a domain with a long-time horizon (i.e. we have to consider
delayed rewards), real-time strategy (RTS) games, and we are comparing both exponential and
hyperbolic discounting to geometric discounting.

2.3 Dynamic Discounting

We define static discounting as a discount function or factor that remains fixed throughout the dura-
tion of learning and dynamic discounting as a discount function or factor that updates while learn-
ing. Our second modification to Gt is using a novel confidence-based approach and François-Lavet
et al.’s proposed increasing discount factor. Our novel approach uses the preference for actions out-
put by the agent model, πθ(at|st), as seen in the equation 2. We treat this as the agent’s confidence
in the choice because it represent the action perceived to return the largest reward. Using this as
the discount rate allows us to replicate confidence. As πθ(at|st) becomes larger, it entails–based
on the agent’s experience–action, at, is the best in it’s experience. As a result, the agent should be
more "confident" and discount the choice less. This is similar to how humans discount as described
by Mikhail et al. who studied how financial security forecasters become more accurate with their
predictions as they gain more experience and react less to new information. The final Gt formulas
used in our experiments are:

Gt =
N∑
i=0

rie
−πθ(ai|si)i (8)

and

Gt =
t∑

i=0

ri(1 + πθ(ai|si)i)s (9)

where πθ(ai|si) has replace γ, we use hyperbolic and exponential discounting, and the discount
rate is now based on the agent’s preference for the action. Now, it more closely resembles human
discounting as it depends more on the agent’s experience instead of a fixed hand-authored value as
seen in most of the RL literature.
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François-Lavet et al. implemented a DQN (Mnih et al., 2015) with an increasing discount
factor to show that it takes less training time to converge, and when paired with a varying learning
rate outperforms the baseline DQN. Their increasing discount rate is represented by the following
equation:

γk+1 = 1− 0.98(1− γk) (10)

where γk+1 is the increased discount rate (we increased ours 100k time steps) and γk is the current
discount rate. This is different from the work discussed in this paper in that our domain has delayed
rewards and immediate rewards and we use delay discounting functions while François-Lavet et al.
uses games in the ALE domain that only have immediate rewards and they use a geometric discount
function. Also, François-Lavet et al. uses a monotonically increasing discount factor, and ours
changes with our model’s predictions making it more human-like.

Fedus et al. implemented a meta-like discount factor for their ALE agent. For their ALE
agent, they incorporated a multi-horizon auxiliary task where the agent used multiple discount
rates/horizons for learning tasks with immediate rewards. They found this improved the perfor-
mance of the agent over the baseline agent. As mentioned above, they also use hyperbolic dis-
counting in one of their experiments. Our work is different with respect to hyperbolic discounting
because we use a domain with delay rewards and use a dynamic discount factor with our hyperbolic
discounting agent.

2.4 Time Consistent Discounting

An important property of discount functions is time consistency (Lattimore & Hutter, 2011; Shapiro
& Pichler, 2016). Discount functions that are time consistent do not result in an agent changing its
decision later. This property is important when searching for optimal behaviors because with a
time consistent discount function the agent will never stray from the optimal policy. Therefore, the
Bellman equation (Bellman, 1957) will be satisfied when using a time consistent discount function.
Of the discount function that we utilize in our experiments, the exponential function and geometric
function are time consistent. However, as mentioned above, these functions do not properly capture
how humans discount. Studies have shown that hyperbolic discounting, which is considered time
inconsistent, best match how humans discount choices.

Lattimore & Hutter and Shapiro & Pichler claim that it is important to avoid time inconsistent
discount functions when possible. However, researchers have found that overconfidence is preva-
lent in complex domains where it is difficult to find an optimal policy (Klayman et al., 1999; Kausel
et al., 2021). Changing preferences, based on newly gained information or could potentially prevent
an agent from getting trapped in a bad policy unlike time consistent discount functions which avoid
changing. This is why we believe it is important to find appropriate discount functions and learning
behaviors based on the task or task difficulty because humans use these systems together to improve
their behavior. Our confidence-based approach that we discuss later may also lead to time inconsis-
tent behavior, but assuming the agent is following an optimal policy the agent should not change its
mind.
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Figure 1. Example of the CTF map. Blue outline on units indicates player 2 and red outline indicates player 1.
Squares indicates stationary units and circles indicate movable units. The green square is a resource stockpile
that is treated as the flag. The light grey circles are the units that the agent controls to play.

3. Domain

3.1 Capture the Flag (CTF)

For our experimental domain, we recreated the game, Capture the Flag (CTF), in Gym-µRTS
(Huang et al., 2021). It is an open real-time strategy game environment designed specifically for AI
research (Ontañón et al., 2018). RTS games are two-player, zero-sum, simultaneous move games
that simulate large army battles. The main challenges RTS games pose to players are huge deci-
sion spaces and actions have duration and can be issued simultaneously (Ontañón et al., 2018). For
example, the branching factor (i.e. how fast the decision space grows) for Chess and Go has been
estimated to be 35 and 180, respectively, while Gym-µRTS has a branching factor of 1022 (Ontañón
et al., 2018). This makes RTS games a suitable domain for exploring discount functions because
players have to consider not only a range of options but also the time and likelihood of completing
their desired actions. Illustrating the importance and need of learning an effective discount function.
Gym-µRTS simplifies this domain by reducing the types of units that the player can produce, but
it still poses the same challenges as larger and more complex RTS games (e.g. StarCraft 2) and is
configurable meaning more unit types, maps, and agents can be added.

We chose CTF as our domain because it is not as complex as a full RTS game, but still requires
majority of the same sequences of actions (e.g. collecting resources, producing units, and attacking
units) needed for learning to play full games. In our CTF implementation, we place one flag in the
center of a 9x9 map and give each team enough resources to produce up to five worker units (the
only units capable of harvesting resources or "picking up the flag"). The teams have 2000 time steps
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Figure 2. Average reward and flag return (%) for discount function

to capture and return the flag to their base. If a team is successfully able to return the flag to their
base, they win the round. Otherwise, the round ends in a draw. Our reward structure/shaped reward
gave +100 for winning, -100 for a draw/timeout, -100 for losing, +100 for return the flag, +1 for
attacking the flag holder, and +0.1 for holding the flag. Rewards are given when the event is first
initialized (Huang et al., 2021).

The challenge of capture the flag is the agent has to learn how to balance capturing the flag
(pick up and return to base) and attacking (defend flag holder, attack flag holder, etc.). This poses a
challenge for the agent because it is controlling up to five units at once, and has to issue commands
to each to coordinate the units in order to achieve its goal. Depending on its discount function, the
agent may prioritize sooner rewards (e.g. attacking enemies or holding the flag) over later rewards
(returning flag) potentially leading to impulsive behavior and less success over time.

4. Delay Discounting

4.1 Study 1: Discount Functions

4.1.1 Performance

We found that all of the exponential and hyperbolic discounting agents have similar performance
when we look at the average episode reward and flags captured. This suggests that both are suitable
discount functions for this task, and improving the performance of agents further will rely on the
information used for optimizing the agent. Geometric discounting, on the other hand, may have a
similar episodic reward average but it is significantly less successful at learning to capture the flag.
This suggests that the agents using the geometric function show signs of impulsiveness by focusing
on immediate small rewards, instead of the larger reward that it receives from capturing the flag.
We will discuss potential reasons for this behavior further in the next section. The difference in
performance between the delay discounting functions and geometric function may be a result of
how each function values time.
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Setting Attacks Issued Units Produced Flags Grabbed Time Holding Flag
Exponential 19.56 ± 9.08 17.44 ± 5.49 3.28 ± 1.41 251.11 ± 273.7
Geometric 32.72 ± 10.35 27.78 ± 9.55 8 ± 6.98 545.06 ± 481.98
Hyperbolic 22.67 ± 9.57 19 ± 6.16 2.83 ± 1.76 209.83 ± 254.66

Table 2. Averages for actions with immediate rewards for each discount function

Figure 3. Average reward and flag return (%) for each discount rate

4.1.2 Behavior

For the agent’s behavior we focus on the metrics: units produced, time holding flag, times the flag
is grabbed, and enemy flag holders eliminated. Again we found that the hyperbolic and exponential
agents behave similarly, with the hyperbolic agents spending a little more time holding the flag and
eliminating less flag holders. This suggests both delay discounting functions create behaviors that
exhibit self-control (i.e. capable of balancing immediate and long-term rewards). The geometric
function has more impulsive behavior. As we can see in all four figures (attacking, units, flags
grabbed, and time held), the geometric agents have significantly higher averages and each has a
positive, increasing slope. This means they focused on accumulating more of the smaller rewards
rather than attempting to capture the flag for a larger reward. Also, while visually observing the
agents play, we noticed that they would often grab the flag then try to form a blockade around the
flag holder. This behavior was not observed in the delay discounting agents.

4.2 Study 2: Static versus Dynamic Discounting

4.2.1 Performance

Focusing on just the episode reward and flags captured, we found that our confidence-based discount
scheme has the lowest average episode reward but has the highest average flag captured. While the
increasing and static discounting schemes both have higher average episode rewards, both have de-
clining averages for flag captures. This behavior suggests that both schemes exhibit impulsiveness
and prefer immediate rewards, while our confidence-based scheme appears to try to balance the
immediate rewards and delayed rewards. We assume this difference in behavior is a result of over-
confidence. Both the increasing and static schemes have large γ’s (90+), meaning they always have
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Figure 4. Average reward and flag return (%) for learning rates

a high belief of success in their actions regardless of their experience. This mindset in complex
domains, as seen in the Ducati case study (Gino & Pisano, 2011) and discussed by Klayman et al.
and Kausel et al., can lead to inaccuracies and misjudgements that are detrimental to performance.

4.2.2 Behavior

Setting Attacks Issued Units Produced Flags Grabbed Time Holding Flag
Confidence 25.72 ± 10.02 17.83 ± 5.63 3 ± 1.72 123.22 ± 117.43
Increasing 25.39 ± 9.84 23.67 ± 9.09 5.72 ± 6.51 441.28 ± 394.85

Static 23.83 ± 13.5 22.72 ± 9.48 5.39 ± 4.6 441.5 ± 449.08

Table 3. Averages for actions with immediate rewards for each discount rate

Reviewing the other metrics, we found the confidence agents have the most consistent behavior.
They have significantly lower averages for three out of four of the metrics, and if we correlate this
to its performance (average rewards and flags captured), it suggests the confidence agents focused
more on delayed rewards. Both the increasing and static discount schemes behave similarly which
we assume may be the result of overconfidence and prioritizing immediate returns. Since these four
actions occur more frequently than capturing the flag, we believe the agents focus on accumulating
smaller rewards instead of aiming for the larger, later reward. This is especially true since the
agents have a constantly high or increasingly high level of "confidence" because it has a high, fixed
discount rate or a monotonically increasing discount rate leading it to be believe that immediate
rewards are better.

4.3 Study 3: Learning Rates

4.3.1 Performance

The decreasing learning rate proposed by François-Lavet et al. had the highest performance. We
believe this is due to how quick the learning rate decreases. If the agent has success returning
flags early enough in training, the decreasing learning rate was already low enough that it was
underreacting to the new experiences. As a result, the agent would be more likely to maintain
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a successful policy. Our confidence-based learning rate also had some interesting results. The
confidence-based learning rate shows a lot of gradual oscillate where the agent seemed to find a
policy that was working (lowering the learning rate to "optimize") then later found that it stopped
working (increasing the learning rate to find a better policy).

4.3.2 Behavior

Setting Attacks Issued Units Produced Flags Grabbed Time Holding Flag
Confidence 27.89 ± 11.63 22.89 ± 9.34 5.22 ± 6.04 323.67 ± 357.78
Decreasing 22.17 ± 8.94 17.67 ± 5.62 3.56 ± 1.89 224.94 ± 268.5

Linear 24.89 ± 12.2 23.67 ± 9.15 5.33 ± 5.39 457.39 ± 462.5

Table 4. Averages for actions with immediate rewards for each learning rate

Observing the behavior of these agents we can see that the quicker, decreasing learning rates
performed better and resulted in less actions performed. This suggests that they were able to learn
to return the flag early enough that they underreact to the smaller immediate rewards. We can see
this looking at the Decreasing learning rate. It has double the flag captures of the other two learning
rates and also has lower averages for all the actions for immediate rewards. The Linear learning
rate on the other hand learns for longer and makes larger updates, and we believe this representative
of overreactionary behavior. The agents may have some games where they do not capture the flag,
and when they update their behavior they will put more emphasize on the immediate rewards that
they were able to accumulate instead of making smaller changes to what they know is already
"successful" for their task,

5. Conclusions and Future Work

In this paper, we explore discounting methods in reinforcement learning agents for explicitly mod-
eling varying degrees of self-control in agents. Our findings suggest that a combination of discount
functions, discount rate, and adaptive learning rate is necessary for modeling self-control in learning
agents. Self-control is an important cognitive phenomena to computationally model due to its im-
portance in human self-regulation issues of addiction, obesity, and other potentially harmful habits.
We show through experiments in a real-time strategy game domain that we can produce behaviors
using delay and dynamic discounting that representative of findings in behavioral psychology liter-
ature from human studies. We also show that the agents that use less impulsive discount rates and
faster learning rates do not have the highest average reward but they complete the task with higher
successful actions with longer-horizon tasks (flag returns in CTF).

Our future work will focus on more effectively incorporating delay discounting into reinforce-
ment learning through anticipatory thinking and utilizing information theory to help our agents
make more informed decisions. Anticipatory thinking, or more specifically episodic future think-
ing, is one’s ability to simulate, or imagine, their personal future (Schacter et al., 2017). Current RL
approaches, including our work in this paper, do not utilize anticipatory thinking. They discount
the actual action and reward they receive assuming that they will survive long enough to receive the
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reward (Sutton & Barto, 2018). Based on our findings from this paper, we observe that it may be
necessary to incorporate anticipatory thinking in order to fully model human-like decision making
with delay discounting. Therefore, we will extend this work by exploring techniques to add episodic
future thinking to our agents.

To complement the episodic future thinking work, we will explore how we can utilize informa-
tion theory to provide more information to our learning agents. Information theory describes how
well a statistical model captures a random variable (Cover, 1999). To achieve this we will shift
towards a distributional RL approach which will provide us with a distributional approximation of
the reward function instead of a single, scalar value like standard RL approaches (Bellemare et al.,
2017). Combining a distributional RL approach with information theory will enable us to start
accounting for risks and uncertainty in our agent’s decisions. This will enable us to better utilize
the delay discounting methods when paired with episodic future thinking because we can calculate
subjective values for decisions.
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